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Introduction

In 1965 Lotfi A. Zadeh published his seminal paper “Fuzzy sets” [202] which
opened a new epoch in many disciplines including logic, mathematics, computer
science and technology. Suggesting a simple yet convincing formal model to cap-
ture imprecision he delivered not only a brilliant idea for theoretical investigations
but also effective tools for many practical applications in all those areas where we
deal with a natural language and perceptions. The rapid and versatile development
of the artificial intelligence and its applications would be hardly imaginable without
fuzzy logic and fuzzy systems. Nowadays, in her 50th anniversary, fuzzy set theory
still remains one of the most important and promising approach for processing and
management of uncertain, incomplete, imprecise or vague information.

Fuzzy number is a fuzzy quantity representing a generalization of a real number.
Hence fuzzy numbers might be perceived as one of the most important concept in
fuzzy set theory, similarly as ordinary numbers are fundamental objects in classical
mathematics. This generalization, although conceptually simple and natural, brings
new problems that do not occur in the world of real numbers. For example, fuzzy
numbers, contrary to real numbers, are not linearly ordered. Therefore, ranking or
ordering fuzzy numbers turns out to be a true challenge. Another area requiring
original research unlike usual numbers is connected with the necessity of fuzzy
number approximation in order to simplify their shapes for their further calculations,
processing and potential software implementation. Thus theory of fuzzy numbers
abounds in many interesting problems which are worth studying. And this is the
main reason that has motivated us to write down this monograph.

The material in this book has been chosen to provide both the background of
fuzzy number theory and snapshot of the state-of-art. In Chapter 1 we present basic
information on fuzzy numbers including their representations and characteristics,
main families of fuzzy numbers and operations on fuzzy numbers. In Chapter 2
we briefly describe some generalizations of fuzzy numbers. Chapter 3 is devoted to
various approximations of fuzzy numbers. In Chapter 4 we consider ranking fuzzy
numbers, while in Chapter 5 we discuss some applications of fuzzy numbers. The
exercises at the end of each chapter may help the reader to deepen his understanding
of the topic.
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Chapter 1
Fuzzy numbers

1.1 Fuzzy sets

1.1.1 Modeling imprecision

Sometimes we can precisely state if a certain object belongs or not to a given set.
For example, let us consider a set A of people which are 40 or less years old. If χA
is a characteristic function of A, i.e.

χA(x) =
{

1 if x ∈ A,
0 if x /∈ A,

then we can say without any doubt that χA(x) = 1 if x is a person 40 or less years old
and χA(x) = 0 if x is a person with older than 40. However, very often we cannot
say for sure if an object belongs to a given set, especially if this set is described
imprecisely or ambiguously, using words common in a natural language. For ex-
ample, in such everyday language the opposite of the word “young” is the word
“old”. Therefore, the classical logic encourages us to split people in two categories:
old and “young”. Although in some cases it would be more or less obvious, e.g.
20 years old person is surely “young”, while 80 years old man would be classified
into the category of “old” persons, sometimes it would be difficult to decide into
which category should belong a person 52 years old. It seems that the answer here
is context dependent.

To overcome problems where the classical logic appears not sufficient to model
situations under study the notion of fuzzy set was introduced by Lotfi Zadeh in
1965.

Definition 1.1. (Zadeh [202]) Let X be a universe of discourse. A fuzzy set A in X
is characterized by a membership function µA : X→ [0,1], which assigns to each
object x ∈X a real number in the interval [0,1], so as µA(x) represents the degree of
membership of x into A.

3



4 1 Fuzzy numbers

Keeping the notations as in the above definition, a fuzzy set A may be perceived
as

A = {(x,µA(x)) : x ∈ X,µA(x) ∈ [0,1]}.

The set of all fuzzy sets in X is denoted with FS(X). If for a fuzzy set A ∈ FS(X)
we have µA(x) = 0 for all x ∈X, then we say that A is an empty set and we write as
usual A = /0. If a set {x ∈X : µA(x)> 0} is finite then the corresponding fuzzy set A
is called a discrete fuzzy set. In this we usually describe fuzzy set A by neglecting
all the elements x ∈ X such that µA(x) = 0. For instance, A ∈ FS(Z) given by

A = {(−3,0.2),(0,0.5),(2,1),(5,0.7),(6,0.3)}

is an example of a discrete fuzzy set.
The interpretation of the grade of membership is very natural: if µA(x) = 1 then

we are sure that element x belongs to A, while in the case when µA(x) = 0 then it
surely does not belong to A. In all other cases, i.e. if µA(x) ∈ (0,1) then we have
a partial membership (or partial belongingness to A). It means that if µA(x) is very
close to 1 then the degree of membership of x in A is very high, while if µA(x) is
very close to 0 then the degree of membership of x in A is very low. If µA(x)∈ {0,1}
for all x ∈ X then the fuzzy set A reduces to a set in the classical meaning. It means
that each “usual” set is a fuzzy set whose membership function coincides with the
characteristic function of that set. In fuzzy set theory such “usual” sets are usually
called crisp sets.

The way we assign a degree of membership strongly depends on our perception
regarding the objects that we are dealing with. It means that the particular shape of a
fuzzy set might be designed in a very subjective way. Sometimes on may also apply
some statistical methods for constructing membership functions (see, e.g. [70]). On
the other hand in engineering, economics and other research areas where fuzzy sets
are used, there are many examples of fuzzy sets with commonly accepted member-
ship functions.

Please note, that since the membership function µA describes completely a cor-
responding fuzzy set A, many authors - to simplify and reduce the notation - denote
the membership function of A by A(x), instead of µA(x).

1.1.2 Basic operations on fuzzy sets

Basic operations on crisp sets (equality, complement, inclusion, union, intersection)
can be extended in a natural way to fuzzy sets. In what follows we list the definitions
of these basic operations (see Zadeh [202]). A more detailed discussion, including
also other approaches, is made in Hanss [125] (see also the references cited there).

Definition 1.2. Let A,B ∈ FS(X).

(i) A and B are equal (and we write A = B) if µA(x) = µB(x) for all x ∈ X.
(ii) A is included in B (and we write A⊆ B) if µA(x)≤ µB(x) for all x ∈ X.
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(iii) The complement of A, denoted ¬A(x), is characterized by the membership
function µ¬A(x) : X→ [0,1] such that

µ¬A(x) = 1−µA(x),

for all x ∈ X.
(iv) The union of A and B, denoted A∪B, is characterized by the membership func-

tion µA∪B : X→ [0,1] given by

µA∪B(x) = max{µA(x),µB(x)}

for all x ∈ X.
(v) The intersection of A and B, denoted A∩B, is characterized by the membership

function µA∩B : X→ [0,1] given by

µA∩B(x) = min{µA(x),µB(x)}

for all x ∈ X.

The above presented operations satisfy some remarkable identities such as De
Morgan’s laws:

¬(A∪B) = ¬A∩¬B

¬(A∩B) = ¬A∪¬B,

associativity:

(A∪B)∪C = A∪ (B∪C)

(A∩B)∩C = A∩ (B∩C),

distributivity:

C∩ (A∪B) = (C∩A)∪ (C∩B),

C∪ (A∩B) = (C∪A)∩ (C∪B)

and commutativity:

A∪B = B∪A

A∩B = B∩A,

which holds for all A,B,C ∈ FS(X). But they do not satisfy the law of contradiction
and the law excluded middle, i.e. there exist A ∈ FS(X) such that A∩¬A 6= /0 and
A∪¬A 6= X.

Apart from these classical operations on fuzzy sets, proposed by Zadeh, there
are many other ways one may generalize operations defined on crisp sets into fuzzy
domain. In fact we may obtain many interesting operations on fuzzy sets using so-
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called t-norms and t-conorms (also called s-norms). For more details we refer the
reader to Section 1.4.2.

1.1.3 Height, core, support and α−cut of a fuzzy set

The height of a fuzzy set A ∈ FS(X) is defined by

hgt(A) = sup
x∈X

µA(x). (1.1)

From Definition 1.1 it is immediate that for any a fuzzy set A we have hgt(A) ≤ 1.
If there exists x0 ∈ X such that hgt(A) = µA(x0) = 1 then A is called normal.

