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Abstract
We compare two SAT-based bounded model checking algorithms for properties expressed
in the existential fragment of soft real time computation tree logic (RTECTL) and in the
existential fragment of computation tree logic (ECTL). To this end we use a faulty train
controller system (FTC) and the generic pipeline paradigm (GPP), the classic concurrency
problems, which we formalise by means of a finite transition system. We consider several
properties of the problems that can be expressed in both RTECTL and ECTL, and we
present the performance evaluation of the mentioned BMC methods by means of the
running time and the memory used.

1 Introduction

The problem of model checking [1] is to check automatically whether a structure M
defines a model for a modal (temporal, epistemic, etc.) formula α. The practical applica-
bility of model checking is strongly limited by the state explosion problem, which means
that the number of model states grows exponentially in the size of the system representa-
tion. To avoid this problem a number of state reduction techniques and symbolic model
checking approaches have been developed, among others, [2, 3, 4, 5].

The SAT-based bounded model checking (BMC) is one of the symbolic model check-
ing technique designed for finding witnesses for existential properties or counterexamples
for universal properties. Its main idea is to consider a model reduced to a specific depth.
The first BMC method was proposed in [6], and it was designed for linear time properties.
Next in [7] the method has been extended to handle branching time properties. Further
extensions of the SAT-based BMC method for real-time systems and multi-agent systems
can be found, among others, in [8, 9].

The existential fragment of the computation tree logic (ECTL) [7] is a formalism that
allow for specification of properties such as “there is a computation such that α will
eventually request”, or “there is a computation such that α will never be true”, but it is
impossible to to directly express bounded properties like for example “there is a compu-
tation such that α will be true in less than 15 unit time”, or “there is a computation such
that α will never be averted after 15 unit time”, or “there is a computation such that α will
always be averted between 10 and 20 unit time”. Note however that this bounded prop-
erties can be formalised in ECTL by using nested applications of the next state operators,
but the resulting ECTL formulae can be very complicated and problematic to work with.
An existential fragment of the soft real-time CTL (RTECTL) [10] defeats this restriction
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by introducing time-bounded temporal operators, and it supplies a much more compact
and convenient way of expressing time-bounded properties.

The purpose of this paper is to compare the SAT-based bounded model checking of
RTECTL properties and the SAT-based bounded model checking of equivalent ECTL prop-
erties and to present a correct and complete translation from RTECTL to ECTL.

We have expected that BMC for RTECTL would give better performance than BMC
for the ECTL formulae that result from the translation of RTECTL formulae. This is be-
cause the size of these ECTL formulae is exponential in the size of the original RTECTL
formulae. However, our experiments have shown that for certain RTECTL formulae BMC
can be less effective than BMC for their translation into ECTL formulae. These are the
formulae for which the interval at the operator EG is finite: then after the translation to
ECTL, EG operator disappears, and there are more paths, but they are much shorter.

The structure of the paper is as follows. In Section 2 we shortly recall definitions of
transition systems and their parallel composition. Then, we present syntax and seman-
tics of RTECTL and ECTL. In Section 3 we define a translation from RTECTL to ECTL,
and show its correctness. In section 4 we shortly present BMC technique for RTECTL
and ECTL. In Section 5 we present experimental evaluation of the SAT-based BMC for
RTECTL [11] and ECTL [12] on equivalent formulae and for a faulty train controller sys-
tem (FTC) and generic pipeline paradigm (GPP). In Section 6 we conclude the paper.

2 Preliminaries

In this section we first define Transition System (TS), then we recall syntax and semantics
of two logics ECTL and RTECTL.

2.1 Transition System

A Transition System [13] (also called a model) is a tupleM = (S,Act,−→, s0, AP, L)
where:

• S is a set of states,
• Act is a set of actions,
• −→ ⊆ S ×Act× S is a transition relation,
• s0 ∈ S is the initial state,
• AP is a set of atomic propositions, and
• L : S → 2AP is a labelling function.

Transition system is called finite if S, Act, and AP are finite. For convenience, we write
s

σ−→ s′ instead of (s, σ, s) ∈ −→. Moreover, we write s −→ s′ if s σ−→ s′, for some
σ ∈ Act.

From now on we assume that a considered model has no terminal states, i.e. for every
s ∈ S there exist s′ ∈ S such that s −→ s′. The set of all natural numbers is denoted by
N, and the set of all positive natural numbers byN+. A path inM is an infinite sequence
π = (s0, s1, . . .) of states such that si−→si+1 for each i ∈ N. For a path π = (s0, s1, . . .)
and i ∈ N, the i-th state of π is defined as π(i) = si. The i-th prefix of π, denoted by
π[. . i] is defined as π[. . i] = (s0, s1, . . . , si), and the i-th suffix of π, denoted by πi, is
defined as πi = (si, si+1, . . .). Note that if π is a path in M then the suffix πi is also
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a path inM. By Π(s) we denote the set of all the paths starting at s ∈ S, and by Π(M)
we denote the set of all the paths inM.

