
Generalized autosort FFT framework

Micha l Lenarczyk∗

Instytut Podstaw Informatyki PAN

Abstract

In this article, the design of a mixed radix fast Fourier transform (FFT) algorithm
is presented. The algorithm is general enough to be able to perform both deci-
mation in time and decimation in frequency decompositions, and has some other
advantages. It is argued it best fits signal processors, mainly because of small
code footprint and efficient use of modulo addressing modes available on some
DSP architectures.

1 Introduction

Among many methods for efficient computation of the discrete Fourier transform,
DFT, the algorithm known as the fast Fourier transform is of greatest importance.
Given data of composite size, MN , the discrete Fourier transform of the data
can be reexpressed in terms DFT’s of orders M and N repeated N and M times,
respectively, which requires evaluation of MN(M+N) terms as opposed to (MN)2

when using direct formula, and this count can be further reduced by factoring M
and/or N into even smaller numbers. The factorization can be done in arbitrary
way, but two cases are especially useful : these are referred to as ”decimation in
time” and ”decimation in frequency”. Thus, the FFT computes the transform of
composite order by a sequence of smaller transforms whose sizes are its divisors.

This approach became widely used after the famous publication of Cooley and
Tukey [1] who obtained the decimation in time method for arbitrary factorizations
of the transform order (mixed radix), giving special attention to the case where the
order is a power of 2 (i.e., radix 2). Gentleman and Sande [2] found the alternative,
decimation in frequency form and also showed how reordering of data can be
avoided given auxiliary storage, which is the first reported autosort framework. A
particularly efficient algorithm known as ”split radix” was proposed by Duhammel
and Hollman [3] which is present state-of-the-art for orders containing factors 4.
Of particular research interest is the adaptation of the FFT for efficient execution
in vector and distributed processing architectures. More details on this subject
can be found, e.g. in the handbook by Van Loan [9].

FFT efficiency has traditionally been measured in terms of arithmetic opera-
tions involved in its execution - the total number of multiplications, of multiplica-
tions and additions, or the greater of the two counts (see, for instance, [4]). It is

∗The algorithm was developed in the time when the author was with AGH University of
Science and Technology, Kraków

Generalized autosort FFT framework 63

meaningful when the cost of these operations is dominant, which was the case in
early computer architectures where especially multiplications were time consum-
ing, and is still applicable to digital signal processors which are able to perform
arithmetic calculations in parallel with other operations such as memory access,
looping / execution flow, and pointer updates, which effectively come at no cost.
However, in most modern general purpose architectures with slow memory and fast
ALU and cache, structural overhead and memory access present a nonnegligible
cost, and counting arithmetic operations may not reflect actual performance.

Recently, gains in performance have been achieved mainly by the use of larger
DFT modules that can be highly optimized by hand coding. This can be viewed as
roughly equivalent to loop unrolling. Decomposition into larger radices that need
not be prime, has the advantage of having fewer stages, but the resulting programs
tend to be large. For example, the popular software package created by Frigo and
Johnson [5] uses ”small” DFT modules of orders up to 64 using straightforward
code with no loop structure. A similar approach led Van Buskirk [6] to improve
the code of split radix and reduce the number of required multiplications, which is
so far the lowest known count (more details on the method, which does not require
unrolling, can be found in [7]).

While the pursuit of the lowest possible count of additions or multiplications is
interesting from theoretical point of view, the approach of using large, optimized
modules is neither practical nor well suited for implementation on signal processors
(DSP’s). Firstly, these processors usually are limited in terms of program memory ;
secondly, DSP’s have very low structural overhead (typically in the range 3-15%
[8]), which questions the sense of loop unrolling. For example, implementation
of the single 64-point DFT code with Van Buskirk’s optimization requires 912
additions and 240 multiplications, the amount that exceeds the capacity of small
DSP’s with only a few kilowords of program memory. Even for devices with large
internal memory, its amount puts a practical limit on the number of elementary
DFT modules of only a few smallest orders. On the other hand, various signal
processing architectures provide specific features that allow writing efficient FFT
programs that are compactly structured as well.

This article introduces a general, out-of-place, mixed-radix framework for FFT
that combines autosort property with the ability to incorporate linear time and
frequency shifts, which can be useful e.g. for centering the spectrum or for phase
rectification. The generality of the algorithm allows it to be configured both in
the decimation in time and decimation in frequency manner. A link is made to
practical machine implementation issues with emphasis on DSP architectures ; in
particular, a novel normalization scheme is proposed for fixed-point arithmetic.
The algorithm is accompanied with a proof of concept implementation in C for
verification and preliminary analyses. The code has a very small footprint, as it
only contains a single generic version of DFT of arbitrary order, plus an optional
routine for setting up the FFT structure at run time. When implemented in native
assembly, the algorithm could complement library support of some DSP families
that only supply code for FFT of radix 2.