The core of A ∈ FS(X) is denoted by core(A) and is given by

core(A) = {x ∈ X : µA(x) = 1}. (1.2)

It is immediate that core(A) 6= /0 if and only if A is normal.
The support of a fuzzy set A ∈ FS(X) is denoted by supp(A) and represents the

set of all elements of X with a nonzero degree of membership, i.e.

supp(A) = {x ∈ X : µA(x)> 0}. (1.3)

It is easy to check that A 6= /0 if and only if supp(A) 6= /0.
Another notion that plays an important role in the theory of fuzzy sets is the so-

called α-cut. For α ∈ [0,1] the α-cut of a fuzzy set A∈ FS(X), denoted Aα , is given
by

Aα = {x ∈ X : µA(x)≥ α}. (1.4)

It is immediate that A0 = X and A1 = core(A).
It is clear that knowing the membership function od a given fuzzy set we can

find all its α-cuts by formula (1.4). But, what is interesting, knowing all α-cuts of a
fuzzy number we can also reconstruct its membership function.

Lemma 1.1. (see, e.g., Hanss [125], p. 20) If A ∈ FS(X) then

µA(x) = sup
α∈[0,1]

α ·χAα
(x), (1.5)

for every x ∈ X, where χAα
is the characteristic function of the set Aα .

The above result proves that each fuzzy set is completely determined by its
α−cuts. We illustrate this by the following example.

Example 1.1. Let A ∈ FS(R) such that Aα = [α + 1,5−α] for α ∈ [0,1]. By (1.5)
after some elementary calculus we obtain
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µA(x) =


0 if x ∈ (−∞,1]∪ [5,∞),
x+1 if x ∈ [1,2],
1 if x ∈ [2,4],
5− x if x ∈ [4,5].

A membership function of the fuzzy number A is given in Figure 1.1. �

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

α

Fig. 1.1 A membership functions of the fuzzy number A (see Example 1.1).

1.1.4 Convex fuzzy sets

The notion of convexity for fuzzy sets is introduced (see Zadeh [202]) in a way
which allows to preserve the properties of the ordinary convex sets. Convexity is
useful both from the theoretical point of view as well as in practice, especially in
pattern classification, optimization, etc.

Definition 1.3. Let X be a convex subset of a real vector space. We say that A ∈
FS(X) is convex if Aα = {x ∈ X : µA(x) ≥ α} is a convex subset of X for all α ∈
[0,1].

It is immediate that A ∈ FS(X) is convex if and only if the membership function
µA is a quasi-concave function, i.e.

µA(λx1 +(1−λ )x2)≥min{µA(x1),µA(x2)}, (1.6)

for any x1,x2 ∈X and λ ∈ [0,1]. In many textbooks and papers formula (1.6) is used
as a definition of a convex fuzzy set.

The following lemma devoted to the particular case when X= R is useful.

Lemma 1.2. Suppose A∈FS(R) has a continuous membership function and supp(A)
is bounded. Then A is convex if and only if there exist a,b,c ∈R,a≤ c≤ b such that
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a) µA = 0 outside the interval [a,b],
b) µA is nondecreasing on the interval [a,c],
c) µA is nonincreasing on the interval [c,b].

In this way the interpretation of a convex fuzzy set is more clear and, additionally,
we can easily find examples of fuzzy sets that are non-convex.

1.1.5 Extension principle

The extension principle, introduced by Zadeh in [202], allows to extend basic
mathematical concepts for fuzzy quantities. The n-dimensional case of Zadeh’s ex-
tension principle, especially for n = 2, is important because it allows us to extend
operations between real numbers.

Definition 1.4. (see, e.g., Hanss [125], p. 41) Let X1,. . . , Xn, Y be non-empty
sets and let us consider the function f : X → Y where X is the product space
X = X1× . . .×Xn. Furthermore, we consider Ai ∈ FS(Xi) for all i ∈ {1, . . . ,n}.
Using function f we can define a fuzzy set C = f (A1, . . . ,An) ∈ FS(Y) character-
ized by the membership function µC : Y→ [0,1]

µC(y) =

{
sup

(x1,...,xn)∈ f−1(y)
min{µA1(x1), . . . ,µAn(xn)} if y ∈ f (X),

0 otherwise.
(1.7)

The above formula indicates a straightforward way how to extend various opera-
tions defined on crisp sets into fuzzy environment.

Example 1.2. If A,B ∈ FS(Z) are given by

A = {(−1,0.2),(0,0.5),(2,1),(3,0.6),(6,0.2)},
B = {(−2,0.3),(−1,0.5),(0,0.8),(1,1),(3,0.7),(5,0.4)}

and we consider a function f : Z×Z→ Z given by f (x,y) = x+ y then by (1.7) we
get C := f (A,B) = A+B, where

µC(z) = max
x+y=z

min{µA(x),µB(y)},

that is

A+B = {(−3,0.2),(−2,0.3),(−1,0.5),(0,0.5),(1,0.5),(2,0.8),(3,1),
(4,0.6),(5,0.7),(6,0.6),(7,0.4),(8,0.4),(9,0.2),(11,0.2)} .

�
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1.2 Fuzzy numbers - definitions and representations

Fuzzy numbers are fuzzy sets in R which satisfy some additional properties. Since
they generalize real numbers they are basic for theoretical development of fuzzy
set theory (fuzzy analysis, fuzzy differential equations, etc.) and very useful in nu-
merous applications related to the representation and handling of uncertainty and
incomplete information in decision making, linguistic controllers, biotechnological
systems, expert systems, data mining, pattern recognition, etc.

Definition 1.5. (see [85]) A fuzzy number A is a fuzzy set in R which satisfies the
following properties:

(i) A is normal,
(ii) A is convex,

(iii) µA is upper semicontinuous in every x0 ∈ R (i.e. ∀ε > 0,∃δ > 0 such that
µA (x)−µA (x0)< ε , whenever |x− x0|< δ ),

(iv) cl {x ∈ R : µA (x)> 0} is bounded, where cl denotes the closure operator.

A family of all fuzzy numbers will be denoted by F(R).

Example 1.3. A fuzzy set A ∈ FS(R) given by

µA (x) =


0 if x < 0
x2 if 0≤ x < 2
1
2 x2− 7

2 x+6 if 2≤ x < 4
0 if x≥ 4

is a fuzzy number. Its membership function is given in Figure 1.2. �

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

α

Fig. 1.2 A membership functions of the fuzzy number A (see Example 1.3).

Please note that any real number x0 is a fuzzy number with the membership
function equal to the characteristic function χ{x0}. Similarly, any real interval [a,b]
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is a fuzzy number with with the membership function equal to the characteristic
function χ[a,b].

The α-cuts Aα of a fuzzy number A are given by Aα = {x ∈ R : µA(x)≥ α} for
α ∈ (0,1] and A0 = cl {x ∈ R : µA (x)> 0}.

The following result, known as the Stacking Theorem, gives us important infor-
mation about α-cuts.

Theorem 1.1. (Negoiţă-Ralescu [159]) Let A ∈ F(R) with its α-cuts Aα , α ∈ [0,1].
Then

a) Aα is a closed interval, Aα = [AL (α) ,AU (α)], for any α ∈ [0,1],
b) if 0≤ α1 ≤ α2 ≤ 1 then Aα2 ⊆ Aα1 ,
c) for any sequence {αn} which converges from below to α ∈ (0,1] we have⋂

∞
n=1Aαn = Aα ,

d) for any sequence {αn} which converges from above to 0 we have cl (
⋃

∞
n=1Aαn) =

Aα .

The endpoints of each α-cut Aα , α ∈ [0,1], are given by

AL(α) = inf{x ∈ R : µA(x)≥ α} (1.8)
AU (α) = sup{x ∈ R : µA(x)≥ α}. (1.9)

It is easily seen that the following definition of a fuzzy number is equivalent to
Definition 1.5.

Definition 1.6. A fuzzy number A is a fuzzy set characterized by a membership
function µA : R→[0,1] of the form

µA(x) =


0 if x≤ a1,
lA(x) if a1 ≤ x≤ a2,
1 if a2 ≤ x≤ a3,
rA(x) if a3 ≤ x≤ a4,
0 if a4 ≤ x,

(1.10)

where a1,a2,a3,a4 ∈ R, lA : [a1,a2] −→ [0,1] is a nondecreasing upper semicon-
tinuous function, lA(a1) = 0, lA(a2) = 1, called the left side of the fuzzy num-
ber and rA : [a3,a4] −→ [0,1] is a nonincreasing upper semicontinuous function,
rA(a3) = 1,rA(a4) = 0, called the right side of the fuzzy number.

If the sides of the fuzzy number A are strictly monotone then one can see easily
that AL and AU are inverse functions of lA and rA respectively. Moreover, it can be
proved that the functions AL and AU are left continuous.

By (1.5) we can define a fuzzy number using its α-cut representation. Con-
sequently, we obtain the following definition of a fuzzy number introduced by
Goetschel and Voxman in the paper [97].

