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Abstract

In many areas of application it is important to estimate unknown model parame-
ters in order to model precisely the underlying dynamics of a physical system. In
this context the Bayesian approach is a powerful tool to combine observed data
along with prior knowledge to gain a current (probabilistic) understanding of un-
known model parameters. We have applied the methodology combining Bayesian
inference with Sequential Monte Carlo (SMC) to the problem of the atmospheric
contaminant source localization. The algorithm input data are the on-line arriving
information about concentration of given substance registered by the downwind
distributed sensor’s network. We have proposed the different version of the Hybrid
SMC along with Markov Chain Monte Carlo (MCMC) algorithms and examined
its effectiveness to estimate the probabilistic distributions of atmospheric release
parameters.

Keywords: Bayesian inference, stochastic reconstruction, MCMC methods, SMC
methods

1 Introduction

Accidental atmospheric releases of hazardous material pose great risks to human
health and the environment. Examples, like Chernobyl nuclear power plant acci-
dent in 1986 in Ukraine or Seveso disaster in 1978, prove that it is necessary to
have properly fast response to such incidents. In the case of an atmospheric release
of chemical, radioactive or biological materials, emergency responders require rel-
atively fast tools to predict the current and future locations and concentrations
of substance in the atmosphere. One of the fields of application of the Bayesian
approach can be problem of the localization of the dangerous substance release
based only on the measured concentration sparse data.

Knowledge of the temporal and spatial evolution of a contaminant released
into the atmosphere, either accidentally or deliberately, is fundamental to adopt
efficient strategies to protect the public health and to mitigate the harmful effects
of the dispersed material. However, to create the model realistically reflecting the
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real situation based only on a sparse point-concentration data is not trivial. This
task requires specification of set of parameters, which depends on the considered
model. Non-inverting problems of this type are termed inverse problems: prob-
lems that can be solved in one direction but for some physical reason cannot be
solved in the opposite direction. Such problems are widely encountered in several
fields [1]. For instance the group method of data handling (GMDH) [2], [3] and it
modifications seem to be successful as a method of inductive modeling and fore-
casting of complex processes and systems. The main idea of the GMDH is to create
the algorithm able to construct a model of optimal complexity based only on the
data. The goal is to get mathematical model to describe the processes, which will
take place at object in the future. GMDH solves it, by sorting-out procedure, i.e.
consequent testing of models, chosen from set of models-candidates in accordance
with the given criterion. More recent developments utilize genetic algorithms or
the idea of active neurons and multileveled self-organization to build models from
data e.g. [4], [5].

The key idea behind statistical inversion methods is to recast the inverse prob-
lem in the form of statistical inference by means of Bayesian statistics. In the
framework of Bayesian statistics all quantities included in the mathematical model
are modeled as random variables with joint probability distributions. This ran-
domness can be interpreted as parameter variability, and is reflected in the un-
certainty of the true values expressed in terms of probability distributions. The
solution of the inverse problem corresponds to summarizing probability distribu-
tion when all possible knowledge of the measurements, the model and the available
prior information, has been incorporated. This distribution, referred as posterior
distribution, describes the degree of confidence about the estimated quantity con-
ditioned on the measurements [6].

It is clear that given a known gas source and wind field we can calculate
the expected gas concentration for any downwind location. In the case of gas
dispersion, the unknown state is the source strength and its location. It is obvious
that if we are able to create the model giving the same point concentration of
considered substance, as we get from the sensors’ network, we could say that we
understand the situation we face up. However, to create the model realistically
reflecting the real situation based only on a sparse point-concentration data is
not trivial. This task requires specification of set of models’ parameters, which
depends on the applied model.

A comprehensive review of past works on solutions of the inverse problem for
atmospheric contaminant releases can be found in [7]. A variety of approaches
to solve the atmospheric dispersion inverse problem have been explored including
non-linear optimization, back-trajectory, Greens function, adjoint, and Kalman
filter methods [8]. However, these methods often fail due to the inherent complex-
ities, high-dimensionality, and/or non-linearity of the underlying physical system
[9]. In [9] was introduced dynamic Bayesian modeling and the Markov chain Monte
Carlo (MCMC). In [10] and [11] were presented sampling approaches to reconstruct
a contaminant source for synthetic data.

