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Abstract
In the paper two versions of random subspace method (RSM) for linear regression
models are considered. In the original RSM in regression framework introduced in
[1] subsets of regressors are sampled with equal probabilities from all subsets of a
chosen size and then fitted in order to construct scores of all variables. Proposed
modifications consist in preferential sampling of variables according to preliminary
assessment of their importance and/or initial screening of features. Some properties
of the proposed methods are discussed and their performance as prediction method
for moderate sample sizes is studied by means of simulations. The first variant,
weighted RSM, behaves promisingly when the dependence between regressors is
not very strong and is also much less computationally expensive than the RSM.

1 Introduction

Model selection in high dimensional feature space plays an important role in di-
verse fields of sciences, engineering and humanities. Examples include microarray
analysis, Quantitative Trait Loci (QTL) analysis, Genome-Wide Association Study
(GWAS), drug design analysis and high-frequency financial analysis among others.
In such problems it is challenging to find important variables out of thousands of
predictors, with number of observations usually in tens or hundreds. In [2] the need
for development of high-dimensional data analysis is discussed. Since the true re-
lationship in data is usually unknown, very often it is worthwhile to include higher
degree terms as well as interaction terms to the model. This can substantially in-
crease the number of potential attributes. The problem recently has received much
attention in the statistical and machine learning literature. An intensively studied
line of research is focused on regularization (cf. e.g. [3], [4]). In many approaches
a preliminary feature selection is used, e.g. in [5] a method of dimensionality re-
duction based on so called sure independence screening is proposed. Let us also
mention procedures using information criteria modified to high-dimensional setup,
see e.g. [6] or [7]. Recently a novel approach based on the adaptation of the random
subspace method (RSM) in the regression context has been proposed in [1].

In the RSM a random subset m with |m| features, smaller than the number of
all predictors p and a number of observations n, is chosen and the model is fitted in
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the reduced feature space. Selected features are assigned weights describing their
relevance in the considered submodel. In order to cover a large portion of fea-
tures in the dataset, the selection is repeated B times and the cumulative weights
(called final scores) are computed. The results of all iterations are combined in a
list of p features ordered according to final scores. The final model can be con-
structed based on predetermined number of the most significant variables or using
selection method applied to the nested list of models given by the ordering. The
simulation experiments described in [1] indicate that the proposed method behaves
promisingly when its prediction errors are compared with errors of penalty-based
methods such as the lasso and it has much smaller false discovery rate than the
other methods considered. One drawback of this method is its computational cost.
When the number of features p is large we should take large B in order to ensure
that all variables are likely to be selected to random subspaces.

In this paper we propose two modifications of the original algorithm. In the first
method, called weighted random subspace method (WRSM), variables are chosen
to subspaces with probabilities proportional to the values of individual weights
when univariate models are fitted. In the second method, called screened random
subspace method (SRMS), the preliminary feature screening is performed. Both
approaches reduce the computational cost of the original procedure.

This paper is organized as follows. The original RSM algorithm is recalled in
Section 2.1; the choice of the weights is described in Section 2.2 and in Section 2.3
some additional properties of quantities related to the weights are discussed. The
modifications of the RSM are presented in Section 2.4 and the results of numerical
experiments are discussed in Section 3. The proofs are relegated to the appendix.

We define now the formal setup of the paper. Let (Y,X) be the observed data,
where Y = Y(n) is an n × 1 vector of n responses whose variability we would
like to explain and X = X(n) is a n × p design matrix consisting of vectors of p
potential regressors collected from n objects. Responses are related to regressors
by means of the linear model

Y = Xβ + ε, (1)

where ε = (ε1, . . . , εn)′ is an unobservable vector of errors, assumed to have
N(0, σ2I) distribution. Vector β = (β1, . . . , βp)

′ is an unknown vector of parame-
ters. We consider two scenarios: the case of deterministic and random X. In the
latter case rows of X constitute n independent realizations of p-dimensional ran-
dom variable x and coordinates of vector Y form an i.i.d. sample distributed as
y = x′β + ε. A distribution of x = (x1, . . . , xp)

′ may be arbitrary, in particular
the distribution of its first coordinate may be point mass at 1 corresponding to
the linear model with an intercept included. The number of attributes p may be
larger than n. As any submodel of (1) containing |m| variables (xi1 , . . . , xi|m|)

′

can be described by set of indices m = {i1, . . . , i|m|} in order to make notation
simpler it will be referred to as model m. We denote by Xm the matrix composed
of the columns of X with indices in m and by xm a subvector of x consisting of
coordinates corresponding to m. Similarly, βm ∈ R|m| denotes the vector consist-
ing of components of β with indices in m. For simplicity, model fitted to data
(Y,Xm) we will be denoted by y ∼ xm. Usually some covariates are unrelated
to the prediction of Y, so that the corresponding coefficients βi are zero. Model
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containing all relevant variables, i.e. those pertaining to nonzero βi, will be called
a true model. The minimal true model {i : βi 6= 0} i.e. such that it pertains only
to relevant variables will be denoted by t and |t| will be the number of nonzero
coefficients. It is assumed that t ⊂ {1, 2, . . . , p} is unique and t does not change
with n.

