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Abstract

In the article we consider a problem of simultaneous deleting continuous variables
and merging levels of factors in linear model. We propose a backward selection
procedure called DMR in two variants: the �rst is similar to the backward step-
wise regression and the second, faster implementation combines the agglomerative
clustering of levels of factors with ranking regressors by squared t-statistics. In
the paper we show that our algorithm is consistent. For the formulated problem
we also propose a generalization of performance measures such as sensitivity and
speci�city. We present a simulation study, which shows substantial advantage of
DMR over other methods described in the literature.
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1 Introduction

Model selection is usually understood as selection of explanatory variables. How-
ever, when a categorical predictor is considered, in order to reduce model's com-
plexity, we can either exclude the whole factor or merge its levels.

A traditional method to examine the relationship between a continuous re-
sponse and categorical variables is analysis of variance (ANOVA). However, ANO-
VA answers only a question of the overall importance of a factor. The next step
of the analysis are pairwise comparisons of group means within important factors.
Typically post-hoc analysis such as Tukey's honestly signi�cant di�erence (HSD)
test or multiple comparison adjustments (Bonferroni, Sche�e, Hochberg) is used.
A drawback of pairwise comparisons is non-transitivity of conclusions.

As a motivating example, let us consider data Cars93 from R library MASS. The
relationship between logarithm of fuel consumption and other characteristics of 81
cars is modeled. The dependence between the response and the number of cylin-
ders examined with the use of Tukey's HSD analysis (Figure 1) gives inconclusive
answers: β4 = β5, β5 = β6, but β4 6= β6.
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In the article we introduce a novel procedure called delete or merge regressors
(DMR), which enables e�cient search among partitions of factor levels, hence the
issue of non-transitivity does not occur. When applying DMR procedure to the
Cars93 data, the number of parameters is e�ciently diminished from 31 to 11
with no considerable loss in R2 (from 0.92 to 0.9), while a model received from the
stepwise backward model selection minimizing BIC implemented in the stepAIC

function in R has 14 parameters with R2 = 0.89.
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Figure 1: Results of Tukey's HSD.

The idea of partitioning a set of levels of a factor into non-overlapping subsets
has already been discussed in the literature. In the article [1], 1949, Tukey pro-
posed a stepwise backward procedure based on the Studentized range methods.
Other methods performing multiple comparison procedures, based on clustering
means in ANOVA, were described by Scott and Knott, 1974 [2], Calinski and
Corsten, 1985 [3] and Corsten and Denis, 1990 [4]. However, these methods do
not generalize directly to the problem with any number of factors.

Also the problem of simultaneous continuous variables selection and merging
levels of factors is present in the literature. A method introduced by Bondell and
Reich, 2009, [5] called collapsing and shrinkage ANOVA (CAS-ANOVA) solves
the problem with the use of the least absolute shrinkage and selection operator
(LASSO; Tibshirani, 1996, [6]), where the L1 penalty is imposed on di�erences
between parameters corresponding to levels of each factor. Gertheiss and Tutz,
2011, [7] proposed a modi�cation of CAS-ANOVA, which is more computationally
e�cient because of using the least angle regression (LARS; Efron et al., 2004, [8])
algorithm.

We propose a backward selection procedure called delete or merge regressors
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(DMR), which combines deleting the continuous variables with merging levels of
factors. The method assumes greedy search among linear models with a set of
constraints of two types: either a parameter for a continuous variable is set to zero
or parameters corresponding to two levels of a factor are set to equal each other.
DMR is a stepwise regression procedure, where in each step a new constraint is
added according to ranking of the hypotheses based on squared t-statistics. As a
result a nested family of linear models is obtained and the �nal decision is made
according to minimization of generalized information criterion (GIC).

Two variants of DMR are described in the article. The �rst, more greedy
version adapts agglomerative clustering, where squared t-statistics de�ne the dis-
similarity measure. This procedure generalizes concepts introduced by Ciampi et
al., 2008, [9] and Zheng and Loh, 1995, [10]. The second version assumes recalcu-
lation of t-statistics in each step, which causes loss in computational e�ciency.

In the paper we show that DMR algorithm is consistent. The time complexity
of the more greedy version of DMR is O(np2), where n is the number of obser-
vations and p is the number of parameters in the full model. We describe also a
simulation study and discuss a pertaining R package. The simulations show that
DMR is several hundred times faster with signi�cantly lower error of selection than
CAS-ANOVA.

The next problem considered in the article is determining the quality of perfor-
mance of model selection. Commonly used measures are for example true positive
rate (TPR) or false negative rate (FNR). In the literature [5], [7] a generalization
of these rates to the problem of partitioning factor levels can be found. However,
these measures tend to diminish the in�uence of continuous predictors and factors
with a small number of levels. We propose a di�erent generalization which is based
on the dimension of linear subspace of the parameter space de�ned by the imposed
constraints.

The remainder of the article proceeds as follows. The class of feasible models
considered when performing model selection is de�ned in Section 2. DMR proce-
dures are introduced in Section 3, while the asymptotic properties are discussed in
Section 4. Generalization of measures of performance is introduced in Section 5.
Simulations and real data example are given in Section 6 to illustrate the method.
All proofs are given in the Appendix.

2 Feasible models

Let us consider a full rank linear model with n observations and p < n parameters:

y = Xβ + ε = 1nβ00 +X0β0 +X1β1 + . . .+Xlβl + ε, (1)

where:

1. ε ∼ N (0, σ2In).

2. X = [1n, X0, X1, . . . , Xl] is the model matrix divided as follows: X0 is the
matrix corresponding to continuous regressors and X1, . . . , Xl are the zero-one
matrices encoding corresponding factors with the �rst level set as reference.
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3. β = [β00, β
T
0 , β

T
1 , . . . , β

T
l ]T is the parameter vector divided as follows: β00 is

the intercept, β0 = [β10, . . . , βp00]T is a vector of coe�cients for continuous
variables and βk = [β2k, . . . , βpkk]T is a vector of parameters corresponding
to the k-th factor, k = 1, . . . , l, hence the length of parameter vector is p =
1 + p0 + (p1 − 1) + . . .+ (pl − 1).