In our previous work we have presented the application of the classical MCMC
methods [20]. We have applied the methodology combining Bayesian inference
with MCMC algorithms to the problem of the source localization. We have shown
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the advantage of the MCMC algorithms that in different ways use the source
location parameters’ probability distributions, obtained based on available mea-
surements, to update the marginal probability distribution of considered param-
eters with use of the newly received information. In this paper we examine the
application of the Sequential Monte Carlo (SMC) methods combined with the
Bayesian inference to the problem of the localization of the atmospheric contami-
nation source. We present the possibility to connect MCMC and SMC to provide
additional benefit in the process of event reconstruction. Proposed algorithms are
tested on the synthetic release experiment.

2 Theoretical preliminaries

2.1 Bayesian inference

A good introduction to Bayesian theory can be found in [11] and [12]. Bayes’
theorem, as applied to an emergency release problem, can be stated as follows:

P(D|M)P(M) "
P(D)

where M represents possible model configurations or parameters and D are ob-
served data. For our problem, Bayes’ theorem describes the conditional probabil-
ity P(M|D) of certain source parameters (model configuration M) given observed
measurements of concentration at sensor locations (D). This conditional proba-
bility P(M|D) is also known as the posterior distribution and is related to the
probability of the data conforming to a given model configuration P(D|M), and
to the possible model configurations P(M ), before taking into account the sensors’
measurements. The probability P(D|M), for fixed D, is called the likelihood func-
tion, while P(M) is the prior distribution. P(D) is the marginal distribution of D
and is called prior predictive distribution [10]. P(D) serves as a scaling factor and
is crucial for model comparison; so in our case the Bayes theorem can be written
as follows:

P(M|D) =

P(M|D) oc P(D|M)P(M) (2)

To estimate the unknown source parameters M using (2), the posterior distri-
bution P(M|D) must be sampled. P(D|M) quantifies the likelihood of a set of
measurements D given the source parameters M.

Value of likelihood for a sample is computed by running a forward dispersion
model with the given source parameters M. Then the model predicted concentra-
tions M in the points of sensors location are compared with actual data D. The
closer the predicted values are to the measured ones, the higher is the likelihood
of the sampled source parameters.

We use a sampling procedure with the Metropolis-Hastings algorithm to ob-
tain the posterior distribution P(M|D) of the source term parameters given the
concentration measurements at sensor locations [10], [11]. This way we completely
replace the Bayesian formulation with a stochastic sampling procedure to explore
the model parameters’ space and to obtain a probability distribution for the source
location.
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2.2 The likelihood function

A measure indicating the quality of the current state of Markov chain is expressed
in terms of a likelihood function. This function compares the concentrations pre-
dicted from model and observed data at the sensor locations as:

S [log(CM) — log(CF))?

In[P(D|M)] = In[A(M)] = - s

(3)
rel

where A is the likelihood function, CM are the predicted by the forward model
concentrations at the sensor locations i, CF are the sensor measurements, o2, is
the standard deviation of the combined forward model and measurement errors, N
is the number of sensors. The value of 02, can vary depending on the observation
errors and model formulation (the assumed here value is given in chapter 3).

After calculating value of the likelihood function for the proposed state its
acceptance is performed as follows:

In(Aprop)
In(\)
where Apyop is the likelihood value of the proposal state, A is the previous likeli-
hood value, and U(0, 1) is a random number generated from a uniform distribution
in the interval (0,1).

It is important to note that condition (4) is more likely to be satisfied if the
likelihood of the proposal is only slightly lower than the previous likelihood value.
It gives a chance to choose even a little ”worse” state, because the probability of
acceptance depends directly on the quality of proposed state. Different likelihood
functions can also be applied [13].

> U(0,1) (4)

2.3 Posterior distribution

The posterior probability distribution (2) is computed directly from the resulting
samples defined by the algorithm described above and is estimated with

i 1 o

P(M|D) = 7"(M) = + ; §(M; — M). (5)
P(M]|D) represents the probability of a particular model configuration M giv-
ing results that match the observations at sensors locations. Equation (5) is a
sum over the entire samples set of length N of all the sampled values M;. Thus
0(M; — M) =1 when M; = M and 0 otherwise. Consequently, if a Markov chain
spends several iterations at the same location value of P(M|D) increases through

the summation (increasing the probability for those source parameters).