Definition 1.7. A fuzzy number A is an ordered pair of left continuous functions
AL,AU : [0,1]→ R, which satisfy the following requirements:
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(i) AL is nondecreasing on [0,1],
(ii) AU is nonincreasing on [0,1],

(iii) AL(1)≤ AU (1).

If a fuzzy number A is defined by Definition 1.6 we say that A is given in L-R
form. Otherwise, if A is defined using Definition 1.7, we say that A is given in L-U
form.

Even if Definitions 1.6 and 1.7 are equivalent, we cannot always pass from L-R
representation to L-U representation. This is easily observed since the passing from
L-R representation to L-U requires the calculus of the inverses of the side functions
which cannot always be performed. For this reason, in some situations such like the
approximation of fuzzy numbers we need to use the same type of representation for
all fuzzy numbers.

An important class of fuzzy numbers often used in practice is a family of sym-
metric fuzzy numbers defined as follows.

Definition 1.8. A fuzzy number A is called a symmetric fuzzy number if

AL(1)−AL(α) = AU (α)−AU (1),

for all α ∈ [0,1].

At the end of this section we will discuss about the equality of two fuzzy num-
bers. Due to the fact that most of the main results of the book are in relation with
Lp-type metrics we adopt the following definition.

Definition 1.9. We say that fuzzy numbers A and B are equal (and we denote A = B)
if AL = BL and AU = BU for almost every α ∈ [0,1].

The above definition applies only when we work with Lp-types metrics on the
space of fuzzy numbers.

1.3 Basic families of fuzzy numbers

Many types of fuzzy numbers can be found in the literature. Below we mention
the most important families of fuzzy numbers. Some other types, like the Gaussian
fuzzy numbers or the quadratic fuzzy numbers, which are sometimes successfully
applied in engineering, are considered in e.g. [125].

1.3.1 Crisp fuzzy numbers

We say that the fuzzy number A is a crisp fuzzy number if there exists c ∈
R such that µA(c) = 1 and µA(x) = 0 for all x ∈ R\{c}. It is immediate that
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AL (α) = AU (α) = c, for every α ∈ [0,1]. For simplicity, if A is a crisp fuzzy num-
ber then we usually write A = c. The graph of a such crisp fuzzy number is the pair
(c,1) which suggests the notion of singleton, the other way a crisp fuzzy number
can be called.

If B ∈ F(R) with α-cuts Bα = [BL(α),BU (α)], α ∈ [0,1], and c is a crisp fuzzy
number then the sum B+ c is a fuzzy number with α-cuts

(B+ c)α = [BL(α)+ c,BU (α)+ c].

Crisp fuzzy numbers are the reason why real numbers are particular cases of
fuzzy numbers. It is elementary to find a bijection between the set of real numbers
and the set of crisp fuzzy numbers. For this reason we will make no distinction
between crisp fuzzy numbers and real numbers.

1.3.2 Interval fuzzy numbers

A fuzzy number A is called an interval fuzzy number if there exist the reals a,b ∈
R, a ≤ b, such that µA(x) = 1 for all x ∈ [a,b] and µA(x) = 0 for all x ∈ R\ [a,b].
It is immediate that AL (α) = a and AU (α) = b, for every α ∈ [0,1]. The notation
A = [a,b] used there suggests the terminology of interval fuzzy number. A family of
all interval fuzzy numbers will be denoted by FI .

If B ∈ F(R) with α-cuts Bα = [BL(α),BU (α)], α ∈ [0,1], and A = [a,b] ∈ FI

then A+B is a fuzzy number with α-cuts

(A+B)α = [BL(α)+a,BU (α)+b].

1.3.3 Triangular fuzzy numbers

A fuzzy number A is called a triangular fuzzy number if there exist t1 ≤ t2 ≤ t3
such that

µA(x) =


0 if x < t1,
x−t1
t2−t1

if t1 ≤ x≤ t2,
t3−x
t3−t2

if t2 ≤ x≤ t3,
0 if t3 < x.

(1.11)

Since by (1.11) is represented completely by those three real values t1,t2 and t3, we
usually denote such triangular fuzzy number by A = (t1, t2, t3).

It is easily seen that the α-cuts of such triangular fuzzy number are given by

Aα = [t1 +(t2− t1)α, t3− (t3− t2)α]. (1.12)
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The family of all triangular fuzzy numbers will be denoted by F∆ (R). Since crisp
fuzzy numbers and interval fuzzy numbers can be regarded as particular cases of
triangular fuzzy numbers, we have

R⊂ FI ⊂ F∆ (R).

1.3.4 Trapezoidal fuzzy numbers

A generalization of the triangular fuzzy number is the trapezoidal fuzzy number.
A trapezoidal fuzzy number T is completely determined by four real parameters
t1 ≤ t2 ≤ t3 ≤ t4 such that

µA(x) =


0 if x < t1,
x−t1
t2−t1

if t1 ≤ x≤ t2,
1 if t2 ≤ x≤ t3,
t4−x
t4−t3

if t3 ≤ x≤ t4,
0 if t4 < x.

(1.13)

We use here the notation T = (t1, t2, t3, t4). When t2 = t3, T becomes a triangular
fuzzy number. If t2− t1 = t4− t3 we obtain a symmetric trapezoidal fuzzy number.
One can easily verify that the α-cut of such trapezoidal fuzzy number are given by

Tα = [t1 +(t2− t1)α, t4− (t4− t3)α]. (1.14)

A family of all trapezoidal fuzzy numbers will be denoted with FT (R) and a family
of all symmetric trapezoidal fuzzy numbers will be denoted with FST (R). Finally,
we mention that naturally we have F∆ (R)⊂ FT (R).

A family of trapezoidal fuzzy numbers is the most important subset of fuzzy
sets. It is caused by the simplicity of representation which makes easier all transfor-
mations and calculations made on trapezoidal fuzzy numbers, simplifies computer
applications and usually gives more intuitive and more natural interpretation. This
is also the reason why the trapezoidal approximation of fuzzy numbers is a matter
of great importance. The extensive study of the above mentioned approximation is
given in this monograph.

1.3.5 Semi-trapezoidal fuzzy numbers

The so called parametric fuzzy numbers were introduced in the paper [158] mainly
to generalize the trapezoidal approximation problem. A parametric fuzzy number
of type (sL,sR) is a fuzzy number A with α-cuts Aα = [AL(α),AU (α)] given by
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AL(α) = a−σ(1−α)1/sL , (1.15)

AU (α) = b+β (1−α)1/sR , (1.16)

where a,b,σ ,β ,sL,sR ∈ R, a ≤ b, σ ≥ 0, β ≥ 0, sL > 0, sR > 0. Note that the
condition a ≤ b is imposed in order to obtain a proper parametric fuzzy number.
We use the notation A = (a,b,σ ,β )sL,sR . A membership function of a fuzzy number
A = (2,3,1,2)2,0.5 is given in Figure 1.3.
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Fig. 1.3 A membership functions of a semi-trapezoidal fuzzy number A = (2,3,1,2)2,0.5.

When sL = sR = 1 then A becomes a trapezoidal fuzzy number. A family of all
(sL,sR) fuzzy numbers will be denoted with FsL,sR(R). Recently (see [198]) para-
metric fuzzy numbers are also called semi-trapezoidal fuzzy numbers.

1.3.6 Bodjanova type fuzzy numbers

Another important type of fuzzy numbers were introduced by Bodjanova in [48] to
generalize trapezoidal fuzzy numbers. A membership of a fuzzy number from the
proposed class has the following form

µA(x) =



0 if x < a1,(
x−a1

a2−a1

)r
if a1 ≤ x≤ a2,

1 if a2 ≤ x≤ a3,(
a4−x

a4−a3

)r
if a3 ≤ x≤ a4,

0 if a4 < x,

(1.17)

where a1,a2,a3,a4 ∈ R such that a1 < a2 ≤ a3 < a4 and r > 0. From (1.17) and
(1.13) it is easily seen that for r = 1 we obtain a trapezoidal fuzzy number. A Bod-
janova type fuzzy number is denoted by A = (a1,a2,a3,a4)r. It is immediate that
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α-cuts Aα = [AL(α),AU (α)] of such fuzzy number are given by

AL(α) = a1 +α
1/r(a2−a1),

AU (α) = a4−α
1/r(a4−a3).

A membership function of a fuzzy number A = (−3,−1,1,3)0.4 is given in Figure
1.4.
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Fig. 1.4 A membership functions of a Bodjanova type fuzzy number A = (−3,−1,1,3)0.4.