It should be pointed out that DFT with shifted indices was first proposed by
Bongiovanni et al. [10] who termed it ”generalized discrete Fourier transform” ;
quite recently, generalization to nonlinear phase DFT was proposed (see Akansu

64 Micha l Lenarczyk

and Agirman-Tosun [11]) but is, however, not as yet permitted in this framework.
The derivation for the algorithm and analysis of its properties is presented in

the next section. Section 3 considers practical implementation aspects. Finally,
some concluding remarks are stated in section 4.

2 Theory and interpretation

This section focuses on how the FFT is obtained and discusses some of its prop-
erties, starting with facts well known from literature. After deriving the basic de-
composition and its forms in the first paragraph, data arrangement and ordering
is studied in paragraph 2.2 where an intuitive three-dimensional array interpreta-
tion is presented. Generalization of the DFT is introduced in paragraph 2.3 that
allows to incorporate linear time and frequency shift into the body of the FFT,
and in particular, to avoid explicit multiplication by twiddle factors. The last
paragraph 2.4 considers scaling issues in the context of fixed-point arithmetic and
proposes a novel approach to this question.

2.1 Derivation of the FFT

Given a signal of composite size MN , the discrete Fourier transform sum

x̂k =

MN−1∑

n=0

xnω
nk (1)

where ωnk = e−i
2π
MN nj can, by substitution of Nm+ n and Mk + j for original n

and k, respectively, be expressed as a double summation :

x̂Mk+j =
N−1∑

n=0

M−1∑

m=0

xNm+nω
(Nm+n)(Mk+j)

=

N−1∑

n=0

M−1∑

m=0

xNm+nω
NmjωnjωMnk

(2)

The innermost sum of the terms xNm+nω
Nmj can be recognized as an M -point

DFT over the decimated signal with argument m and offset parameter n. The
outer summation is an N -point DFT over the outcome of the former transform
multiplied by trigonometric phase shift coefficients ωnj which are customarily re-
ferred to as twiddle factors, a term introduced by Gentleman and Sande [2]. Each
DFT sequence spanning every possible value of the parameter which is not the
index of summation will be referred to as DFT pass. The count of terms included
in the double summation can be estimated as M2N for the inner and MN2 for
the outer pass, which gives the overall formula MN(M +N) for the total number
of terms in both DFT passes. Considering the number of multiplications, the one-
time scaling by twiddle factors requires additionally MN complex multiplications,
which results in a total count of MN(M + N + 1) complex multiplications. The
increase can be avoided if the twiddle factors are absorbed in the computation of
either of the two DFT’s. This idea is elaborated in paragraph 2.3 of this section.

Generalized autosort FFT framework 65

If either of the numbers M or N is composite, further decomposition is possible
and highly composite orders can be decomposed into prime factors in many ways.
However, if at every step, the decomposition is made such that one selected dimen-
sion is always prime (or a number accepted as radix, e.g. 4), then an especially
regular structure of the algorithm is obtained. If, at every step, M is prime (or
non-decomposable) then the decimation in time results (the name reflecting the
fact that decimated time index m and contiguous frequency index j are split into
pairs of new indices in next pass) ; on the other hand, if the same is assured for N ,
then the decimation in frequency is obtained (decimated frequency index k and
contiguous time index n are split further) - following the naming convention intro-
duced in [12]. The resulting forms of the equation are equivalent ; the distinction
concerns the association of the twiddle factors with either of the DFT passes. In
case of decimation in time, multiplication by twiddle factors affects input before
running the next DFT pass, whereas in decimation in frequency, the output of the
DFT pass is multiplied. Apart from having some impact on implementation, the
two approaches are identical.

In the following we consider the problem of composite order N0 =
∏L
l=1Ml

with radix Ml in pass l and set Nk =
∏L
l=k+1Ml so that the factorization at l-th

level of decomposition is Nl−1 = MlNl. It can be shown that in this case the
overall complexity reduces to N0 ×

∑
lMl = (

∏
lMl)× (

∑
lMl) [1].