2.2 Models and parallel composition

The concurrent systems are designed as collections of interacting computational processes
that may be executed in parallel. Therefore, we assume that a concurrent system is mod-
elled as a network of models that run in parallel and communicate with each other via
executing shared actions. There are several ways of defining a parallel composition. We
adapt the standard definition, namely, in the parallel composition the transitions not corre-
sponding to a shared action are interleaved, whereas the transitions labelled with a shared
action are synchronised.

We formalise the above by the following definition of parallel composition. LetMi =
(Si, Acti,−→i, s0i , APi, Li) be models such that for all i, j ∈ {1, . . . ,m}, if i 6= j, then
APi ∩ APj = ∅. We take Act =

⋃m
i=1Acti, and for σ ∈ Act we define a set Act(σ) =

{1 ≤ i ≤ m | σ ∈ Acti} that gives the indices of the components that synchronise at σ. A
parallel composition ofmmodelsMi is the modelM = (S,Act,−→, s0, AP, L), where
S =

∏m
i=1 Si, Act =

⋃m
i=1Acti, a transition ((s1, . . . , sm), σ, (s′1, . . . , s

′
m)) ∈ −→

iff (∀j ∈ Act(σ)) (sj , σ, s
′
j) ∈ −→j , (∀i ∈ {1, . . . ,m} \ Act(σ)) s′i = si, s0 =

(s01, . . . , s
0
m), AP =

⋃m
i=1APi, and L((s1, . . . , sm)) =

⋃m
i=1 Li(si).

2.3 The ECTL and RTECTL logics

2.3.1 Syntax of ECTL

The syntax of ECTL formulae over the set AP of atomic propositions is defined by the
following grammar:

ϕ:= true | false | p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | EXϕ | E(ϕUϕ) | EGϕ

where p ∈ AP and ϕ is a formula. The symbols X, U and G are the modal operators for
“neXt time”, “Until” and “Globally”, respectively. The symbol E is the existential path
quantifier.

The derived basic modalities are defined as follows:

EFα
df
= E(trueUα), E(αRβ)

df
= E(βU (α ∧ β)) ∨ EGβ.

2.3.2 Semantics of ECTL

LetM be a model, and ϕ an ECTL formula. An ECTL formula ϕ is true in the modelM
(in symbolsM |= ϕ) iffM, s0 |= ϕ (i.e., ϕ is true at the initial state of the modelM),
where

M, s |= true,

M, s 6|= false,

M, s |= p iff p ∈ L(s),

M, s |= ¬p iff p 6∈ L(s),

M, s |= α ∧ β iffM, s |= α andM, s |= β,
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M, s |= α ∨ β iffM, s |= α orM, s |= β,

M, s |= EXα iff (∃π ∈ Π(s))(M, π(1) |= α),

M, s |= E(αUβ) iff (∃π ∈ Π(s))(∃m ≥ 0)(M, π(m) |= β and
(∀j < m)M, π(j) |= α),

M, s |= EGα iff (∃π ∈ Π(s))(∀m ≥ 0)(M, π(m) |= α).

2.3.3 Syntax of RTECTL

Let p ∈ AP and I be an interval in N = {0, 1, 2, . . .} of the form: [a, b) and [a,∞), for
a, b ∈ N. Note that the remaining forms of intervals can be defined by means of [a, b)
and [a,∞).

The language RTECTL is defined by the following grammar:

ϕ:= true | false | p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | EXϕ | E(ϕUIϕ) | EGIϕ

The derived basic modalities are defined as follows:

EFIα
df
= E(trueUI α), E(αRI β)

df
= E(βUI (α ∧ β)) ∨ EGIβ.

2.3.4 Semantics of RTECTL

LetM be a model and ϕ an RTECTL formula. An RTECTL formula ϕ is true in the model
M (in symbols M |=rt ϕ) iff M, s0 |=rt ϕ (i.e., ϕ is true at the initial state of the
modelM), where:

M, s |=rt true,

M, s 6|=rt false,

M, s |=rt p iff p ∈ L(s),

M, s |=rt ¬p iff p 6∈ L(s),

M, s |=rt α ∧ β iffM, s |=rt α andM, s |=rt β,

M, s |=rt α ∨ β iffM, s |=rt α orM, s |=rt β,

M, s |=rt EXα iff (∃π ∈ Π(s))(M, π(1) |=rt α),

M, s |=rt E(αUIβ) iff (∃π ∈ Π(s))(∃m ∈ I)(M, π(m) |=rt β and
(∀i < m)M, π(i) |=rt α),

M, s |=rt EGIα iff (∃π ∈ Π(s))(∀m ∈ I)(M, π(m) |=rt α).