2 Random Subspace Methods

2.1 Main Algorithm

We first describe the basic algorithm of Random Subspace Method.

RSM Algorithm

1. Input: observed data (Y,X), number of subset draws B, size of the subspace
|m| < min(p, n). Choice of weights wi,m is described in Section 2.2.

2. Repeat the following procedure for k = 1, . . . , B = Bn, where Bn is such that
Bn →∞ when n→∞ and starting with Ci,0 = 0 for any i.
• Randomly draw a model m∗ = {i∗1, . . . , i∗|m|} from the original feature

space.
• Fit model y ∼ xm∗ and compute weight wi,m∗ for each i ∈ m∗. Set wi,m∗ =

0 if i /∈ m∗.
• Update the counter Ci,k = Ci,k−1 + I{i ∈ m∗}.

3. For each variable i compute the final score FS∗i defined as

FS∗i =
1

Ci,B

∑

m∗:i∈m∗
wi,m∗ .

4. Sort the list of variables according to scores FS∗i : FS∗i1 ≥ FS∗i2 . . . ≥ FS∗ip .

5. Output: Ordered list of variables {i1, . . . , ip}.

Two parameters need to be set in the RSM: the number of selections B and
the subspace size |m|. The smaller the size of a chosen subspace (i.e. a subset of
features chosen) the larger the chance of missing informative features or missing
dependencies between variables. On the other hand for large |m| many spurious
variables can be included adding noisy dimensions to the subspace. Note that the
subspace size is limited by min(n, p). In the following the value of parameter |m| is
chosen empirically. We concluded from numerical experiments that the reasonable
choice is |m| = min(n, p)/2. It follows from the description above that a parallel
version of the algorithm is very easy to implement.

2.2 Choice of the weights wi,m

In this section we discuss rationale for using a squared value of t-statistic as a
weight in RSM procedure. Observe first that a randomly chosen model m in the
second step of RSM procedure may be misspecified, in the sense that it may not
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contain all significant variables. Thus it is important to investigate the perfor-
mance of proposed weights in a general case when a considered model may be
wrong. This is an interesting issue as it is intuitively clear that when e.g. the most
important feature is mistakenly dropped from the model then a spurious feature
highly correlated with it may have larger value of t-statistic than other true pre-
dictors. We discuss the problem in Theorem 1 which states the conditions under
which such a situation can not occur. In particular, it follows from Corollary 2
that when variables are asymptotically uncorrelated the weighting will reflect the
correct ordering of variables in the sense that all variables pertaining to the mini-
mal true model will have larger weights than spurious ones.
Consider a submodel m of model (1) containing |m| variables i1, . . . , i|m|, where
|m| is a fixed integer such that |m| < min(n, p). Model m with i-th variable deleted
will be denoted by m \ {i}. We assume that for the considered model m matrix
(X′mXm)−1 exists.
Let β̂m = (β̂i1,m, . . . , β̂i|m|,m)′ be the least squares estimator based on model m
and

Ti,m = β̂i,m[σ̂2
m(X′mXm)−1i,i ]−1/2, i ∈ {i1, . . . , i|m|}

be t-statistic corresponding to variable i when model m is fitted to the data. In
the above formula σ̂2

m = (n − |m|)−1RSS(m), where RSS(m) = Y′(I − Pm)Y is
sum of the squared residuals (residual sum of squares) for model m and Pm is a
projection on the column space spanned by the regressors corresponding to this
model. The following equality holds

T 2
i,m

n− |m| =
RSS(m \ {i})−RSS(m)

RSS(m)
. (2)

Thus T 2
i,m/(n − |m|) is a relative increase of RSS when variable i is dropped

from the model m. It follows from (2) and generalized Cochran theorem that
T 2
i,m/(n− |m|) is a ratio of two independent chi squared distributed random vari-

ables: χ2
1(λ1) in the case of numerator and χ2

n−|m|(λ2) for denominator, where
parameters of noncentrality are equal λ1 = ||(Pm − Pm\{i})Xβ||2/(2σ2) and λ2 =
||(I−Pm)Xβ||2/(2σ2), respectively. It will be shown is Section 2.3 that λ2 is equal
to the Kullback–Leibler divergence between probability density function corre-
sponding to the true model and space spanned by columns of X corresponding to
model m. Note also that due to a variance decomposition for a linear model which
includes constant regressor we have

T 2
i,m

n− |m| =
R2
m −R2

m\{i}
1−R2

m

, (3)

where R2
m is a coefficient of determination for a model m. Equation (3) provides

the main motivation for our choice of weights in RSM scheme, that is we consider
wi,m = (n − |m|)−1T 2

i,m. Namely, it indicates that up to a multiplicative factor,
T 2
i,m is a decrease in R2 due to leaving out xi multiplied by a measure of goodness-

of-fit (1−R2
m)−1 of model m and thus it combines two characteristics: importance

of a feature within the model m and the importance of the model itself.
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In the case of random X the following quantities will be useful. Assume throughout
for simplicity that E(xi) = 0 for i ∈ {1, . . . , p}. Let cov(y, z) be the 1× |m| vector
of covariances between y and coordinates of some |m|-dimensional random vector
z. Let