De�nition 1. An elementary hypothesis for linear model (1) is a linear hypothesis
of one of two types:

(*) hjk : βjk = 0 for all j, k or

(**) hijk : βik = βjk for all i, j and k > 0.

De�nition 2. A feasible model is de�ned as a sequence m = (C,P1, ..., Pl), where
C denotes a subset of continuous variables and Pk is a partition of levels of the
k-th factor. Such a model can be encoded by a set of elementary hypotheses. A set
of all feasible models is denoted byM.

2.1 Change of variables

In order to replace a constrained by an unconstrained optimization problem a
change of variables in model m is performed. The model can be de�ned by a set
of following equations {

y = Xβ + ε
ACβ = 0,

where AC is a matrix of elementary hypotheses describing constraints induced by
the model.

Let us de�ne a square matrix

A =

[
A1

A0

]
,

where A0 is a matrix of elementary hypotheses in a convenient form described
below, with rows spanning the same space as rows of AC and A1 is a complement
of A0 to a square matrix. We want A0 and A1 to satisfy

A =

[
A1

A0

]
=

[
Iq 0
B Ip−q

]
.

Matrix A of such a form uniquely encodes model m and can always be obtained
by appropriate permutation of the columns of the model matrix, which can be
performed in the following way:

1. For each factor with partition Pk, k = 1, . . . , l with ik clusters, where Pk =
{Uk1 , . . . , Ukik}, rename its levels so that

Ukj = {j, ik +

j−1∑

s=1

|Uks | − j + 2, . . . , ik +

j∑

s=1

|Uks | − j},

for j = 1, . . . , ik.
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2. Sort the columns of the model matrix in the following order:

(a) intercept,

(b) all continuous variables present in the model (these for which the beta
coe�cient is non-zero),

(c) ik �rst levels of k-th factor, k = 1, . . . , l,

(d) all remaining continuous variables,

(e) all remaining levels of factors.

Further in the article we assume that the columns of model matrices for con-
sidered models are permuted so that the constraints matrices have a form such as
A0.

Example 1. As an illustrative example consider a model consisting of one factor
with P1 = {{1, 2, 3}, {4, 5}, {6, 7, 8}}. This parametrization corresponds to the
following constraint matrix:

AC =




1 2 3 4 5 6 7 8
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 −1 1 0 0 0
0 0 0 0 0 −1 1 0
0 0 0 0 0 0 −1 1



.

After renaming levels in the way described above, we get partition P1 of the form
P1 = {{1, 4, 5}, {2, 6}, {3, 7, 8}} and matrix

A =

[
A1

A0

]
=




1 2 3 4 5 6 7 8
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 −1 0 0 0 1 0 0
0 0 −1 0 0 0 1 0
0 0 −1 0 0 0 0 1




in the desired form.

Thanks to such reparametrization of the model, transition from constrained to
unconstrained problem is immediate.

Xβ = XA−1Aβ = Zξ,

where Z = XA−1 and ξ = Aβ. From Schur complement we get

A−1 =

[
Iq 0
−B Ip−q

]
= [A1, A0],

since A0β = 0 we have

Zξ = X[A1, A0]

[
ξ1
0

]
= Z1ξ1,
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where Z1 = XA1, ξ1 = A1β. The linear space of parameters changes from L =
{β ∈ Rp : A0β = 0} to L(A1) = {A1ξ1 : ξ1 ∈ Rq}. The dimension of space L(A1)
is called the size of model m and denoted by |m|.

Note that imposing an elementary hypothesis on parameter vector β is equiv-
alent, in terms of the new parametrization, to either eliminating one column or
summing up two columns of the model matrix, which decreases its number of
columns by one. These operations are explicitly visible from the form of A1.

De�nition 3. We de�ne the inclusion relation between two models m1 and m2

by inclusion of linear spaces spanned by columns of the corresponding matrices
A1
m1

and A1
m2

:

m1 ⊆ m2 ⇐⇒ L(A1
m1

) ⊆ L(A1
m2

).

2.2 Generalized Information Criterion

De�nition 4. Generalized Information Criterion for model m is de�ned as:

GIC(m) = n log (RSSm) + rn(|m|+ 1),

where rn is the penalty for model size.

The goal of our method is to �nd the best feasible model according to GIC,
taking into account that the number of feasible models grows exponentially with
p. Since for the k-th factor number of possible partitions is the Bell number B(pk),

the number of all feasible models is 2p0
∏l
k=1 B(pk). In order to signi�cantly reduce

the amount of computations, we propose the following greedy backward search.

3 Algorithms

Assuming that X is of full rank the QR decomposition of the model matrix is

X = QpR,

where Qp is n×p orthogonal matrix and R is p×p upper triangular matrix. Then

z = QTp y, (2)

σ̂2 =
‖(I −QpQTp )y‖2

n− p (3)

and

β̂ = R−1z.

Let us de�ne set of indexes corresponding to continuous variables and factors

Ind0 = {0, 1, . . . , p0}, Indk = {2, . . . , pk} for k = 1, . . . , l.

Then

β̂ = (β̂jk)j∈Indk
= (rTjkz)j∈Indk

for k = 0, . . . , l,
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where
R−1 = [rT00, r

T
10, . . . , r

T
p00, r

T
21, . . . , r

T
p11, . . . , r

T
2l, . . . , r

T
pll

]T . (4)

Elementary hypotheses of types (*) and (**) de�ned in De�nition 1 can be now
rewritten as:

(*) hjk: βjk = 0 ⇐⇒ aT1jkβ = 0, where a1jk = ast(j, k) = 1(s = j, t = k), where
s ∈ Indt and t = 0, . . . , l,

(**) hijk: βik = βjk ⇐⇒ aTijkβ = 0, where aijk = ast(i, j, k) =
= 1(s = i, t = k)− 1(s = j, t = k), where s ∈ Indt and t = 1, . . . , l.

3.1 DMR algorithm

1. Perform the QR decomposition of the full model matrix, getting matrix R−1,
vector z and variance estimator σ̂2 as in equations (4), (2) and (3).