3 Translation from RTECTL into ECTL

In this section we present a translation from the RTECTL language to the ECTL language
that is based on the intuitive description of such a translation presented in [10, 14]. We
focused on the existential part of RTCTL only, because we use the BMC method. More-
over, we would like to stress that our semantics of the operator GI is different than the
one presented in [10, 14]. Further, unlike in [10, 14], we present the translation for all
types of intervals that can appear together with the temporal operators UI and GI , and
for both operators.
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Let p ∈ AP , α and β be formulae of RTECTL, a ∈ N, b ∈ N ∪ {∞} and a < b. We
define the translation from RTECTL into ECTL as a function tr : RTECTL → ECTL in the
following way:

tr(p) = p
tr(¬p) = ¬p

tr(α ∧ β) = tr(α) ∧ tr(β)
tr(α ∨ β) = tr(α) ∨ tr(β)

tr(E(αU[a,b)β)) =





tr(α) ∧EX(tr(E(αU[a−1,b−1)β))) if a > 0

and 1 < b <∞
tr(β) ∨ tr(α) ∧EX(tr(E(αU[0,b−1)β))) if a = 0

and 1 < b <∞
tr(α) ∧EX(tr(E(αU[a−1,∞)β))) if a > 0

and b =∞
E(tr(α)Utr(β)) if a = 0

and b =∞
tr(β) if a = 0

and b = 1

tr(EG[a,b)α) =





EX(tr(EG[a−1,b−1)α)) if a > 0 and 1 < b <∞
tr(α) ∧EX(tr(EG[a,b−1)α)) if a = 0 and 1 < b <∞
EX(tr(EG[a−1,∞)α)) if a > 0 and b =∞
EGtr(α) if a = 0 and b =∞
tr(α) if a = 0 and b = 1

tr(EXα) = EXtr(α)

Because EF[a,b)α
df
= E(trueU[a,b)α) , the translation for EF[a,b)α can be defined using

the translation for E(αU[a,b)β):

tr(EF[a,b)α) =





EX(tr(EF[a−1,b−1)α)) if a > 0 and 1 < b <∞
tr(α) ∨EX(tr(EF[0,b−1)α)) if a = 0 and 1 < b <∞
EX(tr(EF[a−1,∞)α)) if a > 0 and b =∞
EFtr(α) if a = 0 and b =∞
tr(α) if a = 0 and b = 1

The following theorem, which can be proven by induction on the length of an RTECTL
formula, states correctness of the above translation.

Proposition 1. Let α be an RTECTL formula, and a ∈ N. Then,

tr(EG[a,∞)α)) = EX . . .EX︸ ︷︷ ︸
a

(EGtr(α)).
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Example 1. tr(EG[3,∞)α) = EXEXEX(EGtr(α)).

Proposition 2. Let α be an RTECTL formula, and a, b ∈ N. If a < b <∞, then

tr(EG[a,b)α)) = EX . . .EX︸ ︷︷ ︸
a

(tr(α) ∧EX(tr(α)) ∧ . . . ∧EX . . .EX︸ ︷︷ ︸
b−a

(tr(α))).

Example 2. tr(EG[3,6)α) = EXEXEX(tr(α) ∧EX(tr(α) ∧EX(tr(α)))).

Proposition 3. Let α and β be RTECTL formulae, and a ∈ N. If a > 0, then

tr(E(αU[a,∞)β)) = tr(α) ∧EX(tr(α) ∧EX(tr(α) . . .︸ ︷︷ ︸
a−1

∧E(tr(α)Utr(β)))).

Example 3. tr(E(αU[3,∞)β)) = tr(α)∧EX(tr(α)∧EX(tr(α)∧E(tr(α)Utr(β)))).

Proposition 4. Let α and β be RTECTL formulae, and a, b ∈ N. If a < b <∞, then

tr(E(αU[a,b)β)) = tr(α) ∧EX(tr(α) ∧EX(tr(α) ∧ . . .︸ ︷︷ ︸
a

∧EX(tr(β) ∨ tr(α) ∧EX(tr(β) ∨ tr(α) . . .︸ ︷︷ ︸
b−a−1

∧EX(tr(β))))))).

Example 4. tr(E(αU[3,6)β)) = tr(α) ∧EX(tr(α) ∧EX(tr(α) ∧EX(tr(α)∧
EX(tr(β) ∨ tr(α) ∧EX(tr(β) ∨ tr(α) ∧EX(tr(β))))))).

Lemma 1. Let M be a model, and ϕ an RTECTL formula. Then (∀s ∈ S)(M, s |=rt

ϕ⇒M, s |= tr(ϕ))

Proof. We proceed by induction on the length of formulae. Let s ∈ S, and assume that
M, s |=rt ϕ. Now consider the following cases:

1. ϕ ∈ AP . Then, since tr(ϕ) = ϕ, we have that tr(ϕ) ∈ AP . Therefore,M, s |=rt

ϕ ⇐⇒ ϕ ∈ L(s) ⇐⇒ tr(ϕ) ∈ L(s) ⇐⇒ M, s |= tr(ϕ).
2. ϕ = ¬p, where p ∈ AP . Then tr(ϕ) = ϕ. Therefore,M, s |=rt ϕ ⇐⇒ M, s |=rt

¬p ⇐⇒ p /∈ L(s) ⇐⇒ M, s |= ¬p ⇐⇒ M, s |= ϕ ⇐⇒ M, s |= tr(ϕ).
3. ϕ = α∧β. By the definition of the satisfiability relation we have thatM, s |=rt α and
M, s |=rt β. By the inductive hypothesis, we getM, s |= tr(α) andM, s |= tr(β).
Thus,M, s |= tr(α) ∧ tr(β), and thereforeM, s |= tr(α ∧ β).