ρ2y,xm
=

cov2(y, Pmy)

var(y)var(Pmy)
=

var(Pmy)

var(y)
(4)

be the squared multiple correlation coefficient between y and its projection on a
subspace spanned by coordinates of xm. It is easy to see that

ρ2y,xm
=

cov(y,xm)Σ−1xm
cov(xm, y)

var(y)
, (5)

where cov(xm, y) = cov(y,xm)′ and Σxm
is the variance-covariance matrix of

variables corresponding to m. Moreover, it follows that ρ2y,xm
equals the maximal

value of a squared correlation between y and linear combination of coordinates of
xm, when the coefficients of the combination vary. For m = {i} consisting of one
element ρ2y,xm

is squared correlation coefficient ρ2(y, xi) between variables y and
xi.
Let λn(m) := ||Xβ − PmXβ||2. In the case of deterministic X let

λ(m) := lim
n→∞

n−1λn(m).

For random X the limit is understood almost surely. Note that λn(m) equals a
squared distance of Xβ from its projection PmXβ on the columns of X corre-
sponding to m and may be regarded as a measure of discrepancy between the
larger and the smaller model. Since λn(m) is an important object we discuss its
properties in Section 2.3. Proposition 1 below gives an interpretation of λ(m) in
the terms of a limiting prediction error. The following theorem shows that ordering
variables with respect to squares of their t-statistics is in the case of deterministic
X asymptotically equivalent to ordering with respect to quantities λ(m \ {i}). It
also turns out that in the case of random X under appropriate moment conditions
λ(m \ {i}) exists almost surely and the ordering can be reexpressed in the terms
of squared multiple correlation coefficients ρ2y,xm\{i} . In the following number of
fitted variables m is a fixed integer. Note that as Xβ = Xtβt, λ(m) does not
depend on the number of potential regressors p. The same observation applies to
T 2
i,m. The following results have been proved in [1].

Theorem 1 Let i, j ∈ m.
(i) In the case of deterministic X assume that λ(m \ {i}) and λ(m \ {j}) exist.
Then T 2

i,m ≥ T 2
j,m almost surely for sufficiently large n implies

λ(m \ {i}) ≥ λ(m \ {j}). (6)

Moreover, strict inequality in (6) implies T 2
i,m > T 2

j,m almost surely for sufficiently
large n.
(ii) In the case of random X assume that Σxm is invertible and Ex4j are finite for
all j ∈ m. Then T 2

i,m ≥ T 2
j,m almost surely for sufficiently large n implies

ρ2y,xm\{j} ≥ ρ
2
y,xm\{i} . (7)
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Moreover, strict inequality in (7) implies T 2
i,m > T 2

j,m almost surely for sufficiently
large n.

In the case of random X the explicit formula for almost sure limits in (6) can
be obtained and condition (6) is simplified to (7). It is also easy to see that for
m having two elements condition (7) is equivalent to ρ2(y, xi) = ρ2(y,xm\{j}) >
ρ2(y,xm\{i}) = ρ2(y, xj).

Proposition 1 When X is deterministic consider the mean squared error of pre-
diction for OLS estimation in model m

MSEPn(m) = E(||Y∗ −Xmβ̂m||2) = σ2(n+ |m|) + ||Xβ − PmXβ||2,

where Y∗ = Xβ + ε∗ with ε∗ being an independent copy of ε. Let

MSEP (m) = limn→∞n
−1MSEPn(m).

Thus the ordering in (6) is equivalent to ordering

MSEP (m \ {i}) ≥MSEP (m \ {j}).

Moreover, for random X, (7) is equivalent to

var(y − Pm\{i}y) ≥ var(y − Pm\{j}y).

Corollary 1 Let m ⊇ t.
(i) In the case of deterministic X assume that λ(m\{i}) is defined for any i. Then
condition

λ(m \ {i}) > 0, (8)

for all i ∈ t implies that mini∈t T 2
i,m > maxi∈tc∩m T 2

i,m almost surely for sufficiently
large n.
(ii) In the case of random X assume that Σxm

is invertible and Ex4j < ∞ for all
j ∈ m. Then mini∈t T 2

i,m > maxi∈tc∩m T 2
i,m almost surely for sufficiently large n.

Corollary 1 asserts that when m ⊇ t the relevant variables precede the spurious
ones asymptotically provided that column Xi for any i ∈ t is separated from the
linear space spanned by other columns in m. Below we provide simple sufficient
condition for (8) to hold.

Proposition 2 For deterministic X and m 6⊇ t assume that n−1X′t∪mXt∪m →
W , as n→∞, W is positive definite matrix. Then λ(m) > 0.

The proof of Proposition 2 is relegated to Appendix. Various versions of condition
(8) are used to prove asymptotic results of model selection for linear models (cf [8],
[9], [10], [11]). E.g. in the last paper the condition equivalent to λ(s) > 0 for any s
such that t 6⊂ s is used to prove consistency of Bayes selection method introduced
there. Note the fact that (8) is automatically satisfied for random X which can
be regarded as superior feature of random design when compared to fixed design
modelling.
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Corollary 2 Assume that Σxm∪t is diagonal, invertible and Ex4j < ∞ for all
j ∈ m (in the case of random X) and limn→∞ n−1X′m∪tXm∪t is diagonal and
invertible (in the case of deterministic X). Then mini∈t∩m T 2

i,m > maxi∈tc∩m T 2
i,m.