Following this convention, the first step of decomposition is N0 = M1N1 and
for decimation in time the following index split is performed

n0 = M1n1 +m1, n1 = 0, . . . , N1 − 1,m1 = 0, . . . ,M1 − 1

k0 = N1j1 + k1, k1 = 0, . . . , N1 − 1, j1 = 0, . . . ,M1 − 1
(3)

or, for arbitrary level of decomposition l

nl−1 = Mlnl +ml, nl = 0, . . . , Nl − 1,ml = 0, . . . ,Ml − 1

kl−1 = Nljl + kl, kl = 0, . . . , Nl − 1, jl = 0, . . . ,Ml − 1
(4)

which yields the formula for the first stage of FFT as follows :

x̂N1j1+k1 =

M1−1∑

m1=0

N1−1∑

n1=0

xM1n1+m1
ωM1n1k1ωm1k1ωN1m1j1 (5)

Note the subscripts of indices m, n, j and k in (3) and (4) refer to the level of
decomposition. For decimation in frequency, the following index split is applied :

n0 = N1m1 + n1, n1 = 0, . . . , N1 − 1,m1 = 0, . . . ,M1 − 1

k0 = M1k1 + j1, k1 = 0, . . . , N1 − 1, j1 = 0, . . . ,M1 − 1
(6)

and, generally,

nl−1 = Nlml + nl, nl = 0, . . . , Nl − 1,ml = 0, . . . ,Ml − 1

kl−1 = Mlkl + jl, kl = 0, . . . , Nl − 1, jl = 0, . . . ,Ml − 1
(7)

leading to the following form of the first stage of FFT :

x̂M1k1+j1 =

N1−1∑

n1=0

M1−1∑

m1=0

xN1m1+n1
ωN1m1j1ωn1j1ωM1n1k1 (8)

66 Micha l Lenarczyk

2.2 Arrangement and indexing of data

The index split introduced in the previous section can be interpreted in terms of
arrangement of the input array in two dimensions. Let the prime symbol ′ denote
the operation of forming an array with two index variables replacing the single
index of the original sequence such that, for input array x :

x′(n1,m1)
= xM1n1+m1

(9)

Then the double summation formula in equation 5 (DIT form) becomes

M1−1∑

m1=0

N1−1∑

n1=0

x′(n1,m1)
ωM1n1k1ωm1k1ωN1m1j1 (10)

which is equivalent to a two-dimensional discrete Fourier transform over an N×M
array, except for the intervening twiddle factors. Recall that in decimation in time,
n is the decimated (by N) and m the contiguous index. From (5) it can be observed
that the corresponding output indices are used in reverse order : k is contiguous
and j decimated (by M). Therefore, the output can be reinterpreted as a M ×N
array x̂′ with the following indexing :

x̂′(j1,k1) = x̂N1j1+k1 (11)

Consequently, one step of DFT factorization transposes data interpreted as a two
dimensional array.

Consider now the second level of decomposition according to decimation in
time approach. By posing n1 = M2n2 + m2 and k1 = N2j2 + k2 it is possible
to define x′′, a three-dimensional array indexed x′′(n2,m2,m1)

= xM1M2n2+M1m2+m1

and x̂′′, indexed x̂′′(j1,j2,k2) = x̂N1j1+N2j2+k2 . It is no longer possible to recover
the output by a simple transposition : the result of two level decomposition is a
superposition of two transpositions applied to different array formats.

A full decomposition into L factors would yield L-dimensional input array x(L)

indexed with an addressing sequence

(mL,mL−1, . . . ,m2,m1) (12)

corresponding to the unidimensional data index M1M2 · · ·ML−1mL+. . .+M1m2+
m1 , and x̂(L), addressed

(j1, j2, . . . , jL−1, jL) (13)

corresponding to N1j1 + N2j2 + . . . + NL−1jL−1 + jL . The addressing sequence
of the input and output are reversed, which can be accomplished in two ways.

Cooley’s in-place algorithm [1] did not change index order before and after each
pass, and required reordering of data samples, either before or after execution of
the algorithm. The special case he considered where the radix is 2 can efficiently be
done on binary machines that allow reversal of bits (some processors even feature
reverse-carry addressing mode which obviate bit reversal).

Sande [2] realized the possibility of absorbing the transpositions in the course
of subsequent DFT passes, to undo the effect of decompositions, at the cost of

Generalized autosort FFT framework 67

auxiliary storage. The algorithm presented in this paper follows the same au-
tosort approach, since, being inherently out-of-place, it immediately satisfies the
requirement for additional storage.