4. ϕ = α∨ β. By the definition of the satisfiability relation we have thatM, s |=rt α or
M, s |=rt β. By the inductive hypothesis, we getM, s |= tr(α) orM, s |= tr(β).
Thus,M, s |= tr(α) ∨ tr(β), and thereforeM, s |= tr(α ∨ β).

5. ϕ = EXα. By the definition of the satisfiability relation we have that there exists
π ∈ Π(s) such that M, π(1) |=rt α. By the inductive hypothesis, we conclude
that M, π(1) |= tr(α). Thus, M |= EXtr(α), since π(0) = s. Therefore M |=
tr(EXα), since tr(EXα) = EXtr(α).
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6. ϕ = EGIα. By the definition of the satisfiability relation we have that there exists
π ∈ Π(s) such that (∀m ∈ I)(M, π(m) |=rt α). By the inductive hypothesis, we
conclude that there exists π ∈ Π(s) such that

(∀m ∈ I)(M, π(m) |= tr(α)). (1)

Now consider the following cases:
(a) I = [a,∞). From (1) we conclude thatM, s |= EX . . .EX︸ ︷︷ ︸

a

(EGtr(α)). From

this, by Proposition 1, it follows thatM, s |= tr(EG[a,∞)α).
(b) I = [a, b), where a < b <∞. From (1) we conclude that

M, s |= EX . . .EX︸ ︷︷ ︸
a

(tr(α) ∧EX(tr(α)) ∧ . . . ∧EX . . .EX︸ ︷︷ ︸
b−a

(tr(α))).

From this, by Proposition 2, we getM, s |= tr(EG[a,b)α)).
7. ϕ = E(αUIβ). By the definition of the satisfiability relation we have that there exists
π ∈ Π(s) such that (∃m ∈ I)(M, π(m) |=rt β and (∀i < m)(M, π(i) |=rt α). By
the inductive hypothesis, we conclude that

(∃m ∈ I)(M, π(m) |= tr(β) and (∀i < m)(M, π(i) |= tr(α))) (2)

Now consider the following cases:
(a) I = [a,∞). From (2) we conclude that

M, s |= tr(α) ∧EX(tr(α) ∧EX(tr(α) . . .︸ ︷︷ ︸
a−1

∧E(tr(α)Utr(β)))).

From this, by Proposition 3, it follows thatM, s |= tr(E(αU[a,∞)β)).
(b) I = [a, b), where a < b <∞. From (2) we conclude that

M, s |= tr(α) ∧EX(tr(α) ∧EX(tr(α) ∧ . . .︸ ︷︷ ︸
a

∧EX(tr(β) ∨ tr(α) ∧EX(tr(β) ∨ tr(α) . . .︸ ︷︷ ︸
b−a−1

∧EX(tr(β))))))).

From this, by Proposition 4, it follows thatM, s |= tr(E(αU[a,b)β)).

Lemma 2. Let M be a model, and ϕ an RTECTL formula. Then (∀s ∈ S)(M, s |=
tr(ϕ)⇒M, s |=rt ϕ).

Proof. We proceed by induction on the length of formulae. Let s ∈ S, and assume that
M, s |= tr(ϕ). Now consider the following cases:

1. ϕ ∈ AP . Then, since ϕ = tr(ϕ), we have that tr(ϕ) ∈ AP . Therefore, M, s |=
tr(ϕ) ⇐⇒ tr(ϕ) ∈ L(s) ⇐⇒ ϕ ∈ L(s) ⇐⇒ M, s |=rt ϕ.

2. ϕ = ¬p, where p ∈ AP . Then tr(ϕ) = ϕ. Therefore,M, s |= tr(ϕ) ⇐⇒ M, s |=
tr(¬p) ⇐⇒ p /∈ L(s) ⇐⇒ M, s |=rt ¬p ⇐⇒ M, s |=rt ϕ.

3. ϕ = α ∧ β. Then, tr(ϕ) = tr(α ∧ β) = tr(α) ∧ tr(β). By the definition of
the satisfiability relation for ECTL we have thatM, s |= tr(α) andM, s |= tr(β).
By the inductive hypothesis, we get M, s |=rt α and M, s |=rt β, and therefore
M, s |=rt (α ∧ β).
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4. ϕ = α ∨ β. Then, tr(ϕ) = tr(α ∨ β) = tr(α) ∨ tr(β). By the definition of
the satisfiability relation for ECTL we have that M, s |= tr(α) or M, s |= tr(β).
By the inductive hypothesis, we get M, s |=rt α or M, s |=rt β, and therefore
M, s |=rt (α ∨ β).

5. ϕ = EXα. Then, tr(ϕ) = tr(EXα) = EXtr(α). By the definition of the satisfi-
ability relation we have that there exists π ∈ Π(s) such thatM, π(1) |= tr(α). By
the inductive hypothesis, we conclude thatM, π(1) |=rt α. Thus,M, s |=rt EXα,
since π(0) = s.