Corollaries 1 and 2 indicate that, when a model containing all significant variables
is fitted or variables are uncorrelated, the ordering with respect to the squared
t-statistics ensures that the coordinates corresponding to nonzero coefficients are
placed ahead the spurious ones. In a general case when the fitted model is mis-
specified (i.e. at least one significant variable is omitted) and the variables are not
independent it may happen that condition (6) or (7) is not satisfied for some i ∈ t,
j /∈ t and irrelevant variable j is placed ahead relevant variable i when the ordering
of variables is based on squared t-statistics. Example 1 explores such a situation.
Example 1 Consider random-design regression model Y = Xβ + ε, where β =
(β1, 0, β3)′, ε has N(0, I) distribution and rows of X are normally distributed with
covariance matrix

Σx = (σij) =




1 b 0
b 1 a
0 a 1


 ,

where a, b ∈ (0, 1) are parameters. Thus the true variables are uncorrelated, corre-
lation between true variable x1 and spurious x2 is equal b whereas correlation be-
tween true variable x3 and spurious x2 is equal a. A misspecified model m = {1, 2}
containing two variables only is fitted: x1 (true) and x2 (spurious). Theorem 1 (ii)
states that T 2

1,m > T 2
2,m for sufficiently large n with probability 1 i.e. the true

variable will precede the spurious one in the ordering if and only if (7) is satisfied.
It is easy to verify that in this case condition (7) yields

σ−111 (β1σ11 + β2σ12 + β3σ13)2 > σ−122 (β1σ12 + β2σ22 + β3σ23)2

or equivalently ρ2(x1, y) > ρ2(x2, y). For β1 = β3 = 1 an easy calculation shows
this is equivalent to 1 > b+a. When the spurious variable x2 is strongly correlated
with true ones it takes over their roles in the misspecified model and in effect has
more predictive power than variable x1. For β1 = β3 = 1 we carried out L = 500
simulations for n = 100, 200, 500 and computed fraction of correct orderings for
which T 2

1,m > T 2
2,m with varying value of parameter a and for fixed b = 0.5.

The results are presented in Figure 1. Note that to the left of the value a =
0.5 probability of correct ordering significantly increases in concordance with the
condition a+ b < 1. When the correlation a between spurious variable x2 and true
variable x3 missing from the model is strong then the ordering of variables in m
induced by t-statistics can be incorrect with high probability, i.e. it is likely that
T 2
1,m < T 2

2,m. Note that when model m = {2, 3} is fitted the condition for correct
ordering is the same.

2.3 Properties of λn(m)

In this section we discuss some formal properties of term λn(m) defined above in
Theorem 1. Proposition 3 below gives an interpretation of λn(m) in terms of the
Kullback–Leibler divergence (KL). Let fXtβt

(s) be the probability density function
(p.d.f.) of conditional distribution of Y given X, i.e the p.d.f. of the multivariate
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Figure 1: Estimated probabilities of T 2
1,m > T 2

2,m with respect to a based on N = 500
trials.

normal distribution N(Xtβt, σ
2I). Let fXmβm

(s) be the p.d.f. corresponding to
model m, i.e. the p.d.f. of N(Xmβm, σ

2I). Let spX(m) denote the space spanned
by columns of X corresponding to model m. The following properties hold. They
are proved in the appendix.

Proposition 3

KL(fXtβt
, fXmβm

) =

∫ +∞

−∞
fXtβt

(s) log
fXtβt

(s)

fXmβm
(s)

ds =
||Xtβt −Xmβm||2

2σ2
(9)

and

KL(fXtβt
, spX(m)) = inf

Xmγ∈spX(m)
KL(fXtβt

, fXmγ) =
λn(m)

2σ2
. (10)

It follows that λ(m) is equal, up to multiplicative factor (2σ2)−1, to a limiting
value of Kullback–Leibler divergence, averaged per observation, between proba-
bility density function corresponding to the true model and space spanned by
columns of X corresponding to model m.

Proposition 4 The following equality holds

λn(m) = β′t\m[X′t\mXt\m −X′t\mXm(X′mXm)−1X′mXt\m]βt\m.

It is seen that the matrix pertaining to quadratic form above is Schur complement
(see e.g. [12], p. 95) of the block X′mXm of the matrix X′t∪mXt∪m.

Proposition 5 The following inequality holds

λn(m) ≥ λmin(X′t∪mXt∪m)||βt\m||2.
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It follows from Proposition 5 that λmin(X′t∪mXt∪m) > 0 implies that λn(m) is
also positive.

2.4 Modifications of the original approach

As time complexity of the calculation of final scores is linear in B it is worth-
while to consider variants of the method which would yield similar performance
for smaller number of runs. Here we introduce two algorithms: Weighted RSM
(WRSM) and Screened RSM (SRSM), which also can be combined together. First
we will describe the WRSM procedure.