2. Calculate squared t-statistics:

(a) for all elementary hypotheses of type (*):

T 2
1jk =

β̂2
jk

V̂ ar(β̂jk)
=

(rTjkz)
2

σ̂2‖rjk‖2
for k ≥ 0, j ∈ Indk \ {0},

(b) for all elementary hypotheses of type (**):

T 2
ijk =

(β̂ik − β̂jk)2

V̂ ar(β̂ik − β̂jk)
=

((rik − rjk)T z)2

σ̂2‖rik − rjk‖2

for k > 0, i, j ∈ Indk.

3. For each k > 0 perform agglomerative clustering using Dk = [dijk]ij as dissim-
ilarity matrix, where:

(a) d1jk = di1k = T 2
1jk for i, j ∈ Indk,

(b) dijk = T 2
ijk for i, j ∈ Indk, i 6= j,

getting vectors of cutting heights gk, k = 1, . . . , l.

4. Combine all vectors gk with g0 de�ned as g0 = [T 2
110, . . . , T

2
1p00], denote the

given vector as g. Sort g in increasing order: g = [g(1), . . . , g(p−1)]T . Every
element g(i) corresponds to an elementary hypothesis ai. A sequence of nested
linear constraints on model parameters Aiβ = 0 is obtained, where Ai =
[a1, . . . , ai], i = 0, . . . , p− 1 and A0 = 0.

5. Perform QR decomposition of matrix R−TATp−1 getting the orthogonal matrix
W = [w1, . . . , wp−1].

6. Set RSS0 = ‖y‖2−‖z‖2 and GIC0 = n logRSS0 + (p+ 1)rn for model without
constraints.
For i = 1, . . . , p− 1

RSSi = RSSi−1 + (wTi z)
2,

where calculations are described in the Appendix A and

GICi = n logRSSi + (p− i+ 1)rn.
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7. Selected model m̂ is a model with hypotheses Aî accepted, where

î = arg min
0≤i≤p−1

GICi.

The dominating operation in the described procedure is the QR decomposition
of the full model matrix. Hence, the time complexity of DMR algorithm is O(np2).

This procedure assumes transitivity of hypotheses, for example accepting hy-
potheses βik = βjk and βjk = βmk causes acceptance of hypothesis βik = βmk.
Notice that considered hypotheses can be ambiguously encoded. In order to
avoid this problem the following convention will be used while cluster merging:
U1, U2 ⊆ {1, . . . , pk} clusters to merge, U1 ∩ U2 = ∅, then i1 = mini∈U1

i,
i2 = mini∈U2

i and the hypothesis to accept is βi1k = βi2k.

An exemplary run of DMR algorithm is shown in Figure 2. The agglomerative
clustering was performed for data, which is described in Section 6.1, consisting of
three categorical variables. The horizontal dotted line indicates the cutting height
for the best model chosen by BIC (special case of GIC, where rn = log n).

0
1

2
3

4
5

Factor 1

1 2 7 8 3 4 5 6

0
1

2
3

4
5

Factor 2

1 3 2 4

0
1

2
3

4
5

Factor 3

1 2 3

Figure 2: Dendrograms for exemplary run of DMR algorithm.

3.2 stepDMR algorithm

The stepDMR algorithm is based on the RSS calculation described in Appendix A,
where the set of hypotheses under consideration is of the form A0β = 0, hence the
vector e is zero and equation (9) reduces to:

‖y −Xβ̂c‖2 =

p−q∑

i=1

(wTi z)
2. (5)

By S(i−1) and W (i−1) we denote respectively the matrix corresponding to the
set of possible hypotheses and the orthogonal matrix corresponding to the set of
accepted hypotheses in the i-th step of the algorithm. Steps of the algorithm:

1. S(0) = R−TAT
all
, where Aall is the matrix of all possible elementary hypotheses.

2. W (0) = 0. Calculate RSS for model without constraints getting RSS0 and
GIC0 = n logRSS0 + (p+ 1)rn.
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3. Perform the orthogonal projection of possible elementary hypotheses S(i−1)

onto the orthogonal complement of subspace spanned by already accepted hy-
potheses W (i−1):

V (i) = (I −W (i−1)(W (i−1))T )S(i−1).

4. Normalize columns of matrix V (i)

w
(i)
j =

v
(i)
j

‖v(i)j ‖
.

5. According to equation (9) calculate the vector of increases in residual sum of
squares and choose the hypothesis corresponding to the minimal value.

ĵ = arg min
j

((w
(i)
j )T z)2,

bind the chosen hypothesis with the matrix of already accepted hypotheses:

W (i) = [W (i−1), w(i)

ĵ
].

6. Calculate residual sum of squares

RSSi = RSSi−1 + ((w
(i)

ĵ
)T z)2

and GIC

GICi = n logRSSi + (p− i+ 1)rn.

7. Remove from S(i−1) columns linearly dependent with columns of W (i), getting
new matrix of possible hypotheses S(i).

8. Go back to step 3 until the model is reduced to the intercept.

9. Selected model m̂ is a model with hypotheses corresponding to the columns of

W (̂i) accepted, where

î = arg min
0≤i≤p−1

GICi.

The dominating operation in each of p steps of the described procedure is the
QR decomposition of the model matrix. Hence, the time complexity of stepDMR
algorithm is O(np3).

4 Asymptotic properties of DMR algorithm

We �rst introduce some notations. In this section we use a simplifying notation
fn ≺ gn which corresponds to fn = o(gn). We allow the number of predictors pn
to grow with the number of observations n under the condition pn ≺ n.

We distinguish the following subsets of the set of all feasible modelsM:

1. Full model f , which is a model without constraints.



DMR for Linear Model Selection 87

2. Uniquely de�ned model t, which is minimal among true models in the sense of
inclusion de�ned in De�nition 3 and is �xed and does not depend on sample
size. We assume that the model consists of a �nite number of continuous
variables and a �nite number of factors with �nite numbers of levels.

3. A setMV of models with one false elementary hypothesis accepted:

MV = {m ⊆ f : |m| = |f | − 1 and t * m},

4. A setMT of models with one true hypothesis accepted:

MT = {m ⊆ f : |m| = |f | − 1 and t ⊆ m}.