6. ϕ = EGIα. Consider the following cases:
(a) I = [a,∞). From Proposition 1, we get that M, s |= EX . . .EX︸ ︷︷ ︸

a

(EGtr(α)).

From this it follows that there exists π ∈ Π(s) such that (∀m > a)
(M, π(m) |= tr(α)). By the inductive hypothesis, we conclude that
(∀m > a)(M, π(m) |=rt α), and thereforeM, s |=rt EGIα.

(b) I = [a, b), where a < b <∞. From Proposition 2, we get that
M, s |= EX . . .EX︸ ︷︷ ︸

a

(tr(α) ∧EX(tr(α)) ∧ . . . ∧EX . . .EX︸ ︷︷ ︸
b−a

(tr(α))).

From this it follows that there exists π ∈ Π(s) such that (∀m ∈ [a, b))
(M, π(m) |= tr(α)). By the inductive hypothesis, we conclude that
(∀m ∈ [a, b))(M, π(m) |=rt α). ThereforeM, s |=rt EGIα.

7. ϕ = E(αUIβ). Consider the following cases:
(a) I = [a,∞). From Proposition 3, we get that
M, s |= tr(α) ∧ EX(tr(α) ∧EX(tr(α) . . .︸ ︷︷ ︸

a−1

∧E(tr(α)Utr(β))). From this it

follows that there exists π ∈ Π(s) such that (∀m < a)(M, π(m) |= tr(α))
and (∃m > a)(M, π(m) |= E(tr(α)Utr(β)) By the inductive hypothesis, we
conclude that (∀m < a)(M, π(m) |=rt α) and (∃m > a)(M, π(m) |=rt β),
and thereforeM, s |= E(αUIβ).

(b) I = [a, b), where a < b <∞. From Proposition 4, we get that
M, s |= tr(α) ∧EX(tr(α) ∧EX(tr(α) ∧ . . .︸ ︷︷ ︸

a

∧EX(tr(β) ∨ tr(α) ∧EX(tr(β) ∨ tr(α) . . .︸ ︷︷ ︸
b−a−1

∧EX(tr(β))))))).

From this it follows that there exists π ∈ Π(s) such that (∀m < a)
(M, π(m) |= tr(α)) and (∃b − a − 1 > m > a)(M, π(m) |= tr(α) ∨ tr(β))
and (∃m < b)(M, π(m) |= tr(β)) By the inductive hypothesis, we conclude that
(∀m < a)(M, π(m) |=rt α) and (∃b− a− 1 > m > a)(M, π(m) |=rt α ∨ β)
and (∃m < b)(M, π(m) |=rt β), and thereforeM, s |= E(αUIβ).

From the Lemma 1 and Lemma 2 we get the following theorem.

Theorem 1 (Correctness of the translation). LetM be a model, and ϕ an RTECTL for-
mula. ThenM |=rt ϕ if, and only ifM |= tr(ϕ).
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4 Bounded Model Checking

The SAT-based Bounded Model Checking (BMC) is a popular model checking technique
for the verification of concurrent systems. Given a modelM, an existential modal formula
ϕ, and a non-negative bound k, the SAT-based BMC consists in searching for a non-empty
set of paths of length k that constitute a witness for the checked property ϕ. In particular,
the BMC algorithms generate a propositional formula which is satisfiable if and only
if the mentioned set of paths exist. The propositional formula is usually obtained as a
combination of a propositional encoding of the unfolding of the transition relation of the
given model, and a propositional encoding of the property in question. If the generated
propositional formula is not satisfiable, then k is incremented until either the problem
becomes intractable due to the complexity of solving the corresponding SAT instance,
or k reaches the upper bound of the bounded model checking problem for the language
under consideration.

All the SAT-based BMC, so the one for ECTL and RTECTL as well, are based on so
called bounded semantics, which are the base of translations of specifications to the SAT-
problem. In definitions of the bounded semantics one needs to represent cycles in models
in a special way. To this aim k-paths, i.e., finite paths of length k, and loops are defined.
These definitions have evolved over the last decade, and they have had a major impact on
the effectiveness of the BMC encodings.

The SAT-based BMC method for ECTL was introduced in [7], and then it was im-
proved in [12]. In this paper we use the definition and implementation of the SAT-based
BMC for ECTL that was presented in [12]. The SAT-based BMC method for RTECTL was
introduced in [15], and then it was improved in [11]. In this paper we use the definition
and implementation of the SAT-based BMC for RTECTL that was presented in [11].

5 Experimental Results

In this section we present a comparison of a performance evaluation of two SAT-based
BMC algorithms: for RTECTL [11, 16], and for ECTL [12]. In order to evaluate the be-
haviour of the algorithms, we have tested it on several RTECTL properties and equivalent
ECTL properties.

An evaluation of both BMC algorithms, which have been implemented in C++ is given
by means of the running time, the memory used, and the number of generated variables
and clauses.