WRSM Algorithm

1. Input: observed data (Y,X), number of subset draws B, size of the subspace
|m| < min(p, n).

2. For each variable i fit univariate model y ∼ xi and compute weight of i-th
variable w(0)

i .

3. For each variable i compute πi = w
(0)
i /

∑p
l=1 w

(0)
l .

4. Repeat the following procedure for k = 1, . . . , B = Bn, where Bn is such that
Bn →∞ when n→∞ and starting with Ci,0 = 0 for any i.
• Randomly draw a model m∗ = {i∗1, . . . , i∗|m|} from the original feature space

in such a way that probability of choosing i-th variable is equal πi.
• Fit model y ∼ xm∗ and compute weight wi,m∗ for each i ∈ m∗. Set wi,m∗ =

0 if i /∈ m∗.
• Update the counter Ci,k = Ci,k−1 + I{i ∈ m∗}.

5. For each variable i compute the final score FS∗i defined as

FS∗i =
1

Ci,B

∑

m∗:i∈m∗
wi,m∗ .

6. Sort the list of variables according to scores FS∗i : FS∗i1 ≥ FS∗i2 . . . ≥ FS∗ip .

7. Output: Ordered list of variables {i1, . . . , ip}.
Actual point 4 of the above procedure uses a simplified scheme, namely probabili-
ties πi are applied sequentially, that is the probability of choosing the next variable
is proportional to the probabilities amongst variables not chosen till that moment.
Note that this does not match exactly the procedure given in the algorithm. Prob-
ability that the given i-th variable will be selected to a randomly drawn model m∗

is

P (i ∈ m∗) = P (i be selected in the first step)+
P (i be selected in the second step) + . . .+ P (i be selected in the m-th step) =

πi + πi
∑

j 6=i

πj
1− πj

+ . . .+ πi
∑

j1,...,j|m∗|−1

πj1
1− πj1

·
πj1 · · ·πj|m∗|−1

1− πj1 − . . . πj|m∗|−1

. (11)

In the sampling literature the above probability is referred to as an inclusion
probability. Observe that for large p the inclusion probability is approximately
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proportional to πi. When |m∗|πi < 1 for all i, one can use unequal probabilities
(UP) sampling techniques, e.g Systematic Sampling proposed in [13], to have P (i ∈
m∗) = |m|πi. For further examples of UP sampling methods see [14]. To illustrate
the issue consider a simple example. Let p = 3, |m∗| = 2, π1 = 0.4 and π2 = π3 =
0.3. It is easy to verify that in this case inclusion probabilities calculated from (11)
are equal 0.74, 0.62 and 0.62, respectively, whereas the desired values are 0.8, 0.6
and 0.6.

In the WRSM procedure variables whose individual influence on response is
more significant, have larger probability of being chosen to any of the random sub-
spaces. Since in WRSM the relevant variables are more likely to be selected, we can
limit the number of repetitions B in the main loop and reduce the computational
cost of the procedure.

Let β̂i,{i} be a least squares estimator based on univariate model y ∼ xi and

Ti,{i} be the corresponding t-statistic. In WRSM we take w(0)
i = |Ti,{i}|.

In the following theorem we determine asymptotic final scores assigned by the
above procedure. LetM|m| be the family of all subsets {i1, . . . , i|m|} of {1, . . . , p}
(models) of size |m| and |M|m|| =

(
p
|m|
)

be its cardinality. Analogously let Mi,|m|
be the family of all subsets of size |m| containing variable i and note that |Mi,|m|| =(
p−1
|m|−1

)
. Let P ∗ by a resampling measure on M|m| determined by point 4 of the

algorithm. Thus a probability of choosing model m is given by

P ∗(m) =
∑

S(j1,...,j|m|)

πj1
πj2

1− πj1
· · ·

πj|m|
1− πj1 − . . .− πj|m|−1

,

where S(j1, . . . , j|m|) is a set of all permutations of indices {j1, . . . , j|m|}. The
expected value with respect to this distribution will be denoted by E∗. In the case
of deterministic X let

ti,m =
λm\{i} − λm
σ2 + λm

=
MSEP (m \ {i})−MSEP (m)

MSEP (m)
.

and for the random X

ti,m =
ρ2y,xm

− ρ2y,xm\{i}

1− ρ2y,xm

.

It follows from the proof of Theorem 1 (see [1]) that under its assumptions in both
cases (n − |m|)−1T 2

i,m
a.s.−−→ ti,m. Thus ti,m stands for asymptotic weight in RSM

scheme. We state the result for WRSM procedure in the case when the number of
predictors p is fixed and the initial weights w(0)

i are deterministic.

Theorem 2 Let (w
(0)
1 , . . . , w

(0)
p )′ be a deterministic vector. In the case of deter-

ministic X assume that λ(m) and λ(m \ {i}) , i ∈ m, exist for all subsets of a
given size |m|. In the case of random X assume that Σxm

is invertible for all sub-
sets of a given size |m| and Ex4j < ∞ for all j. Then for almost any sequence
(Y(n),X(n))∞n=1

FS∗i
P∗−−→ AFSi :=

∑
m∈Mi,|m|

ti,mP
∗(m)

∑
m∈Mi,|m|

P ∗(m)
, as n→∞.
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Thus FS∗i is asymptotically equivalent to AFSi, which is a weighted average of
mean squared error of prediction MSEP , when the variable i is omitted from
model m. The average is taken over all models m containing this variable. Note
that the limiting value AFSi equals conditional expectation E∗(ti,M |i ∈M), where
M = m is a random subset chosen by the procedure. Observe that in the original
RSM we have P ∗(m) = 1/|M|m|| and then

AFSi :=
1

|Mi,|m||
∑

m∈Mi,|m|

ti,m.