Theorem 1. Let us denote

dn = min
m∈MV

βTt X
T
t (I−Hm)Xtβt,

where Xt is the model matrix of the true model t with appropriate columns of
the full model matrix X deleted or merged, βt ∈ R|t| is the parameter vector of t
and Hm is the hat matrix corresponding to model m. Assuming that X is of full
rank pn, where pn ≺ rn ≺ n and pn ≺ dn we have

lim
n→∞

P(m̂ = t) = 1,

where m̂ is the model selected by DMR procedure from Section 3.1, where the
linkage criterion for hierarchical clustering is a convex combination of minimum
and maximum of the pairwise distances between clusters.

Proof can be found in the Appendix B.

5 Measures of performance and quality of selection

5.1 Measures of performance

When performing simulations a researcher usually faces a problem of comparing
results with the underlying truth. Furthermore, one would like to have a measure
of performance which is more liberal than a binary response, whether the true
model was correctly identi�ed or not. Traditionally for model selection with only
continuous predictors measures such as true positive rate (TPR) or false negative
rate (FNR) are used. In the literature [7], [5] a generalization to both continuous
and categorical predictors can be found.

True Positive Rate is the proportion of true di�erences which are correctly
identi�ed, meaning ratio of the number of true elementary hypotheses which were
found by the selector to the number of all true elementary hypotheses.

False Negative Rate is the proportion of false di�erences which are correctly
identi�ed, meaning ratio of the number of false elementary hypotheses which were
rejected by the selector to the number of all false elementary hypotheses.

However, measures de�ned in this way diminish the in�uence of the continuous
variables and factors with a small number of levels. As an example, consider
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a model with 5 continuous predictors and one factor with 5 levels. Then the
number of parameters for the continuous predictors is 5 and the number of possible
elementary hypotheses equals 5. The number of parameters for the categorical
variable is also 5, whereas the number of possible elementary hypotheses is

(
5
2

)
=

10.
Therefore, we introduce a di�erent generalization of traditional performance

measures which treats the set of considered hypotheses as a linear subspace of the
parameter space. The new measures are functions of sizes of the true and selected
models. We consider two models: true model t and selected model s.

De�nition 5. Let us denote t ∩ s = L(t) ∩ L(s). Sensitivity coe�cient is de�ned
as:

Sen =
TP

FN + TP
=
|t ∩ s|
|t| .

Speci�city coe�cient is de�ned as:

Spe =
TN

FP + TN
=
p− (|t|+ |s| − |t ∩ s|)

p− |t| .

However, in the article the attention is focused on values: 1−Sen and 1−Spe,
which correspond to the errors made by selector.

5.2 Measure of quality of selection

In all simulations described in the article we used BIC for model selection. One
can ask how much better than the other models the selected model is. An answer
to this question can be Bayes factors. Assuming uniform prior distribution on the
set of models and denoting data by D, the Bayes factor for the model m with
respect to the best model m̂ (with minimum BIC) is expressed as

BFm =
P(D|m)

P(D|m̂)
.

Approximate Bayes factors [11]

B̃Fm = exp(−1

2
(BICm − BICm̂))

are estimators of the quality of selection. Figure 3 illustrates an example of use of
approximate Bayes factors for this purpose.

6 Simulation study

In order to compare DMR algorithm with other methods of model selection simu-
lation studies were performed. All the simulations were conducted using functions
implemented in R package called DMR, which is available at the CRAN webpage:

http://cran.r-project.org/web/packages/DMR/index.html

The main function of the package is DMR, which enables choosing a method of
hierarchical clustering and a value of GIC penalty used by the algorithm. More-
over, other functions for extensions of DMR method such as stepDMR, which is
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based on recalculation of t-statistics in each step, and function DMR4glm for gen-
eralized linear models can be found. Functions roc and plot_bf can be used for
obtaining measures of performance and quality of selection described in Section 5.

In section 6.1 results regarding an experiment described by Bondell and Reich,
2009, [5] are presented. The data generated for the experiment consists of three
factors and no continuous variables. As a continuation, simulations based on data
containing one factor and eight correlated continuous predictors were carried out.
The results can be found in Section 6.2. In both experiments the complete linkage
method of clustering in DMR algorithm and BIC were used. Section 6.4 focuses
on comparison of this clustering method with others like single linkage and Ward's
minimum variance methods. The last Section 6.3 refers to a real data example
where fuel consumption of cars was modeled. The data Cars93 comes from R

package MASS.

6.1 Experiment 1

The experimental model consists of three factors having eight, four and three
levels, respectively. The response y is generated from the model, which can be
formulated in two equivalent ways. The �rst one uses the notation from the model
formulation (1), the second one is an illustrative version, where we can see exactly
the partitions of factors.

y =β001n +X1β1 +X2β2 +X3β3 + ε

=2 · 1n +X1(0,−3,−3,−3,−3,−2,−2)T +X2(0, 0, 0)T +X3(0, 0)T + ε

=V1α1 + V2α2 + V3α3 + ε

=V1(2, 2,−1,−1,−1,−1, 0, 0)T + V2(0, 0, 0, 0)T + V3(0, 0, 0)T + ε,

where Xi equals Vi with �rst column removed for i = 1, 2, 3 and ε ∼ N (0, In).
A balanced design was used with k observations for each combination of factor
levels, which gives n = 96 · k, k = 1, 2, 4.

The data was generated 1000 times. In the simulation study we compared
four algorithms: DMR, stepDMR, CAS-ANOVA (R-code for CAS-ANOVA can be
found at http://www4.stat.ncsu.edu/ bondell/Software/

CasANOVA/CasANOVA.R) and stepBIC, which is a stepwise backward procedure
implemented in stepAIC function from R package MASS.

The results are summarized in Table 1. True model (TM) represents the per-
centage of time the procedure chose the entirely correct model. Correct factors
(CF) represents the percentage of time the non-signi�cant factors were eliminated
and the true factor was kept. TPR represents the average percentage of true dif-
ferences found, whereas FNR represents the average percentage of false di�erences
which were correctly identi�ed. 1-Sen and 1-Spe are de�ned according to De�ni-
tion 5, MSEP stands for mean squared error of prediction for new data and MD
is mean dimension of the selected model, both with standard deviations.