5.1 A Faulty Train Controller System

To evaluate the BMC technique for RTECTL and ECTL we analyse a scalable concurrent
system, which is a faulty train controller system (FTC) (adapted from [17]). The system
consists of a controller, and n trains (for n ≥ 2), and it is assumed that each train uses
its own circular track for travelling in one direction. All trains have to pass through a
tunnel, but because there is only one track in the tunnel, arriving trains cannot use it
simultaneously. There are signal lights on both sides of the tunnel, which can be either
red or green. All trains notify the controller when they request entry to the tunnel or when
they leave the tunnel. The controller controls the colour of the signal lights, however it can
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be faulty, and does not fulfil its task. The controller does not ensure the mutual exclusion
property: two trains never occupy the tunnel at the same time.

Controller

GreenAway 1

RedWait 1

Train1

Tunnel 1

approach1

in1

out1

in1

inn

out1

outnAway n

Wait n

Trainn

Tunnel n

approachn

inn

outn

Fault

in1

in1 inn

inn

out1

outn

FIGURE 1: A network of automata for train controller system ([16])

An automata model of the FTC system is shown on Figure 1. The specifications for it
are given in the existential form, i.e., they are expressed in the RTECTL language:

• ϕ1 = EF[0,∞)

(
InTunnel1 ∧EG[1,n+2)(

n∧

i=1

¬InTunneli)
)

,

where n is the number of trains.

• ϕ2 = EF[0,∞)

(
InTunnel1 ∨EG[1,n+2)(

n∨

i=1

¬InTunneli)
)

,

where n is the number of trains.

The equivalent ECTL formulae are:

• tr(ϕ1) = EF(InTunnel1 ∧EX((¬InTunnel1 ∧ ¬InTunnel2)∧
EX((¬InTunnel1∧¬InTunnel2)∧EX(¬InTunnel1∧¬InTunnel2))), for n =
2.
• tr(ϕ2) = EF(InTunnel1 ∨EX((¬InTunnel1 ∨ ¬InTunnel2)∧
EX((¬InTunnel1∨¬InTunnel2)∧EX(¬InTunnel1∨¬InTunnel2))), for n =
2.

The formula ϕ1 states that there exists the case that Train 1 is in the tunnel and either
it and other train will not be in the tunnel during the next n + 1 time units. The formula
ϕ2 expresses that there exists the case that Train 1 is in the tunnel or either it or other train
will not be in the tunnel during the next n+ 1 time units.

In all of the following tables, the amount of time used by BMC and SAT is given in
the penultimate column, and maximum of memory usage of BMC and SAT is given in the
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last column. In Tables 1 and 2 we present experimental results for the formulae ϕ1 and
ϕ2, respectively. In Figures 2(a) and 2(b) we present a comparison of total time usage and
total memory usage for the formulae ϕ1.
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FIGURE 2: A comparison of total time usage and total memory usage for the formulae ϕ1.

An analysis of experimental results for formula ϕ1 leads to the conclusion that BMC
for ECTL uses less time and memory comparing to BMC for RTECTL. The reason is that
although BMC needs much more paths for verification in case of ECTL, but these paths
are significantly shorter.

BMC SAT BMC + SAT
Logic n k LL sec MB sec MB sec MB

RTECTL 2 3 2 0.01 1.70 0.00 6.00 0.01 6.00
ECTL 2 2 4 0.01 1.70 0.00 6.00 0.01 6.00

RTECTL 3 4 2 0.01 1.70 0.01 6.00 0.02 6.00
ECTL 3 2 5 0.00 1.70 0.00 6.00 0.00 6.00

RTECTL 4 5 2 0.02 1.83 0.00 6.00 0.03 6.00
ECTL 4 2 6 0.02 1.83 0.00 6.00 0.02 6.00

RTECTL 5 6 2 0.03 1.83 0.05 6.00 0.08 6.00
ECTL 5 2 7 0.02 1.96 0.01 6.00 0.03 6.00

RTECTL 10 11 2 0.28 2.47 0.52 7.00 0.80 7.00
ECTL 10 2 12 0.05 2.60 0.03 7.00 0.08 7.00

RTECTL 15 16 2 0.94 3.63 3.00 9.00 3.94 9.00
ECTL 15 2 17 0.21 3.76 0.12 9.00 0.33 9.00

RTECTL 20 21 2 2.93 5.31 23.78 22.00 26.71 22.00
ECTL 20 2 22 0.35 5.70 0.14 12.00 0.49 12.00

RTECTL 25 26 2 6.06 7.76 56.78 23.00 62.84 23.00
ECTL 25 2 27 0.90 8.26 0.69 16.00 1.60 16.00

RTECTL 30 31 2 11.56 10.98 269.14 74.00 280.70 74.00
ECTL 30 2 32 1.22 11.62 2.70 21.00 3.92 21.00
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RTECTL 40 41 2 33.81 20.26 1698.67 180.00 1732.48 180.00
ECTL 40 2 42 2.87 21.16 5.88 35.00 8.74 35.00

RTECTL 50 51 2 102.58 33.93 6738.59 651.00 6841.17 651.00
ECTL 50 2 52 5.11 35.22 14.94 56.00 20.05 56.00

RTECTL 60 61 2 217.43 52.62 20563.46 1616.00 20780.89 1616.00
ECTL 100 2 102 29.58 199.40 247.63 339.00 277.21 339.00
ECTL 150 2 152 100.04 181.10 4709.48 1098.00 4809.52 1098.00

Table 1: Experimental results for formula ϕ1 - RTECTL vs. ECTL. k is
the bound, LL is the number of k-paths.