Now we will discuss screening random subspace method (SRSM).

SRSM Algorithm

1. Input: observed data (Y,X), number of subset draws B, size of the subspace
|m| < min(p, n).

2. For each variable i fit univariate model y ∼ xi and compute weight of i-th
variable w(0)

i .

3. Let Mscreen = {i : w
(0)
i > median1≤k≤p(w

(0)
k )}. RSM procedure is performed

on data (Y,XMscreen).
4. Output: Ordered list of variables {i1, . . . , ibp/2c}.

In SRSM procedure the preliminary screening based on univariate models is
performed. Variables corresponding to the smallest weights w

(0)
i are discarded

and the RSM is performed on the remaining variables. This step reduces data
dimensionality. Here the choice of the median as the threshold in 3 is arbitrary,
in general it may depend on preliminary knowledge of researcher. As in WRSM
the number of repetitions B can be limited to reduce the computational cost. The
choice of initial weights is w(0)

i = |Ti,{i}|.
The following example shows a similar screening procedure which is based on

thresholding of absolute values of t-statistics. We give the formal justification of
such procedure under conditions given below. Define Mscreen = {i : |β̂i,{i}| >
rn/n}, where rn is a threshold sequence such that rn/n → r < mini∈t |βi|. Let
γi = limn→∞ n−1X′iXtβt, for i 6∈ t.
Proposition 6 Assume that columns of X are standardised, i.e. their sample
means are zero and n−1||Xi||2 = 1 for all i. Assume also that σ is known,
n−1X′k1Xk2 → 0, for all pairs of relevant variables k1, k2 ∈ t and log(p) = o(n).
Then

P (Mscreen ⊃ t)→ 1. (12)

If maxi6∈t |γi| < r we have

P (Mscreen = t)→ 1. (13)

The proof of the above Proposition is relegated to the Appendix. Note that un-
der assumptions of Proposition 6 ordering of variables with respect to |Ti,{i}| is
equivalent to ordering with respect to |β̂i,{i}| = |n−1X′iY|. Convergence in (12)



114 Jan Mielniczuk, Paweł Teisseyre

indicates that with probability tending to one the true model t will be contained
in the set of variables retained after the screening procedure. It follows from (13)
that when dependence between spurious and relevant variables is not very strong,
the true model t will be identified with probability tending to one, even when the
number of all potential variables is large. In practise it is difficult to apply the
above procedure since the proper choice of the threshold sequence rn depends on
an unknown parameter βt.

3 Model selection procedures

We briefly describe model selection procedure based on the RSM. In the following
observed data (Y,X) is split into two subsets: training set (Yt,Xt) containing
nt observations and validation set (Yv,Xv) containing nv observations. Let also
(Ytest,Xtest) containing ntest observations be a test set. The following two-stage
model selection procedure is performed.
Step 1. RSM procedure is performed on set (Yt,Xt). The covariates {1, . . . , p}
are ordered with respect to RSM final scores

FSi1 ≥ FSi2 ≥ . . . ≥ FSip .

Step 2. From the nested family of models

Mnested = {{i1}, {i1, i2}, . . . , {i1, i2, . . . , imin(p,n)−1}}

we select model mopt = {i1, . . . , i|mopt|} for which the prediction error n−1v ||Yv −
Xvβ̂mopt

||2 is minimal. Here, β̂mopt
is a least squares estimator based on model

mopt computed on training data. The analogous model selection procedure is per-
formed for WRSM and SRSM using in step 1 the ordering given by the respective
procedure.

The score FSi is a variable importance measure which shows the significance
of the i-th variable and describes its predictive power. In the first step we obtain
a ranking of variables, showing what is the contribution of each of them in ex-
plaining the response. It follows from the properties of QR decomposition that in
the second step it suffices to fit only one model based on min(n, p) − 1 variables
sorted according to ranks of final scores. If only variable importance estimation
is of interest there is no need to split data into training and validation sets– the
RSM is performed based on all n observations.

As benchmarks we also consider two other methods. The first, is the lasso
method proposed in [3]. For this method, the estimator is defined by

β̂lasso(α) = arg min
β

[
||Yt −Xtβ||2 + α||β||l1

]
,

where || · ||l1 denotes l1 norm and α is a parameter. Because of the nature of the
penalty choosing sufficiently large α will result in some of the coefficients to be
exactly zero. Thus the lasso can be viewed as a variable selection method. The
optimal value α (denoted by αopt) is chosen by minimizing the prediction error on
independent validation set, i.e. n−1v ||Yv−Xvβ̂lasso(α)||2 or by cross-validation. We
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use the first option in our numerical experiments in order to make a comparison
with the RSM more objective.