The results of Experiment 1 indicate that DMR algorithms performed at least
twice better than CAS-ANOVA in terms of choosing the true model. Our proce-
dures chose approximately smaller models with dimension closer to the dimension
of the underlying true model, whose number of parameters equals three. There are
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no signi�cant di�erences between mean squared errors of prediction for all consid-
ered algorithms. The main conclusion, that DMR procedures choose models which
are smaller and closer to the proper one, is supported by the obtained values of 1 -
sensitivity and 1 - speci�city, which indicates smaller errors made by our methods.

Table 1: Results of the simulation study, Experiment 1.

n Algorithm TM CF TPR FNR 1-Sen 1-Spe MSEP (±sd) MD (±sd)
96 DMR 44 74 96 88 .1 .08 1.08±.17 3.5±.7

stepDMR 44 74 96 88 .1 .08 1.08±.17 3.5±.7
CAS-ANOVA 16 82 97 77 .06 .2 1.09±.17 4.8±1.7

stepBIC 0 97 100 52 0 .51 1.08±.16 8.1±.4
192 DMR 67 83 99 93 .03 .04 1.03±.11 3.3±.6

stepDMR 67 83 99 93 .03 .04 1.03±.11 3.3±.6
CAS-ANOVA 32 92 100 86 .01 .13 1.05±.11 4.3±1.3

stepBIC 0 99 100 53 0 .5 1.04±.11 8 ±.2
384 DMR 77 88 100 96 0 .03 1.02±.07 3.3±.5

stepDMR 76 88 100 96 0 .03 1.02±.07 3.2±.5
CAS-ANOVA 49 97 100 91 0 .08 1.03±.08 3.8±1

stepBIC 0 99 100 53 0 .5 1.03±.07 8 ±.2

In Figure 3 an exemplary run of DMR algorithm is illustrated. Each row of
the �gure corresponds to a model on the nested path of models searched through
by the algorithm. The left panel shows consecutive partitions of factors on the
path of the algorithm: in the �rst row there is the full model, the last row shows
the model containing only intercept. The true model is

t = (P1 = {{1, 2}, {3, 4, 5, 6}, {7, 8}}, P2 = {1, 2, 3, 4}, P3 = {1, 2, 3}).

Bold dotted horizontal lines represent the �nal cut (a model with minimal BIC)
of DMR algorithm. One can see that the best partition of the �rst factor consists
of three groups, exactly the same as in the true e�ect vector, second and third
factors are removed from the model.

The right panel of the �gure shows approximate Bayes factors for models on
the path. Two vertical lines represent the values of 1

3 and 1
10 , which correspond to

the Je�reys scale [11] for interpretation of Bayes factors. We can see that there is
at least substantial evidence to use the chosen model (with minimal BIC).

In Table 2 the results of computation times for several algorithms are sum-
marized. All values are divided by the computation time of lm.fit function,
which �ts the linear model with the use of QR decomposition of the model matrix.
The results for CAS-ANOVA are given only for one value of λ. By default, the
searched lambda grid is of length 50. Hence, DMR is several hundred times faster
than CAS-ANOVA.

6.2 Experiment 2

In the second simulation study a model containing not only categorical predictors,
but also continuous variables is considered. The response y is generated from the
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Figure 3: An example run of DMR algorithm with Bayes factors.

Table 2: Computation times divided by the computation time of lm.fit.

k n DMR CAS-ANOVA
1 96 35 122
3 288 15 45
21 2016 4 24

model:

y =V0α0 + V1α1 + ε

=V0(1, 0, 1, 0, 1, 0, 1, 0)T + V1(0, 0,−2,−2,−2,−2, 4, 4)T + ε,

where V0 was generated from the multivariate normal distributions with autore-
gressive correlation structure with ρ = 0.8. The �rst 2 · 16 · k observations come
from a distribution with mean vector (1, 1, 0, 0, 0, 0, 0, 0)T , then 4 · 16 · k observa-
tions with mean vector (0, 0, 1, 1, 1, 1, 0, 0)T and the last 2 ·16 ·k observations with
mean vector (0, 0, 0, 0, 0, 0, 1, 1)T , according to the underlying true partition of the
factor, k = 1, 2, 4, hence n = 128 · k. V1 is matrix of dummy variables decoding
levels of the factor and ε ∼ N (0, In).

Table 3 shows the results of simulation study. The data was generated 1000
times. As in Experiment 1 we compared four algorithms: DMR, stepDMR, CAS-
ANOVA and stepBIC. Despite the additional continuous correlated variables the
obtained results show a considerable advantage of DMR algorithms over other
methods.

Note that in both Experiment 1 and Experiment 2 DMR algorithm having
lower time complexity performed comparatively to stepDMR.
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Table 3: Results of the simulation study, Experiment 2.

n Algorithm TM 1-Sen 1-Spe MSEP (±sd) MD (±sd)
128 DMR 69 0 .05 1.08±.14 7.4±.7

stepDMR 68 0 .04 1.08±.14 7.4±.6
CAS-ANOVA 15 .09 .31 1.11±.15 9.2±1.7

stepBIC 0 0 .58 1.11±.15 12.2±.4
256 DMR 82 0 .02 1.03±.09 7.2±.5

stepDMR 81 0 .02 1.03±.09 7.2±.5
CAS-ANOVA 27 .1 .25 1.05±.1 8.5±1.4

stepBIC 0 0 .57 1.04±.1 12.1±.3
512 DMR 86 0 .02 1.02±.06 7.1±.4

stepDMR 86 0 .02 1.02±.06 7.1±.4
CAS-ANOVA 43 .12 .2 1.03±.06 7.9±1.1

stepBIC 0 0 .56 1.03±.06 12 ±.3

6.3 Real data example, Cars93

The data Cars93 used in this example comes from R library MASS. 81 observations
of 7 categorical and 15 continuous predictors are given. The logarithm of fuel
consumption is under investigation. The factors are: presence of airbags, number
of cylinders, drive train, availability of manual transmission version, origin, number
of passengers and type. The continuous variables are: fuel tank capacity, length,
logarithm of engine size, maximum horsepower, logarithm of engine revolutions
per mile, luggage capacity, price, rear seat room, revs per minute at maximum
horsepower, U-turn space, weight, wheelbase and width. These give 16 and 13
parameters respectively.

Model selection was performed using four methods: DMR, stepDMR, CAS-
ANOVA and stepBIC. Characteristics of the chosen models are shown in Table 4
with results for the full model added for comparison. Figure 4 illustrates partitions
of factors in the model selected by DMR procedure. From the set of continuous
variables weight, wheelbase and logarithm of engine size were chosen.