2.4 Sequential Monte Carlo

Sequential Monte Carlo (SMC) is designed to sample from dynamic posterior dis-
tributions. The SMC methods are easy to parallelize - the different Monte Carlo
proposals can be generated and evaluated in parallel. A good introduction to SMC
is present in [14, 15, 16] .
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2.5 Sequential importance resampling

Sequential importance resampling (SIR) is a sequential version of importance sam-
pling (IS) and combines IS with resampling procedure [17] . At the center of the
SMC approach in our case is the generation of a weighted sample using IS method.
IS uses a proposal distribution ¢(.), that is close to target distribution =(.) and
from which it is easy to generate samples. The basic methodology is given below.

1. Generate a sample of size N from the proposal distribution ¢(M):
M(i) Nq(M),i: 1,...,N (6)

2. Compute the importance weights:

F(M(Z))
wW(M;y) ,i=1,..,N 7
( ()) (I(M(i)) ( )
and define
w(My) = @ (8)

N .
21 W(My))
3. The distribution (-) is then approximated by

N
AN (M) = w(M)6(M; — M) 9)
i=1
which places the probability mass w(M1)), ..., w(Mny) on the support points
M(l), ceey M(N).

Hence, the weights would be proportional to the value of likelihood. In our
case to calculate the weight we use of the following formula,which is related to the
likelihood function (3):

1

@(Me) > = ]

vi=1,..,N (10)

Resampling is used to avoid the situation when almost all (except only a few) of
the importance weights are close to zero (problem of degeneracy of the algorithm).
Basic idea of resampling methods is to eliminate samples which have small nor-

malized importance weights and to concentrate upon samples with large weights.
So,:

1. for i = 1,..., N are chosen samples with indexes k(i) distributed according to
the discrete distribution with N elements satisfying

P(k(i) = 1) = w(M) (11)

forl=1,...,N,
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2. then for i = 1,..., N for samples My, ;) are assigned the weights

w(Mp@i)) = (12)

2|~

2.6 MCMC prior to SMC

The SMC algorithm needs some set of samples to be initialized. An ideal way to
generate this initial sample is using MCMC data from first K iterations in all time
steps. The resulting equally weighted MCMC set of samples can then be passed
on to SMC for processing in the subsequent iteration.

We assume that the information from the sensors arrive subsequently in inter-
vals (time steps). We start to search for the values of the model parameters M
(M = M(z,y,q,(1,C) for details see chapter 3 ) after first sensors’ measurements
(based on the data in time ¢t = 1, see (Fig. 2)). Thus, scanning algorithm is run
just after obtaining the first measurements from the sensors. Based on this in-
formation we obtain the probability distributions of the searched parameters (9)
starting from the randomly chosen set of parameters M (i.e. first we start from
the ”flat” priori). This assumption reflects lack of knowledge about the release.
The forward calculation are performed for the actual state M and likelihood func-
tion A is calculated. Then we apply random walk procedure "moving” our Markov
chain to the new position. Precisely, we change each model M parameter by the
value draw from the Gaussian distribution with the zero mean and variance 0%,
characteristic for each parameter. Standard deviations for sampling parameters
are determined by the problem’s domain size and refined with a trial and error
procedure to ensure that the Markov chains had access to realistic ranges with
minimal occurrences of stuck problem. Problem of stuck in chains can occur when
the standard deviations chosen for the next iteration lead to a large number of
rejected samples, causing that the chain remains in a given position for many it-
erations. For the proposal state the forward calculation are performed and the
likelihood function Ap,op is again estimated. We compare this two values A and
Aprop according to (4). If comparison is more favorable than the previous chain
location, the proposal is accepted (Markov chain ”"moves” to the new location). If
the comparison is "worse”, new state is not immediately rejected. Random vari-
able from binomial distribution is used to decide whether or not to accept the new
state of chain. After K iteration we pass all the samples (from all m chains)to
the sequential procedure. We compute importance weights by (10) and normalize
them. Next we use roulette procedure to draw N samples from the set generated
by Markov Chain.

This random component is important because it prevents the chain from be-
coming trapped in a local minimum. The pseudo code for one time step of the
algorithm is given below.