As the second benchmark, the univariate approach is considered. In this method
informativeness and prediction strength of each feature is evaluated individually.
Here, for each variable i ∈ {1, . . . , p} we compute squared value of its t-statistic
T 2
i,{i} based on simple regression model y ∼ xi. Then the covariates are ordered

with respect to T 2
i,{i} and the same procedure on hierarchical list of models as in

the RSM is performed.

4 Numerical Experiments

In this section we study the performance of the proposed methods as prediction
tools. We compare original RSM with WRSM and SRSM proposed here. We also
used a hybrid method WSRSM in which in the first step screening is performed
and then the WRSM is applied to remaining variables. As benchmarks we used
the lasso and the univariate method. Recall that t denotes the set of coordinates
which correspond to non-zero coefficients βt. The following linear models have
been considered:

(M1) t = (2k + 7 : k = 3, . . . , 12), βt = (1, . . . , 1)′,
(M2) t = (k2 : k = 1, . . . , 5), βt = (1, 1, 1, 1, 1)′,
(M3) t = (1, . . . , 5, 11, . . . , 15, 21, . . . , 25),

βt = (2.5, . . . , 2.5, 1.5, . . . , 1.5, 0.5, . . . , 0.5)′.

Number of potential regressors is p = 1000, and number of observations is n =
200. The rows of X were generated independently from the standard normal p-
dimensional distribution with zero mean and the covariance matrix Σx = (ρij) =
ρ|i−j|. Three values of ρ = 0, 0.5, 0.8 were considered. The outcome is Y = Xtβt+
ε, where ε has zero-mean normal distribution with covariance matrix σ2I and
σ2 = 1 (for models M1 and M2) and σ2 = 1.5 (for model M3). Models M1
and M2 were used in [15] whereas model M3 is model 7 in [16]. Observe that
for models M1 and M2 when ρ > 0 dependence between the relevant variables
is much weaker than that between the relevant variables and the spurious ones
adjacent to them. The simulation experiments were repeated L = 500 times. For
each simulation trial, data (Y,X) is split into training set (Yt,Xt) and validation
set (Yv,Xv) containing nv/2 = 100 observations each and final model mopt is
selected as described in Section 3.

For all methods the prediction strength of the selected model is assessed by
prediction error on independent test set using the average error

n−1test||Ytest −Xtestβ̂mopt
||2

with β̂mopt
being an estimator based on model mopt computed on training data.

For the RSM we considered B = 5000 choices of a random subspace consisting of
|m| = min(nt, p)/2 = 50 attributes.

Figures 2, 3, 4 present prediction errors for models (M1), (M2) and (M3). It
is seen that RSM works better than the lasso for model (M1) and (M2) when the
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dependence is moderate (ρ = 0.5) or strong (ρ = 0.8). In the case of model (M3)
lasso outperforms RSM. Using weighting in RSM improves the results for models
(M1) and (M2) when the dependence is not very strong (ρ ≤ 0.5). In the case of
model (M3) WRSM outperforms RSM for all dependence structures. For model
(M3), where the lasso outperforms RSM, it is in its turn outperformed by WRSM.
It is interesting that screening (SRSM) does not improve the results of RSM for
M = 1000 and WSRSM behaves comparably to WRSM. However, it should be
pointed out that using WRSM and SRSM we can substantially reduce the number
of repetitions B. Figure 5 presents the means of prediction errors with respect to
B in the case of model (M3). In particular, figure 5 (a) indicates that the mean
of prediction error for WRSM with B = 50 is smaller than the one for RSM with
B = 1000.
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Figure 2: Prediction errors for model M1 with M = 1000 and n = 200 based on L = 500
simulation trials. Figure (a) corresponds to ρ = 0, figure (b) to ρ = 0.5 and (c) to ρ = 0.8.
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Figure 3: Prediction errors for model M2 with M = 1000 and n = 200 based on L = 500
simulation trials. Figure (a) corresponds to ρ = 0, figure (b) to ρ = 0.5 and (c) to ρ = 0.8.
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Figure 4: Prediction errors for model M3 with M = 1000 and n = 200 based on L = 500
simulation trials. Figure (a) corresponds to ρ = 0, figure (b) to ρ = 0.5 and (c) to ρ = 0.8.
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Figure 5: Means of prediction errors with respect to B for model M3 with M = 1000
and n = 200 based on L = 500 simulation trials. Figure (a) corresponds to ρ = 0 and
figure (b) to ρ = 0.5.

A Proofs

A.1 Proof of Theorem 2

First note that

E∗
T 2
i,m∗

n− |m| =
∑

m∈Mi,|m|

T 2
i,m

n− |m|P
∗(m) (14)
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and for almost any sequence (Yn,Xn)∞n=1

Var∗
T 2
i,m∗

n− |m| =
∑

m∈Mi,|m|

T 4
i,m

(n− |m|)2P
∗(m)−


 ∑

m∈Mi,|m|

T 2
i,m

n− |m|P
∗(m)




2

→

∑

m∈Mi,|m|

t2i,mP
∗(m)−


 ∑

m∈Mi,|m|

ti,mP
∗(m)




2

<∞, as n→∞. (15)

Using (14), (15) and Markov’s inequality we have that

1

Bn

∑

m∗:i∈m∗

T 2
i,m∗

n− |m| −E∗
T 2
i,m∗

n− |m|
P∗−−→ 0, as n→∞.