Table 4: Cars93 data analysis results for di�erent selection methods.
Approximate Bayes factors calculated with respect to model chosen by stepDMR.

Selection Number of R2 BIC Bayes
method parameters factor

Full model 31 .92 -83.7 2.7 · 10−16

DMR 11 .9 -152.7 0.27
stepDMR 11 .9 -155.3 1

CAS-ANOVA 4 .8 -130.5 4.1 · 10−6

stepBIC 14 .89 -133.8 2.1 · 10−5

We can conclude that DMR procedures chose much better models than other
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compared methods in terms of BIC. Approximate Bayes factors for the full model
and models chosen by stepBIC and CAS-ANOVA indicate the decisive evidence
in favor of the model chosen by stepDMR according to Je�rey's scale for interpre-
tation of Bayes factors [11].
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Figure 4: Partitions of factors for the model selected by DMR procedure for
Cars93 data.

6.4 Clustering methods

DMR algorithm uses hierarchical clustering for generating a path of nested mod-
els. There is a wide spectrum of hierarchical clustering methods available in the
statistical software. In order to compare some of them a simulation study was
conducted. The results are summarized in Table 5. One can see that method
complete gives the most stable results, therefore we decided to use it in simulation
studies described in the article.
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Table 5: Comparison of clustering methods for DMR algorithm for data as in
Experiment 1.

n Method TM 1-Sen 1-Spe MSEP (±sd) MD (±sd)
96 complete 44 .11 .08 1.09±.17 3.5±.7

single 36 .12 .09 1.10±.18 3.6±.9
Ward's 44 .11 .08 1.09±.17 3.5±.7

192 complete 67 .03 .04 1.03±.11 3.3±.5
single 65 .03 .04 1.03±.11 3.4±.6

Ward's 67 .03 .04 1.03±.11 3.3±.5
384 complete 78 0 .02 1.01±.07 3.2±.5

single 80 0 .02 1.01±.07 3.2±.5
Ward's 78 0 .02 1.01±.07 3.2±.5

7 Conclusions

In this article novel methods of linear model selection combining deleting contin-
uous variables with merging levels of factors were proposed. Both of them are
based on ordering elementary hypotheses using squared t-statistics and choosing
the best model according to GIC in the nested family of models.

We showed by simulations that DMR algorithms work well for small data sets.
In comparison to other methods they gave much higher rates of choosing the
true model. The time complexities of the algorithms are O(np2) and O(np3) for
DMR and stepDMR respectively. In the simulations the algorithms worked several
hundred times faster than for example CAS-ANOVA algorithm. For large data sets
some asymptotic results were obtained. We proved that even under assumption
that the number of predictors grows with the number of observations, pn → ∞,
DMR algorithm is consistent.

Furthermore, a generalization of traditional measures of performance was in-
troduced. These measures do not diminish the in�uence of factors with a small
number of levels and continuous variables.

As a future work we plan to generalize the methods on several classes of models
such as linear models with pn > n, Generalized Linear Models and Cox models for
survival data.
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Appendix

A Calculation of RSS for model with linear constraints

Let us consider a linear model:
{
y = Xβ + ε
A0β = c,

(6)

where A0 is a (p − q) × p given matrix and c is a given vector of length (p − q),
which de�ne a linear subspace of parameter space Rp described by a set of linear
hypotheses concerning the vector of parameters β. The objective is to calculate
residual sum of squares ‖y − Xβ̂c‖2, where β̂c is an estimator of the parameter
vector β with given constraints.

The following QR decomposition is performed

X = QpR,

where Qp is n× p orthogonal matrix and R is p× p upper triangular matrix. Let
us denote S = R−TAT0 , then

{
QTp y = Rβ +QTp ε
STRβ = c.

and after substitution we get
{
z = γ + η
UTWT

p−qγ = c,
(7)

whereWp−q and U are respectively p×(p−q) orthogonal matrix and (p−q)×(p−q)
upper triangular matrix from the QR decomposition of matrix S. If we denote

WT
p−qγ = U−T c = e

and
W = [Wq,Wp−q],

where Wq is an orthogonal complement of the matrix Wp−q, then equation (7)
becomes {

WT
q z = WT

q γ +WT
q η

e = WT
p−qγ.

Therefore an unbiased estimator of γ with constraints satis�es the following equa-
tion [

WT
q z
e

]
= WT γ̂c, (8)

multiplying (8) by W , we obtain

WqW
T
q z +Wp−qe = γ̂c,

then
(Ip −Wp−qW

T
p−q)z +Wp−qe = γ̂c = Rβ̂c.
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The residual sum of squares for the model with linear constraints (6) can be written
as

‖y −Xβ̂c‖2 =‖QTp y −Rβ̂c‖2 = ‖Wp−qW
T
p−qz −Wp−qe‖2

=‖WT
p−qz − e‖2 =

p−q∑

i=1

(wTi z − ei)2,
(9)

where wi is the i-th column of matrixWp−q. Hence, for each additional hypothesis
the residual sum of squares can be easily calculated from equation (9).

B Proof of Theorem 1

Lemma 1 (Klotz [12] Section 14.3). Solving an optimization problem:

β̂0 = arg min
β

||y −Xβ||2, where A0β = 0 yields

β̂0 = β̂ − (XTX)−1AT0 (A0(XTX)−1AT0 )−1A0β̂,

where β̂ = (XTX)−1XT y.

Let us denote the following matrices:

H = X(XTX)−1XT ,

H0 = X(XTX)−1AT0 (A0(XTX)−1AT0 )−1A0(XTX)−1XT

which are matrices of orthogonal projections and matrix

H1 = Z1(ZT1 Z1)−1ZT1 = XA1(A1TXTXA1)−1A1TXT .

Note that Xβ̂0 = (H −H0)y.

Lemma 2. H1 is a matrix of an orthogonal projection and

H1 = H −H0.