2.6.1 Pseudocode 1:MCMC Prior to SMC

FOR j=1:ChainNumber
Draw M(1) from a priori distribution;
ForwardDispersion(M(1));
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Read C"M(1);

Compute likelihood(M(1));

Compute W(1);

FOR i=1:K
ChainSample(j,1i)=M(i);

ChainWeight (j,1)=W(i);
M’=M(i)+N(0,sigma2M) ;
ForwardDispersion(M’);
Read C™M’;
Compute likelihood(M’);
Compute W’;
IF likelihood(M’)/likelihood (M(i-1))
>=RND(0,1)
THEN
M(i+1)=M’;
W(i+1)=w’;
ELSE
M(i+1)=M(i);
W(@E+1)=W(1);
END IF
END FOR
END FOR
SAMPLES=[ChainSample(1,:) ... ChainSample(ChainNumber,:)]
WEIGHTS=[ChainWeight(1,:) ... ChainWeight (ChainNumber, :)]
WEIGHT=WEIGHT/sum(WEIGHT)
FOR i=1:N

SumOfWeights=0;

RuletIter=1;

rand=RND(0, 1) ;

WHILE (SumOfWeights<=rand)
SumOfWeights=SumOfWeights+WEIGHTS (RuletIter);
RuletIter++;

END WHILE

RESAMPLES (i)=SAMPLES (RuletIter)
END FOR

Statistical convergence (to the posterior distribution) is monitored by computing
between-chain variance and within-chain variance [11]. If there are m Markov chains of
length N, then we can compute between-chain variance B with

N gz
B = m;(Mj - M) (13)

where M; is the average value along each Markov and M is the average of the values
from all Markov chains. The within-chain variance W is

1 m 5
wW=— ; 14
SOk (14)

where
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s; = ﬁ > (My; — M)? (15)

i=1

The convergence parameter R is then computed as

var(M)
R= ——+ 16
where var(M) is estimate variance of M and is computed as
N -1 1
M)=——— —B. 1
var(M) N W+ N (17)

In this paper, we consider the following variants of scanning algorithms:

1. Classic MCMC

In this algorithm, the parameter space scan in each time step t is independent form
the previous ones. So, in this case we don’t use information from past calculations.
Classic MCMC don’t use sequential mechanism.

2. MCMC prior to SMC

The SMC algorithm use the set of samples generated by K iterations of Clasic MCMC
algorithm as a prior distribution, but in subsequent SMC iterations don’t use infor-
mation from SMC results from previous time step.

3. MCMC prior to SMC via Maximal Weights
This algorithm is similar to MCMC prior to SMC, but in subsequent SMC calcula-
tions uses the results obtained by SMC in the previous time steps to run calculation
with use of the new measurements. As the first location of Markov chain M¢ it select

the set of M parameters for which weight in previous time step procedure was the
highest. So, for ¢t > 1:

Mg~ arg (M e {Méfl,...,Mffl}) maz{w(M; ")} (18)

With this approach, we always start with the best values of the model (previously
found) and correct the result with new information from sensor.

4. MCMUC prior to SMC via Rejuvenation and Extension
In contrast to the MCMC prior to SMC via Maximal Weights this algorithm as the
first location of Markov chain M¢ at the time ¢ > 1 chooses the set of parameters
M selected randomly from previous realization of resampling procedure in ¢ — 1 with
use of the uniform distribution:

Mg~ UM, MY ME™Y a uniform distribution {1,...,n} (19)

Applying the new knowledge (new measurements) the current chain is ”extended”
starting from selected position with use of the new data in the likelihood function
calculation.
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FIGURE 1: Distribution of the sensors and the release’s source over the domain

3 Synthetic data

We have implemented stochastic event reconstruction algorithms grounded on the hy-
brid MCMC and SMC sampling to find the contamination source location based on the
concentration of given substance registered by the 10 sensors distributed randomly over
artificial domain 15000m x 15000m. (Fig. 1). The contamination source was located
at x = 3000m, y = 8000m, z = 30m. The synthetic concentration measurements data
(Fig. 2), used in testing the algorithm, were generated with use of the atmospheric dis-
persion Gaussian plume model [18], [19]. The release rate was assumed to change with
time within interval ¢ = 5000g/s up to g ~ 7000g/s which resulted in the change of the
concentration measured by the sensors in subsequent time intervals (Fig. 2).The wind
was directed along x axis with average speed 5m/s.

The Markov chains are initialized by taking samples from the prior distribution.For
practical reasons and to lower the computational cost we limit the prior distribution to
the two dimensional coordinate space (x,y) of the source location. The vertical position
of source location was fixed on z = 30m at which were also located the sensors.