1.3.7 L-R fuzzy numbers

Another type of fuzzy numbers, that appears broadly in the literature, was intro-
duced by Dubois and Prade [85] and is known as a family of L-R fuzzy numbers.

Definition 1.10. Let L,R : [0,1]→ [0,1] be two continuous strictly increasing func-
tions such that L(0)=R(0)= 0 and L(1)=R(1)= 1. Moreover, consider t1, t2, t3, t4 ∈
R such that t1 ≤ t2 ≤ t3 ≤ t4. Then a fuzzy number A given by

µA(x) =



0 if x < t1,

L
(

x−t1
t2−t1

)
if t1 ≤ x≤ t2,

1 if t2 ≤ x≤ t3,

R
(

t4−x
t4−t3

)
if t3 ≤ x≤ t4,

0 if t4 < x,

(1.18)

is called an L-R fuzzy number.

The set of all L-R fuzzy numbers will be denoted by FL,R(R) and an element
of FL,R(R) as above by A = (t1, t2, t3, t4)L,R. The α-cuts Aα = [AL(α),AU (α)] of a
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fuzzy number (1.18) are given by

AL(α) = t1 +(t2− t1)L−1(α),

AU (α) = t4− (t4− t3)R−1(α).

It is worth noting that if L(x) = R(x) = x, x ∈ [0,1] then FL,R(R) =FT (R).

Example 1.4. Suppose that L(x) = R(x) = x3, x ∈ [0,1] and let t1 = 0, t2 = 2, t3 = 3
and t4 = 5. We obtain

µA(x) =


x3

8 if 0≤ x≤ 2,
1 if 2≤ x≤ 3,( 5−x

2

)3
if 3≤ x≤ 5,

0 if x /∈ [0,5].

Moreover, Aα = [2 3
√

α,5− 3
√

α] for α ∈ [0,1]. A membership function of A is given
in Figure 1.5. �
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Fig. 1.5 A membership functions of the L-R fuzzy number A (see Example 1.4).

1.3.8 Piecewise linear fuzzy numbers

Trapezoidal fuzzy numbers might be generalized also by considering fuzzy numbers
with piecewise linear side functions each consisting of two segments.

Definition 1.11. ([76]) An α0-piecewise linear 1-knot fuzzy number A, where
α0 ∈ (0,1), is a fuzzy number with the following membership function
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µA (x) =



0 if x < a1
α0

x−a1
a2−a1

if a1 ≤ x < a2

α0 +(1−α0)
x−a2

a3−a2
if a2 ≤ x < a3

1 if a3 ≤ x≤ a4

α0 +(1−α0)
a5−x

a5−a4
if a4 < x≤ a5

α0
a6−x

a6−a5
if a4 < x≤ a6

0 if x > a6,

(1.19)

where a1 ≤ ...≤ a6.

A set of all α0-piecewise linear 1-knot fuzzy numbers will be denoted by
Fπ(α0) (R). An element A ∈ Fπ(α0) (R) as above can be denoted as A = (α0,(a1,a2,
a3,a4,a5,a6)), while the α-cuts Aα = [AL(α),AU (α)] of fuzzy number (1.19) are
given by

AL (α) =

{
a1 +(a2−a1)

α

α0
if α ∈ [0,α0) ,

a2 +(a3−a2)
α−α0
1−α0

if α ∈ [α0,1] ,

AU (α) =

{
a5 +(a6−a5)

α0−α

α0
if α ∈ [0,α0) ,

a4 +(a5−a4)
1−α

1−α0
if α ∈ [α0,1] .

A membership function of a fuzzy number A=(0.75,(1,1.5,2,3,4.5,5)) is given
in Figure 1.6.
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Fig. 1.6 A membership functions of the α0-piecewise linear 1-knot fuzzy number A =
(0.75,(1,1.5,2,3,4.5,5)).
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1.4 Operations on fuzzy numbers

1.4.1 Basic standard operations on fuzzy numbers

We start with a very important result which gives sufficient conditions for closed
operations on the set of fuzzy numbers.

Theorem 1.2. (see [42, 93, 160]) Let us consider a continuous function f :Rn→R
and suppose that A1, ...,An are fuzzy numbers. Then Z = f (A1, ...,An) obtained by
the extension principle (1.7) is a fuzzy number. Moreover, we have

Zα = f ((A1)α
,(A2)α

, ...,(An)α
) , α ∈ [0,1].

Note that Nguyen considered only binary operations in the above theorem but by
mathematical induction the above generalization is obvious.

Since fuzzy numbers extend real numbers it would be natural to introduce basic
arithmetic operations such as addition, subtraction, multiplication or division on the
space of fuzzy numbers as well. The natural way is to apply the Zadeh extension
principle given in Definition 1.4. It is interesting that, by considering the α-cut rep-
resentation of fuzzy numbers, we get operations which are strong related with the
corresponding operations in interval analysis (see, e.g., [155, 156]).

Addition of fuzzy numbers
Consider a function f : R2 → R such that f (x,y) = x+ y and take two arbitrary
fuzzy numbers A and B. We denote f (A,B) = A+B and by (1.7) we obtain a fuzzy
set with the following membership function

µA+B(z) = sup
(x,y)∈R2:x+y=z

(min{µA(x),µB(y)}) (1.20)

= sup
x∈R

(min{µA(x),µB(z− x)}) .

We say that A+B is the sum of fuzzy numbers A and B. Since f is continuous, by
Theorem [160] it results that A+B is a fuzzy number with the following α-cuts

(A+B)α = Aα +Bα (1.21)
= [AL(α)+BL(α),AU (α)+BU (α)],

for each α ∈ [0,1]. Therefore, in particular we have supp(A + B) = supp(A) +
supp(B) and core(A+B) = core(A)+ core(B). Please note, that in (1.20) we can
take max instead of sup.

The following two lemmas, although immediate to prove, are useful in practice.

Lemma 1.3. If A and B are trapezoidal fuzzy numbers described as A = (t1, t2, t3, t4)
and B = (s1,s2,s3,s4), respectively, then A+B is also a trapezoidal fuzzy number
and it could be denoted as
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A+B = (t1 + s1, t2 + s2, t3 + s3, t4 + s4) .

Example 1.5. Let us consider two triangular fuzzy numbers (i.e. a particular trape-
zoidal fuzzy numbers) A = (1,2,3) and B = (2,3,4). One can easily find that their
sum A+B = (3,5,7) is also a triangular fuzzy number. Membership functions of A,
B and A+B are given in Figure 1.7. �
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Fig. 1.7 Membership functions of A, B and A+B (see Example 1.5).

Lemma 1.4. If A and B are L-R fuzzy numbers (with fixed L and R) described as
A = (t1, t2, t3, t4)L,R and B = (s1,s2,s3,s4)L,R, respectively, then A+B is also a L-R
fuzzy number and it could be denoted as

A+B = (t1 + s1, t2 + s2, t3 + s3, t4 + s4)L,R .

Subtraction of fuzzy numbers
One may define a subtraction of two fuzzy numbers A and B similarly as their sum.
Finally, we receive that A−B is a a fuzzy number, called the difference of fuzzy
numbers A and B, with the membership function

µA−B(z) = sup
(x,y)∈R2:x−y=z

(min{µA(x),µB(y)}) (1.22)

and the following α-cuts

(A−B)α = Aα −Bα (1.23)
= [AL(α)−BU (α),AU (α)−BL(α)], (1.24)

for each α ∈ [0,1].
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Multiplication of fuzzy numbers
Consider a function f :R2→R such that f (x,y) = x ·y and take two arbitrary fuzzy
numbers A and B. We denote f (A,B) = A ·B and by (1.7) we obtain a fuzzy set with
the following membership function

µA·B(z) = sup
(x,y)∈R2:x·y=z

(min{µA(x),µB(y)}) (1.25)

We say that A ·B is a product of fuzzy numbers A and B, and since f is continuous
it results that A ·B is a fuzzy number with the following α-cuts

Aα = Aα ·Bα (1.26)
=
[
min{AL

α BL
α ,A

L
α BU

α ,A
U
α BL

α ,A
U
α BU

α},
max{AL

α BL
α ,A

L
α BU

α ,A
U
α BL

α ,A
U
α BU

α}
]
,

for each α ∈ [0,1].
Consider the following example showing that contrary to Lemma 1.3 the product

of two trapezoidal fuzzy numbers may be not a trapezoidal one.

Example 1.6. Let us consider two trapezoidal fuzzy numbers A= (1,2,4,6) and B=
(2,4,4,5). One can easily find that their α-cuts are as follows: Aα = [1+α,6−2α]
and Bα = [2+2α,5−α], respectively. Then

(A ·B)α = [1+α,6−2α] · [2+2α,5−α]

= [2+3α +2α
2,30−16α +2α

2].