Consider the first level of decimation in time decomposition, and define the
intermediate array y′, such that :

x̂′(j1,k1) =

M1−1∑

m1=0

y′(k1,m1)
ωm1k1ωN1m1j1 (14)

and

y′(k1,m1)
=

N1−1∑

n1=0

x′(n1,m1)
ωM1n1k1 (15)

In the above decomposition, the output y′ of the inner DFT sum has the same
addressing as input, whereas the outer DFT performs transposition according to

(k1,m1)→ (j1, k1)

In the second level of factorization, the intermediate array y′ from (15) is replaced
by a new 3-dimensional array y′′ as follows :

y′′(j2,k2,m1)
=

M2−1∑

m2=0

z′′(k2,m2,m1)
ωM1m2k2ωM1N2m2j2 (16)

z′′(k2,m2,m1)
=

N2−1∑

n2=0

x′′(n2,m2,m1)
ωM1M2n2k2 (17)

where a new intermediate array z′′ is introduced and again the inner DFT does
not change the addressing and the outer DFT transposes the output according to :

(k2,m2,m1)→ (j2, k2,m1)

By following the above procedure, a full decomposition defined by the input
addressing (12) and output addressing (13) would be obtained. It is not necessary,
however, to expand the data into L dimensions. By considering the addressing of
intermediate results of consecutive DFT passes from (12) to (13),

(mL, mL−1, mL−2, . . . , m2, m1)
(jL, mL−1, mL−2, . . . , m2, m1)
(jL−1, jL, mL−2, . . . , m2, m1)
(jL−2, jL−1, jL, . . . , m2, m1)

...
...

...
...

...
(j1, j2, j3, . . . , jL−1, jL)

it can be observed that, at every pass, the address sequence consists of indices of
three kinds : the already transformed indices j, the as yet untransformed indices
m and the single index ml that is subject to transformation in the present pass l.

68 Micha l Lenarczyk

Therefore, it suffices to use three indices for every pass. Denote by n the currently
transformed index ml, and collapse all remaining indices m into a single combined
index ~m and all j into ~j (either of which can be empty, namely, ~j is an empty
sequence in the first pass and ~m is empty in the last pass). Then, the following
transformation of addressing sequence is applied along with DFT computation :

(~j, n, ~m)→ (k,~j, ~m)

This leads to an elegant interpretation of the transform in terms of three-dimensional
arrays with indices j, n and m. The dimensions must be defined anew in every
DFT pass ; the index k from the previous pass is fused into the index ~j and a new
n is extracted from the untransformed index sequence ~m.

As a final remark, all the above results remain valid for decimation in frequency
decomposition, except that the sequence of indices of the input and output (as well
as any intermediate output from any DFT pass) is reversed. This case is depicted
on the ”butterfly” diagram of Fig. 1, and on Figs. 2–5, which illustrate shape
transformations carried out in each DFT pass.

[0] [0]

[1] [1]

[2] [2]

[3] [3]

[4] [4]

[5] [5]

[6] [6]

[7] [7]

[8] [8]

[9] [9]

[10] [10]

[11] [11]

[12] [12]

[13] [13]

[14] [14]

[15] [15]

Figure 1: Autosort FFT flow diagram for N0 = 16. Weight labels are omitted
for clarity. Note the irregular butterfly structure of the first three passes due to
transposition of output. The last pass is computed without transposition and
hence its regular shape.

2.3 Generalized transform framework

Because twiddle factors only contribute insignificant amount of computation, they
are usually applied as a separate stage between DFT passes, permitting deep op-
timization of DFT modules which are the core of the algorithm [5]. The algorithm
discussed is deliberately not optimized for selected radix values but made as gen-
eral as possible. As a result, the twiddle coefficients are not applied as a separate

Generalized autosort FFT framework 69

15141312111098 76543210
j

n

m

1514
1312
1110
98
76
54
32
10

j

m

k

Figure 2: FFT for N0 = 16, pass 1 (left : input, right : transposed output). In all
cases, the transform is applied along the decimating vertical index n and results
in horizontal output index k.

1412108
6420

j

n

m

1412
108
64
20

j

m

k

Figure 3: FFT for N0 = 16, pass 2 (left : input, right : transposed output)

scaling stage but incorporated into the trigonometric coefficients of one of the
neighbouring DFT passes. Again, it is possible to merge the coefficients either
into the inner or the outer loop. In what follows we focus on the latter case, the
former being analogous.

Let us reexpress formula (14) as follows :

x̂′(j1,k1) =

M1−1∑

m1=0

y′(k1,m1)
ωm1(N1j1+k1) (18)

The frequency index k1 which previously served as a replication parameter now
becomes a variable of the DFT pass, affecting the phase of the twiddle coefficients
applied in each DFT in a pass.