Proof. Note that

(XTX)−1 = (ATA−TXTXA−1A)−1 = A−1(A−TXTXA−1)−1A−T ,

hence

(A0(XTX)−1AT0 )−1 =(A0A
−1(A−TXTXA−1)−1A−TAT0 )−1

=

[[
0 I

]
(ZTZ)−1

[
0
I

]]−1
= (G00)−1,

where

G =

[
G11 G10

G01 G00

]
=

[
ZT1 Z1 ZT1 Z0

ZT0 Z1 ZT0 Z0

]
= ZTZ and G−1 =

[
G11 G10

G01 G00

]
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and

H =X(XTX)−1XT

=XA−1(A−TXTXA−1)−1A−TXT = Z(ZTZ)−1ZT .

We have also that

A0(XTX)−1XT = A0A
−1(ZTZ)−1A−TXT = A0A

−1(ZTZ)−1ZT ,

then

H0 =X(XTX)−1AT0 (G00)−1A0(XTX)−1XT

=Z(ZTZ)−1
[

0
I

]
(G00)−1

[
0 I

]
(ZTZ)−1ZT

=Z

[
G10

G00

]
(G00)−1

[
G01 G00

]
ZT = Z

[
G10(G00)−1G01 G10

G01 G00

]
ZT .

Using above results we get

H −H0 =Z(ZTZ)−1ZT − Z
[
G10(G00)−1G01 G10

G01 G00

]
ZT

=
[
Z1 Z0

] [ G11 −G10(G00)−1G01 0
0 0

] [
ZT1
ZT0

]

=Z1(G11 −G10(G00)−1G01)ZT1 .

From the de�nition of H1

H1 = Z1(ZT1 Z1)−1ZT1 = Z1(G11)−1ZT1 (10)

and from Schur complement for matrix G−1 we have

(G11)−1 = G11 −G10(G00)−1G01.

Hence, the predictions for constrained problem can be obtained through pro-
jecting the observations on the space spanned by columns of the model matrix for
the equivalent unconstrained problem.

B.1 RSS lemmas

Lemmas concerning dependencies between residual sums of squares have similar
construction to those described by Chen and Chen, 2008 [13].

It follows from Lemma 2 that for each feasible model m a hat matrix Hm can
be obtained according to equation (10), so that residual sum of squares for model
m is de�ned as

RSSm = ‖y −Hmy‖2
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and can be decomposed into three parts

RSSm = ‖y −Hmy‖2 =(Xtβt + ε)T (I−Hm)(Xtβt + ε)

=βTt X
T
t (I−Hm)Xtβt + 2βTt X

T
t (I−Hm)ε+ εTHmε.

When t ⊆ m we have HmXt = Xt and

RSSm = εTHmε.

Lemma 3. Assuming pn ≺ n and rn is a sequence of real numbers so that pn ≺ rn,
then

log
RSSt
RSSf

<P
rn
n
,

which signi�es limn→∞P
(

log RSSt

RSSf
< rn

n

)
= 1.

Proof. Note that

RSSt
RSSf

= 1 +
RSSt −RSSf

RSSf
= 1 +

pn
n
Wn,

where

Wn =
εT (Hf −Ht)ε

εT (I−Hf )ε
· n
pn
.

From Lemma 2, Hf −Ht is matrix of an orthogonal projection with trace pn− |t|,
therefore ψ1 = εT (Hf −Ht)ε ∼ σ2χ2

pn−|t| and ψ2 = εT (I −Hf )ε ∼ σ2χ2
n−pn , we

get

E

(
ψ1

pn

)
=
σ2(pn − |t|)

pn
, Var

(
ψ1

pn

)
=

2σ4(pn − |t|)
p2n

and either if pn
n→∞−−−−→∞ then Var

(
ψ1

pn

)
n→∞−−−−→ 0 and from Chebyshev's inequality

ψ1

pn

n→∞−−−−→ σ2 in probability or if pn is bounded, then ψ1

pn
is bounded in probability.

Analogously for ψ2 we have

E

(
ψ2

n

)
=
σ2(n− pn)

n
, Var

(
ψ2

n

)
=

2σ4(n− pn)

n2

and since pn ≺ n from Chebyshev's inequality ψ2

n

n→∞−−−−→ σ2 in probability.

Therefore Wn = OP
(
1
)
and RSSt

RSSf
= 1 +OP

(
pn
n

)
. Hence

log

(
RSSt
RSSf

)
= log

(
1 +

pn
n
Wn

)
≤ pn

n
Wn = OP

(
pn
n

)
<P

rn
n
.

Lemma 4. Assuming that pn ≺ dn we have for all m ∈MV and all δ > 1

log

(
RSSm
RSSt

)
≥P log

(
1 +

dn
δσ2 · n

)
,

where dn = minm∈MV β
T
t X

T
t (I−Hm)Xtβt.
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Proof. Using the fact that

1

n
RSSt =

εT (I−Ht)ε

n
= σ2 + oP

(
1
)

and denoting
RSSm −RSSt = dnm + Znm +Wnt −Wnm,

where dnm = βTt X
T
t (I −Hm)Xtβt, Znm = 2βTt X

T
t (I −Hm)ε, Wnt = εTHtε and

Wnm = εTHmε.
Note that

dnm ≥ dn, Znm ∼ N (0, 4σ2dnm), Wnt ∼ σ2χ2
|t| and Wnm ∼ σ2χ2

pn−1.

Using assumptions, Znm

dnm
, Wnt

dnm
and Wnm

dnm
either are bounded in probability if pn is

bounded or if pn
n→∞−−−−→∞ are OP

(
1
)
from Chebyshev's inequality.

Henceforth we have

RSSm −RSSt = dnm

(
1 +

Znm
dnm

+
Wnt

dnm
− Wnm

dnm

)
= dnm

(
1 +OP

(
1
))
.

As a result

log
RSSm
RSSt

= log

(
1 +

RSSm −RSSt
nRSSt

n

)

= log

(
1 +

dnm
nσ2

(
1 +OP

(
1
)))

≥P log

(
1 +

dn
δσ2n

)
for δ > 1.

Lemma 5. Assuming that rn ≺ n for all δ > 1 we have

max
t⊆m⊆M

(
logRSSm

)
+ log

(
1 +

dn
δσ2n

)
≤P min

t*m⊆M

(
logRSSm

)
.