It is clear that A ·B is not a trapezoidal fuzzy number. �

Division of fuzzy numbers
Consider a function f : R× (Rr{0})→ R such that f (x,y) = x/y, take two fuzzy
numbers A and B, where B is called a nonzero fuzzy number, i.e. 0 /∈ supp(B).
We denote f (A,B) = A/B and by (1.7) we obtain a fuzzy set with the following
membership function

µA/B(z) = sup
(x,y)∈R×(Rr{0}):x/y=z

(min{µA(x),µB(y)}) . (1.27)

We say that A/B is a quotient of fuzzy numbers A and B, and it is a fuzzy
number with the following α-cuts

(A/B)α = Aα/Bα (1.28)
=
[
min{AL

α/BL
α ,A

L
α/BU

α ,A
U
α/BL

α ,A
U
α/BU

α},
max{AL

α/BL
α ,A

L
α/BU

α ,A
U
α/BL

α ,A
U
α/BU

α}
]
,

for each α ∈ [0,1] and B such that 0 /∈ supp(B).
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Scalar multiplication
In the case of fuzzy numbers we distinguish not only multiplication of fuzzy num-
bers as defined in (1.25), but also the so called scalar multiplication, which is easily
obtain from the general multiplication presented earlier. It will suffice to character-
ize this operations only by the α-cut representation. Therefore, if A is an arbitrary
fuzzy number and λ ∈ R then the scalar multiplication between λ and A will be
denoted λ ·A and from (1.26) it results that for any α ∈ [0,1] we have

(λ ·A)
α
= λAα =

{
[λAL (α) ,λAU (α)] if λ ≥ 0,
[λAU (α) ,λAL (α)] if λ < 0. (1.29)

In particular, considering a trapezoidal fuzzy number T = (t1, t2, t3, t4) it results that
λ ·T = (λ t1,λ t2,λ t3,λ t4) if λ ≥ 0 and λ ·T = (λ t4,λ t3,λ t2,λ t1) if λ < 0.

Proposition 1.1. The following equalities hold for any fuzzy A,B,C ∈ F(R) and any
λ ,β ∈ R:

a) A+B = B+A,
b) (A+B)+C = A+(B+C),
c) A+0 = A,
d) 1 ·A = A,
e) λ · (A+B) = λ ·A+λ ·B,
f) λ · (β ·A) = β · (λ ·A) = (λβ ) ·A,
g) A ·B = B ·A,
h) A · (B ·C) = (A ·B) ·C.

It is easy to check that the only fuzzy numbers having opposite elements with re-
spect to the addition of fuzzy numbers are the crisp numbers. Actually, it is evident
that in general the property A+(−A) = 0 does not hold for fuzzy numbers. There-
fore, the triple (F(R),+, ·) is not a vector space. This lack of property causes real
difficulties in some practical situations such as solving fuzzy systems of equations or
when we consider for example the best approximation problem. It is well known that
most of the existence results concerning the best approximation problem are given
in normed vector spaces. However, as it will be seen in Chapter 3, the problem of
approximating fuzzy numbers by fuzzy numbers with simpler form will be reduced
to approximation problems in Hilbert spaces in the case of the L2-type metrics. But
as we look on the above proposition we observe that (F(R),+, ·) is a semilinear
space and therefore by Theorem 5.3 it is very important to notice that there exists a
vector space(F̃(R),⊕,�) and an injective application (inclusion) i : F(R)→ F̃(R)
and, regarding F(R) as a subset of F̃(R) (that is adopting the convention i(A) = A
for all A ∈ F(R)) we have

A⊕B = A+B,

λ �A = λ ·A,

for all A,B ∈ F(R) and λ ∈ [0,∞).
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1.4.2 Interactive operations on fuzzy numbers

In this section we will generalize the extension principle which will alow us to obtain
more general formulas for the addition or multiplication of fuzzy numbers. These
generalizations are important in some applications in which the extension principle
may not give satisfactory results. For example, by Example 1.6 we know that stan-
dard multiplication of fuzzy numbers is not a closed operation. So, we can say that
multiplication is not a shape preserving operations (in this case linear shape). Inter-
estingly, it is possible to define a new formula for the multiplication such that the
linear shape is preserved (see [130]). In order to generalize the extension principle
we need the notion of a triangular norm.

Definition 1.12. (see e.g [99]) A triangular norm (t-norm for short) is a function
T : [0,1]× [0,1]→ [0,1] which satisfies the following properties:

(i) T (x,1) = x, for all x ∈ [0,1] (identity)
(ii) T (x,y) = T (y,x), for all x,y ∈ [0,1] (commutativity)

(iii) T (x,T (y,z)) = T (T (x,y),z), for all x,y,z ∈ [0,1] (associativity)
(iv) if x≤ u and y≤ v then T (x,y)≤ T (u,v), for all x,y,z ∈ [0,1] (monotonicity).

If T1,T2 are triangular norms such that T1(x,y)≤ T2(x,y), for all x,y ∈ [0,1], then
we say that T1 is weaker than T2 (or that T2 is stronger than T1) and we denote
T1 ≤ T2 (or T2 ≥ T1).

Note, that if T is a triangular norm then T (x,x) ≤ T (x,1) = x for any x ∈ [0,1].
Therefore, for any x ∈ [0,1] we have T (0,x) ≤ T (0,1) = 0 and hence T (0,x) = 0
for all x ∈ [0,1].

Let us consider a few examples presenting four famous t-norms.

Example 1.7. Let TM : [0,1]× [0,1]→ [0,1] denote a function defined as follows

TM(x,y) = min{x,y}. (1.30)

It is immediate that TM is a triangular norm. Moreover, if T is an arbitrary trian-
gular norm then T (x,y) ≤ T (x,1) = x and T (x,y) = T (y,x) ≤ T (y,1) = y. Thus
T (x,y)≤min{x,y}= TM(x,y) which implies that T ≤ TM for any triangular norm
T . For this reason TM is called the strongest t-norm. �

Example 1.8. Consider Tw : [0,1]× [0,1]→ [0,1] defined as follows

Tw(x,y) =
{

0 if max{x,y}< 1,
min{x,y} otherwise. (1.31)

It is easily seen that Tw is a triangular norm. Let T be an arbitrary triangular norm
and let us choose x,y ∈ [0,1]. If max{x,y} < 1 then Tw(x,y) = 0 ≤ T (x,y). If
max{x,y}= 1 then x = 1 or y = 1. If x = 1 then T (x,y) = T (1,y) = y≥min{x,y}=
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Tw(x,y). Similarly, if y = 1 then T (x,y)≥ Tw(x,y). Therefore T ≥ Tw for any trian-
gular norm T . For this reason Tw is called the weakest t-norm. �

Example 1.9. Define TL : [0,1]× [0,1]→ [0,1] as follows

TL(x,y) = max{x+ y−1,0}. (1.32)

Then TL is a triangular norm known as the Łukasiewicz t-norm. �

Example 1.10. Define TP : [0,1]× [0,1]→ [0,1] as follows

TP(x,y) = xy. (1.33)

Then TP is a triangular norm known as the product t-norm. �

Let A and B be two arbitrary fuzzy numbers. By (1.20) and (1.30) we can write

(A+B)(z) = sup
x+y=z

(min{µA(x),µB(y)}})

= sup
x+y=z

TM(µA(x),µB(y))

for any z ∈ R. Replacing above TM with an arbitrary triangular norm T we obtain
a generalization of the standard addition called T -norm based addition (see, e.g.,
[94, 127, 139, 152, 153]).

We denote the T -norm based addition of A and B by A⊕T B. The membership
function of the sum A⊕T B is given for any z ∈ R as follows

µA⊕T B(z) = sup
(x,y)∈R2:x+y=z

T (µA(x),µB(y)). (1.34)

It can be proved that A⊕T B is a fuzzy number and in addition, if T is upper semi-
continuous then we can take max instead of sup in (1.34).

Since T ≤TM then A⊕T B≤A+B. This implies that core(A⊕T B)⊆ core(A+B).
On the other hand, if z∈ core(A+B) thus there exist x0 ∈ core(A) and y0 ∈ core(B)
such that x0 + y0 = z. Hence we have

µA⊕T B(z) = sup
x+y=z

T (µA(x),µB(y))

≥ T (A(x0),B(y0)) = T (1,1) = 1.