In Figures 3(a) and 3(b) we present a comparison of total time usage and total memory
usage for the formulae ϕ2.
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FIGURE 3: A comparison of total time usage and total memory usage for the formulae ϕ2.

An observation of experimental results for formula ϕ2 leads to the conclusion that
BMC for RTECTL uses less time and memory comparing to BMC for ECTL. The reason
is that BMC needs much more paths for verification in case of ECTL.

BMC SAT BMC + SAT
Logic n k LL sec MB sec MB sec MB

RTECTL 2 2 2 0.00 1.70 0.00 6.00 0.00 6.00
ECTL 2 1 2 0.00 1.70 0.00 6.00 0.00 6.00

RTECTL 10 2 2 0.01 1.83 0.01 6.00 0.02 6.00
ECTL 10 1 10 0.05 2.21 0.02 6.00 0.07 6.00

RTECTL 50 2 2 0.16 3.12 0.06 7.00 0.23 7.00
ECTL 50 1 50 1.51 20.78 0.67 34.00 2.18 34.00
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RTECTL 100 2 2 0.56 5.82 0.26 11.00 0.82 11.00
ECTL 100 1 100 11.20 109.00 16.42 185.00 27.61 185.00

RTECTL 200 2 2 2.36 15.11 0.99 23.00 3.36 23.00
ECTL 200 1 200 81.60 213.50 193.61 1062.00 275.21 1062.00

RTECTL 300 2 2 6.10 29.54 5.00 51.00 11.10 51.00
RTECTL 400 2 2 9.73 49.27 7.97 80.00 17.70 80.00
RTECTL 500 2 2 12.73 74.15 16.63 123.00 29.37 123.00
RTECTL 1000 2 2 54.94 276.40 148.54 489.00 203.47 489.00

Table 2: Experimental results for ϕ2 - RTECTL vs. ECTL. k is the bound,
LL is the number of k-paths.

5.1.1 Generic Pipeline Paradigm.

ProdReady

ProdSend

Producer Consumer

ConsReady

Node1Ready

Processing Processing

data data

Node1Send NodenSend
Received

producing

processing1 processingn

send1

send1

send2

sendn

sendn+1

sendn+1consuming

Node1 Noden

NodenReady

by node 1 by node n

FIGURE 4: The GPP system [11]

The benchmark we consider is a generic pipeline paradigm (GPP) [18], which consists of
three parts: Producer producing data, Consumer receiving data, and a chain of n interme-
diate Nodes that transmit data produced by Producer to Consumer. The local states for
each component (Producer, Consumer, and intermediate Nodes), and their protocols are
shown on Fig. 4. The comparison of both BMC algorithms for RTECTL and ECTL with
respect to the GPP system has been done by means of the following RTECTL specifica-
tion:
ϕ3 = EG[0,∞)(¬ProdSend∨EF[2n+1,2n+2)(Received)), where n is number of nodes.
The equivalent ECTL formula for n = 2 is:
tr(ϕ3) = EG(¬ProdSend ∨EX(EX(EX(EX(EX(Received)))))).
ϕ4 = EG[0,n2+2n+1)(¬Received)), where n is number of nodes.
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The equivalent ECTL formula for n = 2 is:
tr(ϕ4) = EX(¬Received ∧EX(¬Received ∧EX(¬Received ∧EX(¬Received ∧
EX(¬Received ∧EX(¬Received ∧EX(¬Received ∧EX(¬Received ∧
EX(¬Received ∧ ¬Received)))))))))

In Tables 3 and 4 we present experimental results for the formula ϕ3 and ϕ4, respec-
tively. Also in the case of this benchmark we can observe that time and memory usage
depends on number of paths.

In Figures 5(a) and 5(b) we present a comparison of total time usage and total memory
usage for the formulae ϕ3.
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FIGURE 5: A comparison of total time usage and total memory usage for the formulae ϕ3.

An observation of experimental results for formula ϕ3 leads to the conclusion that
BMC for RTECTL uses less time and memory comparing to BMC for ECTL. The reason
is that although BMC needs much more paths for verification in case of ECTL.

BMC SAT BMC + SAT
Logic n k LL sec MB sec MB sec MB

RTECTL 1 5 7 0.01 1.83 0.00 6.00 0.01 6.00
ECTL 1 5 19 0.04 2.09 0.01 6.00 0.05 6.00

RTECTL 5 13 15 0.89 4.92 0.56 10.00 1.44 10.00
ECTL 5 13 155 10.34 35.73 9.36 67.00 19.70 67.00

RTECTL 10 23 25 10.95 23.74 9.70 42.00 20.65 42.00
ECTL 10 23 505 258.28 445.00 916.79 849.00 1175.07 849.00

RTECTL 15 33 35 55.66 78.27 96.52 227.00 152.18 227.00
RTECTL 20 43 45 234.62 196.00 11461.90 1330.00 11696.52 1330.00

Table 3: Experimental results for formula ϕ3 - RTECTL vs. ECTL. k is
the bound, LL is the number of k-paths.
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In Figures 6(a) and 6(b) we present a comparison of total time usage and total memory
usage for the formulae ϕ4.
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FIGURE 6: A comparison of total time usage and total memory usage for the formulae ϕ4.