In our calculation we use m = 10 Markov chains in each time step in MCMC pro-
cedure. The traces of three independent Markov chains for the = and y parameters are
presented in Fig. 3 and Fig. 4, horizontal line represents the target value. Fig. 5 presents
the chain’s traces in the two dimensional plane within the scanned domain, the target
source location is marked by triangle and sensors by squares. The variance parameters o3,
uses in random walk procedure are equal o2 = 200, az = 200, 03 = 100 and agl =0.02,
022 = 0.02. In this case, when we use in the reconstruction the synthetic data, the value
o, = 0.05, because disorder of measurement data was low and assumed as 5%. For
real measurements, if large errors in the measurements are expected, larger values of o2,
should be assumed.

The number of iteration for each Markov chain in Hybrid algorithm was equal K =
10000 (for comparision in classic MCMC N = 20000 to balance the number of itera-
tion).This number was chosen based on the numerical experiments as the number of
iteration needed to reach convergence for each sampled model parameters [20].One of
the important aspects of stochastic procedure of calculating the posterior distribution is
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FIGURE 2: The synthetic concentration registered by the 10 sensor in 6 subsequent in-
tervals (time steps)
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FIGURE 3: The traces of three Markov chains in the x space. The true value is marked
by horizontal line. The samples came from results of Classic MCMC algorithm.



54 Piotr Kopka, Anna Wawrzynczak, Mieczyslaw Borysiewicz

15000

Chainl
— — —Chain2
— — Chain3

y [m]

5000 -

0 . . . . . . .
0 2000 4000 6000 8000 10000 12000 14000 16000
Iteration

FIGURE 4: The traces of three Markov chains in the y space. The true value is marked
by horizontal line. The samples came from results of Classic MCMC algorithm.

15000

10000 -

y[m]

5000~ I q

0 50‘00 10000 15000
x [m]
FIGURE 5: The traces of three Markov chains in the x,y space. The source location is

marked by triangle and the sensors by squares. The samples came from results of Classic
MCMC algorithm.
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FIGURE 6: Convergence rates for position x. The samples came from results of MCMC
algorithm.

choosing burn-in phase. The burn-in factor represents the number of samples needed at
the beginning for the Markov chain to actually reach the search state where it is sam-
pling from the target distribution. These initial samples are discarded and not used for
inference. In our calculation the burn-in was fixed at 2000 iterations. This value was
chosen based on the numerical experiments as the number of iteration needed to reach
the target distribution with same approximation [20].The convergence R value vs. the
number of iteration for searched parameters presents Fig. 6. One can see that the 10000
iterations satisfy the convergence condition R ~ 1.

3.1 Forward dispersion model

A forward dispersion model is needed to calculate the concentration C} at the points
i of sensors locations for the tested set of model parameters M at each Markov chain
step. As a testing forward model we selected the fast-running Gaussian plume dispersion
model [18],[19].

The Gaussian plume dispersion model for uniform steady wind conditions can be
written as follows:

q 1/y
C(z,y, = — — = x 20
(2,9, 2) QTI'O'yO'zVexp[ 2 <0y>} (20)
{ex 1 /z-H 2 1 /z+H 2}
P 2 O 2 Oz

where C(z,y, z) is the concentration at a particular location, V' is the wind speed
directed along x axis, q is the emission rate or the source strength and H is the height of
the release; y and z are the distance along horizontal and vertical direction, respectively.
In the equation (20) o, and o are the standard deviation of concentration distribution

in the crosswind and vertical direction. These two parameters were defined empirically
for different stability conditions in [21] and [22]. In this case we restrict the diffusion

+exp
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FIGURE 7: Posterior distribution as inferred by the Bayesian event reconstruction for all
applied algorithms for x parameter. Posterior distributions were averaged based on the
data for all time steps. Vertical lines represent the target x value.

to the stability class C (Pasquill type stability for rural area). Thus, in creation of the
synthetic data we have fixed these coefficients as:

0y =022z-(1+2-4-107°)""% ¢, = 0.22. (21)

However, we assume in scanning algorithm that we do not know exact behavior of
the plume and consider those coefficients as not completely known. Thus, the parameters
0y,0- are taken as:

oy=C-z-14+2-4-107°) "% 6, =z (22)

where values (1 and (» are sampled by scanning algorithm within interval [0, 0.4].
The size of the sampling interval is directly related to the choice of Pasquill Stability
Class [21].