Thus, using the fact that Ci,Bn

Bn

P∗−−→∑
m∈Mi,|m|

P ∗(m) we obtain

TS∗i −
∑
m∈Mi,|m|

T 2
i,m

n−|m|P
∗(m)

∑
m∈Mi,|m|

P ∗(m)

P∗−−→ 0, as n→∞,

which, together with (n− |m|)−1T 2
i,m → ti,m for almost any sequence

(Y(n),X(n))∞n=1, yields the assertion of the Theorem.

A.2 Proof of Proposition 2

Matrix W as a positive definite matrix can be decomposed as W = W 1/2W 1/2,
where W 1/2 = US1/2U ′, U is an orthogonal matrix and S is a diagonal matrix
with positive diagonal. Let Dm be (|t∪m|)×|m| matrix such that Xm = Xt∪mDm.
We can write

n−1||Xβ − PmXβ||2 =
n−1β′t[X

′
t∪mXt∪m −X′t∪mXm(X′mXm)−1X′mXt∪m]βt =

n−1β′t[X
′
t∪mXt∪m −X′t∪mXt∪mDm(D′mX′t∪mXt∪mDm)−1D′mX′t∪mXt∪m]βt,

which converges to

λ(m) = β′t[W −WDm(D′mWDm)−1D′mW ]βt =
(W 1/2βt)

′[I−W 1/2Dm[(W 1/2Dm)′(W 1/2Dm)]−1D′mW
1/2](W 1/2βt) =

||(W 1/2βt)−Hm(W 1/2βt)||2 > 0,

where Hm is a projection on the space spanned by columns of W 1/2. The last
inequality follows from the fact that the columns of W 1/2 are linearly independent
and model m does not contain at least one significant variable.

A.3 Proof of Proposition 3

Equality in (9) follows from

KL(fXtβt
, fXmβm

) =

∫ +∞

−∞
fXtβt

(s) log
fXtβt

(s)

fXmβm
(s)

ds =
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2(Xtβt)
′(Xtβt −Xmβm)

2σ2
+

(Xmβm)′(Xmβm)− (Xtβt)
′(Xtβt)

2σ2
=

||Xtβt −Xmβm||2
2σ2

.

Equality (10) simply follows from

inf
Xmγ∈spX(m)

KL(fXtβt
, fXmγ) = inf

Xmγ∈spX(m)

||Xtβt −Xmγ||2
2σ2

=

||Xtβt − PmXtβt||2
2σ2

=
λn(m)

2σ2
.

A.4 Proof of Proposition 4

The following equalities hold

λn(m) = ||Xtβt − PmXtβt||2 =

||Xt\mβt\m − PmXt\mβt\m + Xm∩tβm∩t − PmXm∩tβm∩t||2 =

||Xt\mβt\m − PmXt\mβt\m||2 = β′t\mX′t\m[I− Pm]Xt\mβt\m =

β′t\m[X′t\mXt\m −X′t\mXm(X′mXm)−1X′mXt\m]βt\m.

The second equality follows from the fact that Pm is linear.

A.5 Proof of Proposition 5

The following inequality holds

λn(m) = ||Xtβt − PmXtβt||2 = inf
α∈R|m|

||Xt\mβt\m −Xmα||2 =

inf
α∈R|m|

[(βt\m,α)′X′t∪mXt∪m(βt\m,α)] ≥ λmin(X′t∪mXt∪m)||βt\m||2.

A.6 Proof of Proposition 6

In view of the assumptions and the fact that n−1X′iε ∼ N(0, σ2/n) we have

β̂i,{i} = n−1X′iY = n−1||Xi||2βi + n−1X′iXt\iβt\i + n−1X′iε→ βi, (16)

for relevant variable i ∈ t. For spurious variable i /∈ t we have

β̂i,{i} = n−1X′iY = n−1X′iXtβt + n−1X′iε→ γi.

The convergence in (12) follows from (16). In order to show (13) we have to prove
that P (maxi6∈t |β̂i,{i}| > rn/n)→ 0. The following inequalities hold

P (max
i6∈t
|β̂i,{i}| > rn/n) = P (max

i6∈t
|X′iY| > rn) ≤ (p− |t|) max

i6∈t
P (|X′iY| > rn) ≤

(p− |t|)[max
i6∈t

P (X′iY > rn) + max
i6∈t

P (X′iY < −rn)]. (17)

Now, using the assumption maxi6∈t |γi| < r and Mill’s inequality (see in [17]), the
first probability in (17) can be bounded from above by

pmax
i6∈t

P (X′iXtβt + X′iε > rn) =
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pmax
i6∈t

P (n−1/2X′iε > n1/2(rn/n−X′iXtβt/n)) ≤

pmax
i6∈t

1

n1/2(rn/n−X′iXtβt/n)
exp(−n(rn/n−X′iXtβt/n)2/2)→ 0,

under assumption log(p)/n → 0. The second probability in (17) is treated analo-
gously.
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