Therefore, we get core(A+B) ⊆ core(A⊕T B). Thus finally, by the double inclu-
sion we obtain

core(A+B) = core(A⊕T B) . (1.35)
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Similarly, we may define the T -norm based multiplication (see, e.g., [130]) of
A and B, denoted as A�T B, where the membership function of the product A�T B
is given by

µA�T B(z) = sup
(x,y)∈R2:x·y=z

T (µA(x),µB(y)). (1.36)

It is worth noting that Tw is is the only triangular norm which induces a shape
preserving multiplication of L-L fuzzy numbers (it was proved in [130]). Please
notice, that in the case of addition the situation is different. Namely, the standard
addition, i.e.based on the strongest triangular norm TM , always preserves the shape
of L-R fuzzy numbers (see Lemma 1.4). But for an arbitrary triangular norm it may
not hold. Therefore, an interesting problem is to find those triangular norms which
induce a shape preserving addition. Important results concerning this problem can
be found in [127, 139, 153].

Let us now discuss in some sense even more general approach than operations
based on triangular norms. Firstly, let us define a notion of the so called joint possi-
bility distribution.

Definition 1.13. (see [95])Let us consider two arbitrary fuzzy numbers A and B. A
function C : R2→ R is called a joint possibility distribution of A and B if

sup
y∈R

C(x,y) = µA(x)

for all x ∈ R and
sup
x∈R

C(x,y) = µB(y)

for all y ∈ R. We say that A and B are the marginal distributions of C.

If C is upper semicontinuous then we can take operator max instead of sup in the
above definition.

Example 1.11. (see, e.g., [51]) Let us consider two triangular fuzzy numbers A =
(0,0,1) and B = (0,1,1). It can be shown that a function C : R2→ R given by

C(x,y) = (y− x) ·χS(x,y),

where χS denotes the characteristic function of the set S = {(x,y) ∈ R2 : x ≥ 0,y≤
1,y− x≥ 0}, is a joint possibility distribution of A and B. �

It is worth noting that any triangular norm T generates a joint possibility distri-
bution CT of A and B, where

CT (x,y) = T (µA(x),µB(y)). (1.37)

However, there exist joint possibility distributions which cannot be generated by
triangular norms.



1.5 Distances between fuzzy numbers 25

Now we are able to define operations on fuzzy numbers based on a joint pos-
sibility distribution. Actually, an interactive addition of A and B based on their
joint possibility distribution C is denoted A+C B and the sum is described by its
membership function given as follows (see [53])

µA+CB(z) = sup
(x,y)∈R2:x+y=z

C(x,y). (1.38)

The interactive multiplication based on a joint possibility distribution is denoted
by A ·C BA ·C B, where the product A ·C B is a fuzzy set with the following membership
function

µA·CB = sup
(x,y)∈R2:x·y=z

C(x,y). (1.39)

The interactive addition and multiplication from above are obtained using the so
called interactive extension principle which introduced in [53]. Moreover, it can be
proved (see [53]) that both A+C B and A ·C B are fuzzy numbers.

We end this section by mentioning that joint possibility distributions are used in
many problems of rather statistical nature (see [51, 54, 75, 95]) but also in prob-
lems concerning fuzzy arithmetic (see [50, 53, 72, 74]). For example, in paper [53]
the following problem was formulated: “Let C be a joint possibility distribution with
marginal distributions A and B. At what conditions does the equality A+C B = A+B
hold?” It is worth mentioning that the solution, i.e. necessary and sufficient condi-
tions for this equality were given in [72].

1.5 Distances between fuzzy numbers

There are numerous metrics defined on the space of fuzzy numbers. In this sec-
tion we will list only those metrics which are suitable to our investigation on the
approximation of fuzzy numbers.

One of the most popular metric is the so called Euclidean metric (see [101])
given by

d(A,B) =

 1∫
0

(AL(α)−BL(α))2 dα +

1∫
0

(AU (α)−BU (α))2 dα

1/2

. (1.40)

As an application, it is immediate that for two trapezoidal fuzzy numbers T =
(t1, t2, t3, t4) and T ′ = (t ′1, t

′
2, t
′
3, t
′
4), after elementary calculus, we obtain

d2(T,T ′) =
1
3
(t1− t ′1)

2 +
1
3
(t2− t ′2)

2 +
1
3
(t1− t ′1)(t2− t ′2)

+
1
3
(t3− t ′3)

2 +
1
3
(t4− t ′4)

2 +
1
3
(t3− t ′3)(t4− t ′4). (1.41)
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Yeh [199] generalized metric (1.40) considering the weighted L2-type distance
dλ , defined as follows

dλ (A,B) =

 1∫
0

(AL(α)−BL(α))2
λL(α)dα (1.42)

+

1∫
0

(AU (α)−BU (α))2
λU (α)dα

1/2

,

where, in order to obtain indeed a metric, we suppose that weighting functions
λL,λU : [0,1]→R are strictly positive almost everywhere on [0,1] and integrable. If
λL = λU and

∫ 1
0 λL(α)dα = 1/2, we rediscover the metric of Zeng and Li ([204]).

Further on we use the notation λ = (λL,λU ).
More generally, considering p≥ 1 and a weight λ = (λL,λU ), the weighted Lp-

type distance δp,λ is given by

δp,λ (A,B) =

 1∫
0

|(AL(α)−BL(α))|p λL(α)dα (1.43)

1∫
0

|(AU (α)−BU (α))|p λU (α)dα

1/p

.

If λL(α) = λU (α) = 1, α ∈ [0,1], we prefer the notation

dp(A,B) =

 1∫
0

|(AL(α)−BL(α))|p dα +

1∫
0

|(AU (α)−BU (α))|p dα

1/p

. (1.44)

Another class of distances between fuzzy numbers, introduced by Bertoluzza et
al. [46], is given by

D̃ f ,ϕ (A,B) =
(∫ 1

0
D̃2

f (Aα ,Bα)dϕ (α)

)1/2

,

where

D̃2
f ([a,b] , [c,d]) =

∫ 1

0
(t |a− c|+(1− t) |b−d|)2 d f (t) ,

and where f is a normalized weighting measure on [0,1], while function ϕ satisfies
usually the following conditions: ϕ (α) ≥ 0 for any α ∈ [0,1], α1 ≤ α2 implies
ϕ (α1)≤ ϕ (α2) and

∫ 1
0 ϕ (α)dα = 1.

Finally, let us consider the metric proposed by Trutschnig et al. [180] as follows:
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D∗Ψ ,θ (A,B) =
(∫ 1

0
(D∗θ (Aα ,Bα))

2 dΨ (α)

)1/2

, (1.45)

where θ ∈ (0,1], Ψ is a weighting probability measure on [0,1] given by

(D∗θ ([a,b] , [c,d]))
2 = (mid [a,b]−mid [c,d])2 +θ (spr [a,b]− spr [c,d])2 , (1.46)

while operators mid and spr correspond to the middle point of the interval under
study and its spread (the half of its length), respectively, and their are defined as
follows

mid [a1,a2] =
a1 +a2

2
, (1.47)

spr [a1,a2] =
a2−a1

2
. (1.48)

Combining formulae (1.45)–(1.48) and substituting there α-cuts of fuzzy num-
bers A and B we get the following well-known formula for the Trutschnig distance

D∗ψ,θ (A,B) =
(∫ 1

0

(
[midAα −midBα ]

2 +θ [sprAα − sprBα ]
2
)

ψ(α)dα

)2

,

(1.49)
where ψ : [0,1]→ [0,1] is a weighting function. It is worth noting that if ψ ≡ 1 and
θ = 1 then such Trutschnig distance is equivalent with the Euclidean distance, i.e.
D∗1,1(A,B) =

1
2 d(A,B).

1.6 Other notations for fuzzy numbers

Many authors examining fuzzy numbers introduce their own notation which for
some specific reasons seem to be convenient in their considerations. For instance,
given notation may be more easy for a particular type of fuzzy numbers (e.g. trape-
zoidal) or if one works with given type of metrics (say L2-type metrics), while the
same notation may appear troublesome or even inappropriate for another. In this
section we present a new notation for trapezoidal fuzzy numbers introduced by Yeh
in his papers [195] and [199]. Then we show a new notations introduced by Ban
and Coroianu [30] which is convenient for calculations on semi-trapezoidal fuzzy
numbers.