It is possible to absorb the twiddle factors into the body of inner DFT pass
if we consider a more general form of the DFT equation (which was introduced

70 Micha l Lenarczyk

128
40

j

n

m

128
40

j

m

k

Figure 4: FFT for N0 = 16, pass 3 (left : input, right : transposed output)

8
0

j

n

m

80

j

m

k

Figure 5: FFT for N0 = 16, last pass (left : input, right : transposed output).
Note in this case that the transposition does not affect sample ordering, which is
consistent with the shape of the last pass in Fig. 1.

in [10] and termed GFT, for ”generalized discrete Fourier transform”) :

x̂k =

N−1∑

n=0

xnω
(n+P)(k+Q) =

N−1∑

n=0

xnω
nk+Qn+Pk+PQ (19)

By the periodicity property of the signal and its spectrum, the above formula can
easily be verified to be equivalent to

x̂k−Q =
N−1∑

n=0

xn−Pω
nk (20)

which leads to interpretation of parameters P and Q as the time and the frequency
shift, respectively.

Equation 20 has the disadvantage that index shifted by a nonzero value exceeds
the usual range of definition 1 . . . N − 1. Implementation of periodic signals that

Generalized autosort FFT framework 71

are indexed in a range exceeding one period requires modulo addressing, to confine
the index to the range where storage for samples is defined. Modulo adressing is
assisted by hardware in some machines but most often requires software imple-
mentation, incurring some cost of execution time.

In what follows we turn to the form of equation 19 where x and x̂ are addressed
linearly. Considering the powers of ω = e−i2π/N0 , we easily note the periodicity
ωN0+n = ωn which permits use of tabulated values of constants ωn = ωn for n =
1 . . . N0 − 1 in place of calculating them during execution of the algorithm, which
is the most common approach. Access to ω constants must then be performed
modulo N0.

Let us begin with the initial DFT equation involving time shift P and frequency
shift Q, focusing only on the form of ω factors :

ω(n0+P)(k0+Q) = ωn0k0+Qn0+Pk0+PQ (21)

Applying first level of decomposition (3) yields

ω(M1n1+m1+P)(N1j1+k1+Q) = ωM1n1(k1+Q) × ω(m1+P)(N1j1+k1+Q) (22)

a formula for trigonometric constants applied : ωM1n1(k1+Q) for the inner DFT
pass and ω(m1+P)(N1j1+k1+Q) for the outer DFT pass. It is worthwile to observe
that, given arbitray initial shifts P and Q, only frequency shift is propagated to
the next (inner) level of decomposition, the time shift being absorbed in the outer
DFT which is the last pass of the overall decomposition. Recursively applying the
above decomposition, a structure composed only of DFT with time and frequency
shift is obtained, and no intervening twiddle stage is required. It should be noted
that the form of (22) is not a unique solution of decomposition (5) and many
equivalent splits can be considerd which could be a subject of a separate study.

2.4 Scaling

The classical definition of the discrete Fourier transform pair is

x̂k =
N−1∑

n=0

xnω
nk ↔ xk =

1

N

N−1∑

n=0

x̂nω
−nk

For practical implementation in fixed point arithmetic, it is necessary to include
the normalizing factor N−1 in the forward rather than inverse formula, so that
input of samples from a fixed interval, e.g. (−1,+1), yields output bounded to the
same range. Additionally, this scaling must be performed incrementally during
the computation to prevent exceeding the maximum range at every stage.

Some signal processors have built-in scaling modes, allowing data to be scaled
up or down during load or store by a factor of 2 through a simple bit shift. This
proves particularly helpful for radix 2 fast Fourier algorithms allowing scaling to
be effectuated within every pass. Good noise properties are achieved because
intermediate results can make use of the full range of values allowed by the size of
data words so that impact of digit truncation is minimal.

72 Micha l Lenarczyk

A similar feature is difficult to implement in the general mixed radix setup
where each pass can be a DFT of a different order, and hence the normalizing
factor can be arbitrary. Applying the scaling by the current DFT order would
cost an additional real-complex multiplication of all values in every pass.

The algorithm described in this article has the property that in every DFT
pass, all samples are multiplied by trigonometric factors exactly once. This leads
to the observation that every output sample is a result of a process composed of L
consecutive multiplications by some power of ω, where |ω| = 1. To take advantage
of this fact, a new vector of scaled trigonometric constants is defined :

ωS = N−
1
L × ω

The scaling can be verified to produce, after L passes, an overall factor of

|ωS |L =
∣∣∣
(
N−

1
L × ω

)∣∣∣
L

= N−1 × |ω| = 1

N

Since N =
∏
lMl, the constant N

1
L is the geometric mean of primary orders Ml.

It is easy to verify that, by chosing, in consecutive passes, DFT orders Ml from

smallest to largest, the property
∣∣∣
∑Ml

n xnω
nk
S

∣∣∣ ≤ 1 for |xn| ≤ 1 is assured.