An analysis of experimental results for formula ϕ4 leads to the conclusion that BMC
for ECTL uses less time and memory comparing to BMC for RTECTL. The reason is that
although BMC needs much more paths for verification in case of ECTL, but these paths
are significantly shorter.

BMC SAT BMC + SAT
Logic n k LL sec MB sec MB sec MB

RTECTL 1 4 1 0.00 1.70 0.00 6.00 0.00 6.00
ECTL 1 1 4 0.00 1.70 0.00 6.00 0.00 6.00

RTECTL 2 9 1 0.01 1.70 0.01 6.00 0.02 6.00
ECTL 2 1 9 0.00 1.70 0.00 6.00 0.00 6.00

RTECTL 3 16 1 0.02 1.83 0.28 6.00 0.29 6.00
ECTL 3 1 16 0.00 1.83 0.01 6.00 0.01 6.00

RTECTL 4 25 1 0.29 2.09 1.90 7.00 2.18 7.00
ECTL 4 1 25 0.02 2.09 0.03 6.00 0.05 6.00

RTECTL 5 36 1 0.58 2.34 10.63 9.00 11.20 9.00
ECTL 5 1 36 0.03 2.47 0.03 7.00 0.06 7.00

RTECTL 6 49 1 1.63 2.86 49.99 16.00 51.62 16.00
ECTL 6 1 49 0.07 2.99 0.08 7.00 0.15 7.00

RTECTL 7 64 1 2.97 3.50 346.04 51.00 349.01 51.00
ECTL 7 1 64 0.09 3.76 0.12 8.00 0.21 8.00

RTECTL 8 81 1 5.52 4.41 2775.31 117.00 2780.83 117.00
ECTL 8 1 81 0.15 4.66 0.79 10.00 0.94 10.00

RTECTL 9 100 1 11.55 5.44 11659.16 275.00 11670.71 275.00
ECTL 9 1 100 0.25 5.95 0.64 11.00 0.88 11.00
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ECTL 10 1 121 0.32 7.62 1.92 15.00 2.24 15.00
ECTL 11 1 144 0.44 9.56 0.99 17.00 1.43 17.00
ECTL 12 1 169 0.52 12.01 6.97 29.00 7.49 29.00
ECTL 13 1 196 0.66 14.97 9.57 34.00 10.23 34.00
ECTL 14 1 225 0.90 18.46 75.31 117.00 76.21 117.00
ECTL 15 1 256 1.22 22.59 65.80 122.00 67.02 122.00
ECTL 16 1 289 1.46 27.50 116.33 187.00 117.80 187.00
ECTL 17 1 324 1.72 33.06 250.14 285.00 251.86 285.00
ECTL 20 1 441 3.07 55.17 1062.39 710.00 1065.46 710.00

Table 4: Experimental results for formula ϕ4 - RTECTL vs. ECTL. k is
the bound, LL is the number of k-paths.

6 Conclusions

For the tests we have used a computer equipped with AMD Phenom
TM

9550 Quad-Core
2200 MHz processor and 8 GB of RAM, running Ubuntu Linux with kernel version 3.5.0-
17-generic. We have used the state of the art SAT-solver MiniSat 2 [19, 20], which is one
of the best SAT-solver. MiniSat 2 also has been used in the experimental results in many
papers concerning the BMC method, for example [11, 16, 12], and many others.

In this paper we have presented a comparison between the BMC method for ECTL
and the BMC method for RTECTL. Moreover, we have presented a correct translation for
operator EGI , which was not defined in [10, 14]. Further, we have tested and compared
with each other on to standard benchmarks the BMC translations for RTECTL and ECTL
incremented in [11, 12].

Acknowledgements. The author wishes to thank Bożena Woźna-Szcześniak and Andrzej
Zbrzezny for valuable comments and numerous suggestions which helped to improve this
paper.
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matics XV (2011) 153–162

[17] Hoek, W., Wooldridge, M.: Cooperation, knowledge, and time: Alternating-time temporal
epistemic logic and its applications. Studia Logica 75(1) (2003) 125–157

[18] Peled, D.: All from one, one for all: On model checking using representatives. In: Proceed-
ings of the 5th Int. Conf. on Computer Aided Verification (CAV’93). Volume 697 of LNCS.,
Springer-Verlag (1993) 409–423

[19] Eén, N., Sörensson, N. MiniSat http://minisat.se/MiniSat.html.

[20] Eén, N., Sörensson, N.: MiniSat - A SAT Solver with Conflict-Clause Minimization. In: Pro-
ceedings of 8th International Conference on Theory and Applications of Satisfiability Test-
ing(SAT’05). LNCS, Springer-Verlag (2005)