We start with notations for trapezoidal fuzzy numbers which are suitable with the
Euclidean metric d as it will be seen later. One can easily verify that the α-cut of a
trapezoidal fuzzy number T = (t1, t2, t3, t4) can be written as follows

Tα = [l + x(α− 1
2
),u− y(α− 1

2
)]. (1.50)

Therefore, by (1.14) we easily get that
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l =
t1 + t2

2
, (1.51)

u =
t3 + t4

2
, (1.52)

x = t2− t1, (1.53)
y = t4− t3 (1.54)

or, equivalently,

t1 = l− x
2
, (1.55)

t2 = l +
x
2
, (1.56)

t3 = u− y
2
, (1.57)

t4 = u+
y
2
. (1.58)

Hence, a trapezoidal fuzzy number T with the α-cuts given as in (1.50) will be
also denoted as T = [l,u,x,y]. It is easily seen that unlike the traditional notation
describing a fuzzy number by four real numbers corresponding to the borders of its
support and core, our new notation uses four parameters, which indicate the location
of the fuzzy number (l and u) and the spread of its arms (x and y).

Now, if T = [l,u,x,y] and T ′ = [l′,u′,x′,y′] then by (1.40) and (1.50) after some
simple calculations we get

d2(T,T ′) = (l− l′)2 +(u−u′)2 +
1

12
(x− x′)2 +

1
12

(y− y′)2. (1.59)

Clearly, the above expression may be perceived as more convenient than formula
(1.41) because it shows directly that the Euclidean distance between two trapezoidal
fuzzy numbers reduces to the distance between location parameters and character-
istics of spread of those two fuzzy numbers. Other benefits will be seen in Chapter
3 where we investigate the approximations of fuzzy numbers by trapezoidal fuzzy
numbers.

Now let us consider the space of fuzzy numbers endowed with a weighted metric
dλ given by formula (1.42). Let us introduce the following notations:

a =

1∫
0

λL(α)dα, (1.60)

b =

1∫
0

λU (α)dα, (1.61)
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ωL =
1
a

1∫
0

αλL(α)dα, (1.62)

ωU =
1
b

1∫
0

αλu(α)dα, (1.63)

c =
1∫

0

(α−ωL)
2
λL(α)dα, (1.64)

d =

1∫
0

(α−ωU )
2
λU (α)dα. (1.65)

Next, let T be a trapezoidal fuzzy number with α-cuts given by

Tα = [l + x(α−ωL),u− y(α−ωU )],α ∈ [0,1]. (1.66)

Such a trapezoidal fuzzy number will be denoted for simplicity by T = [l,u,x,y]λ
(λ is a generic notation for the pair (λL,λU ).

If T = [l,u,x,y]λ and T ′ = [l′,u′,x′,y′]λ then the weighted distance between T
and T ′ becomes (see Proposition 2.2 in [199])

d2
λ
(T,T ′) = a(l− l′)2 +b(u−u′)2 + c(x− x′)2 +d(y− y′)2. (1.67)

It is easilt seen that formula (1.59) is obtained from (1.67) by taking λL = λU = 1.
Now let us consider a semi-trapezoidal fuzzy number A = (a,b,σ ,β )sL,sR . By

(1.15) and (1.16) we know that AL(α) = a−σ(1−α)1/sL and AU (α) = b+β (1−
α)1/sR for α ∈ [0,1].

In what follows we introduce new notations for semi-trapezoidal fuzzy numbers.
For this purpose let denote AL and AU in the following form

AL(α) = a−σ
sL

sL +1
−σ

(
(1−α)1/sL − sL

sL +1

)
,

AU (α) = b+β
sR

sR +1
+β

(
(1−α)1/sR − sR

sR +1

)
.

We obtain

AL(α) = l− x
(
(1−α)1/sL − sL

sL +1

)
, (1.68)

AU (α) = u+ y
(
(1−α)1/sR − sR

sR +1

)
, (1.69)

which gives us another representation of the semi-trapezoidal fuzzy number A,
where
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l = a−σ
sL

sL +1
,

x = σ ,

u = b+β
sR

sR +1
,

y = β .

Thus a semi-trapezoidal fuzzy number A = (a,b,σ ,β )sL,sR could be represented
equivalently as A = [l,u,x,y]sL,sR . If sL = sR = 1 then we obtain the representation
of a trapezoidal fuzzy number given above so the indices sL,sR might be omitted.

If A = [l,u,x,y]sL,sR and B = [l′,u′,x′,y′]sL,sR then the Euclidean distance between
A and B becomes (see [30], Proposition 2)

d2(A,B) = (l− l′)2 +(u−u′)2 (1.70)

+
sL

(sL +2)(sL +1)2 (x− x′)2 +
sR

(sR +2)(sR +1)2 (y− y′)2

1.7 Characteristics of fuzzy numbers

Besides the membership function and α-cuts some numerical characteristics of
fuzzy numbers are frequently used. They usually describe in a concise way some
specific features of a fuzzy number like its location, dispersion, etc.

The expected interval of a fuzzy number was introduced independently by
Dubois and Prade [87] and Heilpern [126]. It is the following real interval

EI(A) =

 1∫
0

AL(α)dα,

1∫
0

AU (α)dα

 . (1.71)

The expected interval is a very important characteristic of a fuzzy number having
many interesting properties and useful in many situations, like defuzzification or ap-
proximation of fuzzy numbers (see, e.g., Chapter 3). Please, note that EI(A) can also
be regarded as a fuzzy number (more precisely, as an interval-type fuzzy number).

The middle point of the expected interval is called the expected value of the
fuzzy number and is defined as follows

EV (A) =
1
2

 1∫
0

AL(α)dα +

1∫
0

AU (α)dα

 . (1.72)

The expected value of a fuzzy number A is a characteristic of location, i.e. a such a
point that indicates a value which is - in some sense - typical for a fuzzy notion mod-
eled by A (see [87, 126]). Sometimes its generalization, called weighted expected
value, might be interesting (see [101]). It is defined by
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EVq(A) = (1−q)
1∫

0

AL(α)dα +q
1∫

0

AU (α)dα, (1.73)

where q∈ [0,1]. Here, by the appropriate choice of the weight q one may draw more
attention to the left or right side of a fuzzy number under study.

Another characteristic of location of a fuzzy number is called just a value of a
fuzzy number and is defined by the following formula

Vals(A) =
1∫

0

s(α)(AU (α)+AL(α))dα, (1.74)

where s : [0,1]→ [0,1] is a nondecreasing function satisfying s(0) = 0 and s(1) = 1,
called a reducing function (see [81]). More precisely, (1.74) is a value of A with
respect to s.

The ambiguity of A with respect to s is

Ambs(A) =
1∫

0

s(α)(AU (α)−AL(α))dα. (1.75)

The ambiguity of A may be seen as the global spread of the membership func-
tion A with the reducing function s playing a weighting role. Hence ambiguity is a
measure of vagueness of a fuzzy number A.

The value and ambiguity where introduced by Delgado et. all [81] to obtain a new
and simple representation of fuzzy numbers (called a canonical representation)
and to use them in decision-making. Since a value and ambiguity represent basic
features of a fuzzy number, therefore according to Delgado et. all opinion two fuzzy
numbers with the same ambiguity and value might be considered as equal.

If sk(α) = αk for a fixed k ∈ N, α ∈ [0,1], then for simplicity we denote
Valsk(A) =Valk(A) and Ambsk(A) = Ambk(A) and which means that

Valk(A) =
1∫

0

α
k(AU (α)+AL(α))dα, (1.76)

and

Ambk(A) =
1∫

0

α
k(AU (α)−AL(α))dα. (1.77)

The most often used reducing function is sk(α) = α and hence in many paper by
the value and ambiguity one simply considers Amb1(A) = Amb(A) and Val1(A) =
Val(A) i.e.
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Val(A) =
1∫

0

α(AU (α)+AL(α))dα (1.78)

and

Amb(A) =
1∫

0

α(AU (α)−AL(α))dα, (1.79)

respectively.
To describe the spread of the left-hand right-hand of a fuzzy number A with

respect to the expected value, the left-hand ambiguity and right-hand ambiguity
of A were introduced in [109] as follows:

AmbL(A) =
1∫

0

α(EV (A)−AL(α))dα, (1.80)

AmbU (A) =
1∫

0

α(AU (α)−EV (A))dα. (1.81)

Another useful parameter characterizing the nonspecifity of a fuzzy number is
called the width of a fuzzy number (see [55]) and is defined by

w(A) =
1∫

0

(AU (α)−AL(α))dα. (1.82)

One may easily prove that for a fuzzy number A with a membership function µA we
have

w(A) =
∞∫
−∞

µA(x)dx. (1.83)

In what follows we will give an interpretation for the expected interval of a fuzzy
number and also we will generalize this concept. Grzegorzewski [103] proved that
for any fuzzy number A, the expected interval EI(A) is the nearest (with respect to
the Euclidean distance d) interval fuzzy number to A, that is

d(A,EI(A)) = min
B∈FI(R)

d(A,B).