The choice of the the above scaling approach is a compromise between rescaling
the input by N−1 once before execution (not acceptable due to excessive loss in
signal to noise ratio) and scaling in each pass by M−1l which allows tight match of
the range (−1,+1) for output at the cost of additional complexity. It can be seen
that when the transform order is a product of factors of very different magnitude,
the factor N

1
L is significantly smaller than 1 causing dynamic range compaction

when small DFT’s are executed in early passes and a degradation of signal to noise
ratio. This fact must be taken into consideration when selecting the order of the
transform. In most cases, the order can be decomposed into many small primes,
in which case the algorithm should assure a good noise-performance balance.

3 Description of algorithm

This section provides details important for implementation. The algorithm has
the following properties :

1. general mixed radix, out-of-place structure with one scratch array which is
used together with the target output array on an alternating basis

2. employs the generalized framework described in section 2.3, allowing computa-
tion of FFT with time and frequency shift, and execution of both decimation
in time and decimation in frequency structures

3. allows (but does not require) execution of autosort algorithm whereby the in-
termediate results are stored with transposition, to yield final result in natural
order

4. has an optional scaling mode allowing the implementation in fixed range arith-
metic

In the first paragraph the structure of the algorithm is described and in the
second some preliminary performance metrics invoked.

Generalized autosort FFT framework 73

3.1 Structure

The algorithm has a standard structure of four nested loops in each pass. They
are discussed beginning with the innermost loop.

Loop over n : This loop calculates the scalar product
∑N−1
n=0 xa(n)ωb(n), where

addressing a(n) = Kxn+Lx is linear and b(n) = Kωn+Lω circular (modulo N0).
Parameters Kx, Lx,Kω, Lω are provided from the containing loop.

Loop over k : The outcome of the previous loop is a single Fourier coefficient,
and execution over k = 1 . . . N − 1 yields the full spectrum. The result is assigned
to output x̂c(k) with linear addressing c(k) = Kx̂k+Lx̂. In every pass of the loop,
the parameters passed to the inner loop Kx, Lx are supplied from the outer loop
and Kω, Lω are found according to

{
Kω(k) = (KK,ωk + LK,ω) mod N0

Lω(k) = (KL,ωk + LL,ω) mod N0

Loop over j : Here the index j spans the already transformed dimensions of
the full decomposition as discussed in paragraph 2.2. The single DFT defined by
the loop over k is repeated for every value of j with parameters found according
to 




Kx(j) = KK,xj + LK,x
Lx(j) = KL,xj + LL,x
Kx̂(j) = KK,x̂j + LK,x̂
Lx̂(j) = KL,x̂j + LL,x̂

KK,ω(j) = (KK,K,ωj + LK,K,ω) mod N0

KL,ω(j) = (KK,L,ωj + LK,L,ω) mod N0

LK,ω(j) = (KL,K,ωj + LL,K,ω) mod N0

LL,ω(j) = (KL,L,ωj + LL,L,ω) mod N0

Loop over m : In this loop, m is the replication index for which the same
structure (in terms of trigonometric constants) is applied to successive slices of the
data interpreted as array in three dimensions. Therefore, the index only affects
the addressing of inputs and outputs as follows :





KK,x(m) = KK,K,xm+ LK,K,x
KL,x(m) = KK,L,xm+ LK,L,x
LK,x(m) = KL,K,xm+ LL,K,x
LL,x(m) = KL,L,xm+ LL,L,x
KK,x̂(m) = KK,K,x̂m+ LK,K,x̂
KL,x̂(m) = KK,L,x̂m+ LK,L,x̂
LK,x̂(m) = KL,K,x̂m+ LL,K,x̂
LL,x̂(m) = KL,L,x̂m+ LL,L,x̂

74 Micha l Lenarczyk

Execution of pass l : The master loop executes the sequence of passes and uses
tabulated values of the parameters defined above (there are 8 parameters defined
per each of the three arrays x, x̂, ω). A separate routine is used to precompute the
parameters according to the chosen structure. For example, the following choice
of parameters is used to obtain a decimation in frequency, autosort structure for
arbitrary factorization {Ml, l = 0, . . . , L} :

KK,K,x = 0 KK,K,x̂ = 0 KK,K,ω = 0

KK,L,x = 0 KK,L,x̂ = 0 KK,L,ω =
∏l−1
r=1Mr

KL,K,x = 0 KL,K,x̂ = 0 KL,K,ω = 0
KL,L,x = 1 KL,L,x̂ = 1 KL,L,ω = 0
LK,K,x = 0 LK,K,x̂ = 0 LK,K,ω = N0/Ml

LK,L,x =
∏l−1
r=1Mr LK,L,x̂ = N0/Ml LK,L,ω = 0

LL,K,x = N0/Ml LL,K,x̂ =
∏l−1
r=1Mr LL,K,ω = 0

LL,L,x = 0 LL,L,x̂ = 0 LL,L,ω = 0

for all except L-th pass, where the parameter KK,L,ω is set to zero and the re-
maining parameters are the same.