To summarize, in this paper the searched model’s parameters’ space is

M = M(z,y,q,(1,C2) (23)

where x and y are spatial location of the release, q release rate and (1, (2 are stochastic
terms in the turbulent diffusion parameterization given in (22).

3.2 Results

All algorithms described in chapter 2.6 have been tested on the same synthetic data set.
Figs. 7, 8 and 9 presents the results of calculation with use of all four above described
algorithms for z,y and (3 parameters. Presented distributions were calculated based on
the scanning algorithms results from all time steps and all generated samples.

One can see from Figs. 7 and 8 that the classic MCMC algorithm have some the
unwanted samples of z and y in ranges z € (1000,1200) y € (2000,3000) and marks
them with a bit higher probability. MCMC prior to SMC algorithm also shows some
local minima but with a lower probability value. At the same time all other algorithms
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FIGURE 8: Posterior distribution as inferred by the Bayesian event reconstruction for all
applied algorithms for y parameter. Posterior distributions were averaged based on the

data for all time steps. Vertical lines represent the target y value.
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FIGURE 9: Posterior distribution as inferred by the Bayesian event reconstruction for all
applied algorithms for (1 parameter. Posterior distributions were averaged based on the
data for all time steps. Vertical lines represent the target ¢; value.
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FIGURE 10: Posterior distribution as inferred by the Bayesian event reconstruction for
all applied algorithms for {» parameter. Posterior distributions were averaged based on
the data for all time steps. Vertical lines represent the target (2 value.

reach the target value of x and y with a quite smooth and balance empirical distributions.
The same in seen for the ¢; parameter (Fig. 9), but here the Classical MCMC algorithm
do not mark the target value of (; as the most probable, while all other algorithms
successfully hit its target value. The reason of the high peek in the histograms presented
in Fig. 8 is that y is the crosswind direction, and applied model is quite sensitive to this
parameter. In contrast, all methods do not find the target value of the (2 parameter
(Fig. 10) being responsible for the dispersion in vertical direction. We do not consider
the probability of the release rate distribution, as far it was changing during creation of
the synthetic data.

Figs. 11 and 12 presents the probability distributions of & parameter obtained in
subsequent time steps by classic MCMC and SMC via Rejuvenation and Extension, re-
spectively. One can see that in case of SMC via Rejuvenation and Extension algorithm
with time the probability of the target value is reached with higher probability. Whereas
in classic MCMC algorithm we observe unwanted peaks at each time step. With subse-
quent time steps, the algorithm MCMC prior to SMC via Rejuvenation and Extension
eliminates samples with small weights, thus improves the quality of the desired distribu-
tion (e.g. local maximum is reduced to = € (4000, 5000) ). Confirmation of vanishing
samples with small weights can be seen in Fig. 13. In first time step we can observe some
outliers, while in the following steps their are discarded. A similar situation occurs for
algorithms MCMC prior to SMC via Maximal Weights and MCMC prior to SMC.

4 Final conclusions

We have presented a methodology to localize a source causing an area contamination,
based on a set of downwind concentration measurements. The method combines Bayesian
inference with sequential Monte Carlo techniques and produces posterior probability dis-
tributions of the parameters describing the unknown source. The approach successfully
provide the solution to the stated inverse problem i.e. having the downwind concentra-
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FIGURE 11: Posterior distribution of x parameter in subsequent time steps for classic
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MCMC algorithm. Vertical line represents the target value of x.
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FIGURE 12: Posterior distribution of x parameter in subsequent time steps for MCMC
prior to SMC via Rejuvenation and Extension algorithm. Vertical line represents the
target value of x.
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FIGURE 13: Scatter plot of all samples in subsequent time steps for MCMC prior to SMC
via Rejuvenation and Extension algorithm. Squares represents the sensors.

tion measurement and knowledge of the wind field algorithm founds the most probable
location of the source.

We have examined various version of the Hybrid SMC with MCMC algorithms i.e.
classic MCMC, MCMC prior to SMC, MCMC prior to SMC via Rejuvenation and Ex-
tension, MCMC prior to SMC via Maximal Weights in effectiveness to estimate the
probabilistic distributions of searched parameters. We have shown the advantage of the
algorithms that in different ways use the source location parameters probability distri-
butions obtained basing on available measurements to update the marginal probability
distribution. As the most effective we pointed the modifications of MCMC prior to SMC.

The stochastic approach used in this paper is completely general and can be used in
other fields where the parameters of the model best fitted to the observable data should
be found.
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