Proof. Let us denote a = log
(
1 + dn

δσ2n

)
, then from Lemma 4 we get

max
t⊆m⊆M

(
logRSSm

)
+ a = logRSSt + a ≤P min

m∈MV
logRSSm − a+ a

≤P min
t*m⊆M

(
logRSSm

)
.

Corollary 1. From Lemma 5 and properties of residual sum of squares, we have
with probability tending to 1 the following order of models RSS:

RSSf ≤ max
|m|=|f |−1, t⊆m

RSSm ≤ max
|m|=|f |−2, t⊆m

RSSm

≤ . . . ≤ max
|m|=|t|+1, t⊆m

RSSm ≤ RSSt ≤P min
|m|=|f |−1, t*m

RSSm

≤ min
|m|=|f |−2, t*m

RSSm ≤ . . . ≤ min
|m|=2, t*m

RSSm ≤ min
|m|=1

RSSm.

(11)
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Note that since |t| <∞, there is a �nite number of models bigger and having RSS
not greater than the true model t.

Corollary 2. Since models from MV and MT have the same number of param-
eters, we have

GIC(t) ≤P max
m∈MT

GIC(m) ≤P min
m∈MV

GIC(m).

where the left inequality follows form Lemma 3 and right inequality from Lemma
5.

Corollary 3. For every step of a backward stepwise elimination algorithm, if the
true model t is on the path searched through, the inequality from Corollary 2 is
preserved. Hence, GIC is a consistent model selection criterion.

B.2 Ordering of squared t-statistics

Lemma 6. SupposeMT V =MT ∪MV is a set of all models of size |f | − 1. For
each m ∈MT V , which corresponds to one elementary hypothesis,

T 2
m = (n− |f |)RSSm −RSSf

RSSf
,

where Tm is t-statistic for the full model with hypothesis h : A0β = 0, where A0

is 1× |f | matrix.

Proof. From Lemma 1

RSSf −RSSm = β̂TAT0 (A0(XTX)−1AT0 )−1A0β̂,

hence

T 2
m =

(A0β̂)2

V̂ar(A0β̂)
=

(A0β̂)2

A0V̂ar(β̂)AT0
=

(A0β̂)2

σ̂2A0(XTX)−1AT0
=
RSSf −RSSm

σ̂2
,

where σ̂2 =
RSSf

n−|f | .

Corollary 4. It follows from Lemma 6 that the ordering of models m ∈ MT V
with respect to squared t-statistics is equivalent to ordering them with respect to
the values of residual sum of squares for these models.

Corollary 5. It follows from Corollary 1 and Lemma 6, that for su�ciently large
n we have

max
m∈MT

T 2
m <P c <P min

m∈MV
T 2
m,

where c is a positive constant.

In order to prove that hierarchical clustering implies the proper order of ac-
cepting elementary hypotheses, in the sense that the true hypotheses preface false
ones, let us introduce some notations.
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Let T stand for a set of all true elementary hypotheses and V for a set of

all false elementary hypotheses. Suppose that U
(s)
1 , U

(s)
2 , . . . U

(s)
ks

are clusters of

levels of a factor given by the s-th step of hierarchical clustering. β
(s)
1 , β

(s)
2 , . . . β

(s)
ks

correspond to the common value of the parameters for the factor levels for the

clusters. We assume that each β
(s)
i is de�ned as the parameter for the level with

the smallest index in the cluster.

Lemma 7. In each step of hierarchical clustering in DMR algorithm the recalcula-
tion of dissimilarity matrix using linkage criterion, which is a convex combination
of minimum and maximum of the pairwise distances between clusters, preserves
the inequality:

max
{β(s)

i1
=β

(s)
i2
}∈T

d
(
U

(s)
i1
, U

(s)
i2

)
<P c <P min

{β(s)
i1

=β
(s)
i2
}∈V

d
(
U

(s)
i1
, U

(s)
i2

)
,

where d is the dissimilarity measure and c > 0.

Proof. By induction: for s = 1 the inequality is preserved from Corollary 5 and
the hypothesis with the smallest value of squared t-statistic is accepted. Let us
assume that the inequality is also preserved for step s.

If s+ 1 > |T | all true hypotheses are already accepted, so the inequality holds
trivially for all following steps.

If s+ 1 ≤ |T | the algorithm of clustering chooses the hypothesis with minimal
value of dissimilarity measure to accept. Suppose that this hypothesis has a form

β
(s)
i1

= β
(s)
i2
.

From the previous step s we know that this hypothesis is true. The dissimilarity

measures between the new merged cluster and every other cluster U
(s)
i3

have to be
recalculated. We have two cases:

1. If β
(s)
i3

= β
(s)
i1

is true then from transitivity β
(s)
i3

= β
(s)
i2

is also true, hence

d
(
U

(s)
i3
, U

(s)
i1

)
= d

(s)
i3i1

<P c,

d
(
U

(s)
i3
, U

(s)
i2

)
= d

(s)
i3i2

<P c

so the convex combination of these two values is smaller than c:

d
(
{U (s)

i1
, U

(s)
i2
} = U

(s+1)
j1

, U
(s)
i3

= U
(s+1)
j2

)

= α ·min
(
d
(s)
i3i1

, d
(s)
i3i2

)
+ (1− α) ·max

(
d
(s)
i3i1

, d
(s)
i3i2

)
<P c

for each α ∈ [0, 1].

2. Analogously if β
(s)
i3

= β
(s)
i1

is false the convex combination of these two values
is greater than c:

d
(
{U (s)

i1
, U

(s)
i2
} = U

(s+1)
j1

, U
(s)
i3

= U
(s+1)
j2

)

= α ·min
(
d
(s)
i3i1

, d
(s)
i3i2

)
+ (1− α) ·max

(
d
(s)
i3i1

, d
(s)
i3i2

)
>P c
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for each α ∈ [0, 1]. Note that linkage criteria: single, complete and average
are a convex combination of minimum and maximum of the pairwise distances
between clusters.

Proof of Theorem 1. It follows from Corollary 5 and Lemma 7 that for su�-
ciently large n on the path of models generated by DMR algorithm models with
only true hypotheses accepted preface models with at least one false hypothesis
accepted. Hence the true model t is on the path searched through. Therefore, from
Corollary 3 we have that DMR algorithm is a consistent model selection method.
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