If time and frequency offset are desired, then the parameters for ω should be
changed according to the formulas from paragraph 2.3. In general, however, the
parameters as found using the formulas in this paper lead to only some of the
parameters that are nonzero. Since these parameters are determined uniquely,
there exists a potential for further generalization, which can be an interesting
subject of study. One seemingly achievable result is Good’s prime factor algorithm,
but for this, a modification of the implementation is required to allow modulo
addressing of input and output arrays.

3.2 Complexity

The algorithm, derived and implemented in its full generality, compares infavor-
ably with highly optimized algorithms like the popular FFTW library [5] when
speed is considered. Preliminary implementation tests executed on an Intel x86
machine in a single processor core show that the FFTW is 3 to 6 times faster (see
Table 1), the difference being smallest for factorizations into large primes (combi-
nations of 17, 19 and 23 were considered) which it executes using generic routine
and largest for orders being powers of 2 which are performed by highly optimized
modules. This is not surprising, given the generalized structure in which all mul-
tiplications are performed directly regardless of whether they are trivial or not.
On general purpose architectures (such as the Intel x86), all operations involved
in the algorithm contribute to the exection time.

Table 2 shows the breakdown of the algorithm into elementary operations in-
volved in its execution, per each of the loops from the innermost (over n) to the
outermost (over m) that make up one pass.

To analyse the workload it is sufficient to consider the innermost loop, over n,
which has a dominant impact. The loop iterates Ml times ; the containing loop
over k also iterates Ml times and the two outer loops in combination make N0/Ml

repetitions, which makes a total of N0 ×Ml iterations of the innermost loop per

Generalized autosort FFT framework 75

Table 1: Comparison of execution times of proposed algorithm and FFTW. Mean
times and standard errors measured in microseconds. Observed measurement vari-
ability is due to processor speed stepping.

Proposed FFTW
Size Factorization t̄ SE t t̄ SE t ratio

512 29 1055 5,8 177 2,9 5,96
1024 210 1519 731,8 284 122,8 5,35
2048 211 2150 3,5 385 2,7 5,58
323 17 · 19 462 169,1 154 60,6 2,99
391 17 · 23 1001 2,5 267 1,3 3,75
437 19 · 23 1158 2,3 323 2,4 3,59
289 172 654 2,0 168 1,3 3,9
361 192 888 2,0 228 0,7 3,89
529 232 1552 148,1 412 0,7 3,76
7429 17 · 19 · 23 11679 24,9 3460 17,1 3,38
4913 173 6764 8,5 2155 8,1 3,14
6859 193 10471 13,9 3237 14,1 3,23
240 24 · 3 · 5 190 38,4 46 7,2 4,11
300 22 · 3 · 52 458 59,8 106 12,8 4,31
320 26 · 5 585 5,1 112 0,1 5,23
350 2 · 52 · 7 554 1,4 156 0,6 3,54
400 24 · 52 653 131,2 137 25,0 4,77
450 2 · 32 · 52 359 74,4 125 22,8 2,88
500 22 · 53 741 106,0 185 23,5 4,01
600 23 · 3 · 52 1053 1,2 265 18,4 3,98
700 22 · 52 · 7 637 234,1 204 64,7 3,12
800 25 · 52 860 255,0 199 50,1 4,31
900 22 · 32 · 52 1542 171,1 437 47,4 3,53
1000 23 · 53 1171 514,1 320 132,8 3,66

Table 2: Operation counts per iteration

Operation n-loop k-loop j-loop m-loop

real multiply-accumulate 4 0 0 0
linear address update 1 1 4 8

circular address update 1 2 4 0
data word read 4 0 0 0
data word write 0 2 0 0

76 Micha l Lenarczyk

pass. In each iteration, a complex multiply-accumulate operation is performed,
which amounts to 4 multiplies and accumulations, assuming real-imaginary repre-
sentation of complex data stored in a single data word per each part. Consequently,
four data reads are required to fetch the real and imaginary part of the input data
and the trigonometric coefficients. In most DSP architectures, a data transfer can
be performed in parallel with the multiply-accumulate operations ; sometimes, it is
even possible to perform two reads or a double/quad word read. It is also common
in DSP to be able to offset data pointers in parallel with arithmetic operation and
data read. If a given architecture features modulo addressing, the circular address
can be updated with no cost, otherwise the range check and possible index wrap
will contribute to the execution time. The result is written back after the inner
loop completes the calculation of the Fourier coefficient and is done in the body
of the k-loop.

From the above it is clear that the execution time is determined by arithmetic
instructions. The algorithm’s speed could be improved by reducing their number.
FFTW library uses a technique involving discrete Hartley transform to halve the
number of multiplications required by computing two coefficients at a time. This
partly accounts for the difference in execution speed between the library and the
implementation of the presented algorithm ; an additional difference comes from
the fact that FFTW avoids the problem of addressing trigonometric constants by
expanding the table of all nontrivial coefficients at the cost of (Ml − 1)2 memory
words per pass l. In the algorithm presented, the generalized configuration in which
ω factors can occur in any power prevents direct application of the mentioned
technique which requires deeper study. Some known improvements, such as for
real, real-odd and real-even transforms could be applied directly ; others, however,
are incompatible with the framework’s mixed-radix and generalized design.

The major advantage of the proposed algorithm is its small code footprint.
Compiled for Intel x86, object binaries have a size of less than 16 KB, whereas
FFTW library by far exceeds 500 KB. This aspect may be of key importance in
many cases.

4 Concluding remarks

The algorithm presented in this article is a generalized FFT framework which also
has autosort capability. In its full generality, it is able to implement many of the
structures and decompositions proposed in the past. The derivations presented
are implemented in the form of a test program which is available from the author.
The advantages of the algorithm are its simplicity (only a single version to execute
all permitted structures), which translates into a small code footprint, and the
flexibility it offers. However, preliminary tests show that the implementation is
inferior in terms of speed when compared with a state of the art industry imple-
mentation. Some acceleration techniques could be considered but require further
study.

A true test for the algorithm would be an attempt to run it in a DSP en-
vironment, where it could take advantage of circular addressing modes it makes
extensive use of, and where structural overhead is small. The incremental scaling

Generalized autosort FFT framework 77

option which comes at no performance cost makes it directly applicable in the
most typical case where fixed point arithmetic is required. It is interesting to see
how this approach would perform from the perspective of noise - which was not
considered in this paper because of the fact that floating point implementation
is known [2] to behave in the opposite way, i.e., direct formula implementation
results in higher noise than the fast algotithm. The author plans to elaborate this
aspect in the future.

Acknowledgement Study was supported by research fellowship within ”Infor-
mation technologies : research and its interdisciplinary applications” agreement
number POKL.04.01.01-00-051/10-00.

References

[1] Cooley J. W., Tukey J. W., An algorithm for the machine computation of complex
Fourier series, Math. Computation vol. 9, pp 297-301, 1965

[2] Gentleman W. M., Sande G., Fast Fourier transforms - for fun and profit, Proc.
AFIPS, pp 563-578, 1966

[3] Duhamel P., Hollmann H., ’Split radix’ FFT algorithm, Electronics Letters vol. 20
pp 14-16, 1984

[4] Stasiński R., Prime factor FFT for modern computers, IWSSIP 2012 pp 346-349,
2012

[5] Frigo M., Johnson S. G., The design and implementation of FFTW3, Proc. IEEE
vol. 93 no 2, pp 216-231, 2005

[6] Van Buskirk J. posted his results on comp.dsp newsgroup and the programs
he wrote are available (as of 2012) at http://home.comcast.net/∼kmbtib/ and
http://www.cuttlefisharts.com/newfft/

[7] Johnson S. G., Frigo M., A modified split-radix FFT with fewer arithmetic opera-
tions, IEEE Trans. on Signal Processing, vol. 55 no 1, pp 111-119, 2007

[8] Sohie G. R. L., Chen W., Implementation of Fast Fourier Transforms on Motorola’s
Digital Signal Processors, Motorola application note APR4/D, 1993

[9] Van Loan C., Computational Frameworks for the Fast Fourier Transforms, SIAM,
1992

[10] Bongiovanni G., Corsini P., Frosini G., One-dimensional and two-dimensional gen-
eralized discrete Fourier transform, IEEE Trans. on Acoustics, Speech and Signal
Processing, vol. 24 no 1, pp 97-99, 1976

[11] Akansu A. N., Agirman-Tosun H., Generalized discrete Fourier transform with non-
linear phase, IEEE Trans. on Signal Processing, vol. 58 no 9, pp 4547-4556, 2010

[12] Cochran W. T., Cooley J. W., Favin D. L., Helms H. D., Kaenel R. A., Lang W.
W., Maling G. C., Nelson D. E. , Rader C. M., Welch P. D., What is the fast Fourier
transform ?, Proc. IEEE, vol. 55 no 10, pp 1664-1674, 1967