In addition, it can be easily proved that the expected value of A is the nearest (with
respect to the Euclidean distance d) crisp fuzzy number to A, i.e.

d(A,EV (A)) = min
c∈R

d(A,c).
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The above considerations suggests that in the case of a weighted L2-type metric we
should adjust the definition of the expected interval so that the interpretation would
be the same.

Definition 1.14. ([37], Definition 9) Let dλ , λ = (λL,λU ), be a weighted L2-type
metric defined on F(R). For a fuzzy number A the interval

EIλ (A) =

1
a

1∫
0

AL(α)λL(α)dα,
1
b

1∫
0

AU (α)λU (α)dα

 , (1.84)

where a and b are introduced in relations (1.60)-(1.61), is calld the λ -weighted
expected interval of A.

By (1.60) and (1.61) we have

1
a

1∫
0

AL(α)λL(α)dα ≤ 1
a

1∫
0

AL(1)λL(α)dα = AL(1)

≤ AU (1) =
1
b

1∫
0

AU (1)λU (α)dα ≤ 1
b

1∫
0

AU (α)λU (α)dα,

and therefore EIλ (A) is well-defined. The λ -weighted expected value of A is given
by

EV λ (A) =
1

a+b

a
1∫

0

AL(α)λL(α)dα +b
1∫

0

AU (α)λU (α)dα

 .
It can be proved that in the case of the weighted expected interval and weighted

expected value we have the same interpretation with respect to the weighted metric
dλ as in the case of the usual expected interval. The extension of the weighted ex-
pected interval and of the weighted expected value for the case of extended fuzzy
numbers is done in the same way as in the case of the usual ones.

Problems

1.1. Let f : Z→ Z defined as f (x) = x2 +1 and A ∈ FS(Z) given by

A = {(−2,0.5),(−1,0.4),(0,0.7),(1,0.6),(2,0.3),(3,0.6),(4,0.8),(5,0.7)}.

Calculate f (A).

1.2. Prove that a fuzzy set given by
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µA (x) =


0 if x < 0
x2 if 0≤ x < 2
1 if 2≤ x < 4
x2− 21

2 x+27 if 4≤ x < 6
0 if x≥ 6.

is a fuzzy number.

1.3. Let A denote an arbitrary fuzzy number. Prove that for any α ∈ [0,1]

µA(AL(α))≥ α,

µA(AU (α))≥ α.

1.4. Let A denote a continuous fuzzy number. Prove that AL and AU are strictly
monotone and, in addition, we have

µA(AL(α)) = µA(AU (α)) = α,

for all α ∈ [0,1].

1.5. Let us consider a fuzzy set A ∈ FS(R) defined as

µA (x) =



0 if x < 0
2x if 0≤ x < 0.3
0.4x+0.3

0.7 if 0.3≤ x < 1
1 if 1≤ x≤ 2
1.4−0.2x if 2 < x≤ 4
3−0.6x if 4 < x≤ 5
0 if x > 5.

Prove that A is an α0-piecewise linear 1-knot fuzzy number. Make a graph of its
membership function and find its α-cuts.

1.6. Apply Theorem 1.2 to calculate a fuzzy number C = F (A,B) knowing that
f :R×R→R is defined by f (x,y) = x2+y2 while A = (1,2,3)and B = (2,4,5,6).

1.7. Prove that

1∫
0

α
kAL(α)dα =

1
k+1

c−
c∫

a

(A(x))k+1 dx


and

1∫
0

α
kAU (α)dα =

1
k+1

d +

b∫
d

(A(x))k+1 dx

 ,

for any continuous fuzzy number A such that supp(A) = [a,b] and core(A) = [c,d]
and for any k ∈ N.
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1.8. Prove that

EI(A) =

c−
c∫

a

(A(x))dx,d +

b∫
d

(A(x))dx

 ,
Ambk(u) =

1
k+1

·

d− c+
b∫

d

(A(x))k+1 dx+
c∫

a

(A(x))k+1 dx


and

Valk(u) =
1

k+1
·

d + c+
b∫

d

(A(x))k+1 dx−
c∫

a

(A(x))k+1 dx


for every continuous fuzzy number A with supp(A) = [a,c] and core(A) = [d,b].

1.9. Let us consider a fuzzy number A such that supp(A) = [a,b] and core(A) =
[c,d]. If α ∈ µA([a,c]) = Im(lA) then µA(AL(α)) = γ . Similarly, if α ∈ µA([d,b]) =
Im(rA) then µA(AU (α)) = α .

1.10. Let A,B denote two fuzzy numbers. Then it holds that Im(lA) ∪ Im(lB) =
Im(lA+B) and Im(rA)∪ Im(rB) = Im(rA+B).

1.11. Let A denote a fuzzy number with supp(A) = [a,b] and core(A) = [c,d]. If lA
is strictly increasing then AL is continuous. Similarly, if rA is strictly decreasing then
AU is continuous.

1.12. Let us consider A,B ∈ F∆ (R), A = B = (0,0,1) and C : R2 → R, C(x,y) =
(1− x− y)χT (x,y) where χT is the characteristic function of the set T = {(x,y) ∈
R2 : x≥ 0,y≥ 0,x+ y≤ 1}. Prove that C is a joint possibility distribution of fuzzy
numbers A and B respectively and then compute A+C B and A ·C B, respectively.

1.13. Consider A and B as in Problem 1.12. Consider the same requirements as in
Problem 1.12 for the case when C : R2→ R, C(x,y) = (1− x)χS(x,y), where χS is
a characteristic function of the set S = {(x,x) ∈ R2 : x ∈ [0,1]}.

1.14. Now, suppose that µA(x) = µB(x) = (1−x2)χ[0,1](x). Then consider a function
C :R2→R, C(x,y) = (1−x2−y2)χT (x,y), where χT is a characteristic function of
the set T = {(x,y) ∈ R2 : x≥ 0,y≥ 0,x2 + y2 ≤ 1}.

1.15. Suppose that C is joint possibility distribution of fuzzy numbers A and B such
that for any α ∈ [0,1] we have C(AL(α),BL(α)) = α and C(AU (α),BU (α)) = α .
Prove that A+B = A+C B.

1.16. We say that fuzzy number A is weaker than fuzzy number B and we denote
A ≤ B if µA(x) ≤ µA(x) for all x ∈ R. Prove that if A ≤ B then Bα ⊆ Aα for all
α ∈ [0,1]. If in addition A and B are unimodal fuzzy numbers then prove that they
have the same modal value.



36 1 Fuzzy numbers

1.17. Consider two arbitrary fuzzy numbers A and B and suppose that their joint
possibility distribution is C. Prove that A+C B≤ A+B.

1.18. Consider two arbitrary fuzzy numbers A and B and consider an arbitrary trian-
gular norm T . Prove that A⊕T B≤ A+B and core(A⊕T B) = core(A+B).

1.19. Suppose that A and B are symmetric fuzzy numbers. Prove that for any trian-
gular norm T the T -norm based sum A⊕T B is a symmetric fuzzy number.

1.20. Find two symmetric fuzzy numbers A and B and a joint possibility distribution
C such that A+C B is not a symmetric fuzzy number.

1.21. We say that fuzzy numbers A and B have symmetrical opposite sides (see
[75]) if µA(AL(1)−x) = µB(BU (1)+x) and µA(AU (1)+x) = µB(BL(1)−x) for all
x ∈ [0,∞). Then suppose that T is an upper semicontinuous triangular norm strictly
increasing in each argument. Prove that A⊕T B is a symmetric fuzzy number.

1.22. Suppose that T is a triangular norm such that T (x,x) = x for all x ∈ [0,1].
Prove that T = TM .

1.23. Suppose that A and B are continuous fuzzy numbers with strictly monotone
sides. Prove that the strongest norm TM is the unique upper semicontinuous triangu-
lar norm such that A+B = A+TM B.

1.24. For some x ∈ [0,1] and an arbitrary triangular norm T we consider

x(n)T = T (x,x, ...,x) = T
(

x(n−1)
T ,x

)
,n≥ 2.

We say that the triangular norm T is Archimedean (see, e.g., [43]) if lim
n→∞

x(n)T = 0

for any x ∈ (0,1). Prove that a continuous triangular norm is Archimedean if and
only if T (x,x)< x for any x ∈ (0,1).



Chapter 2
Generalized fuzzy numbers

2.1 Intuitionistic fuzzy numbers

The notions of intuitionistic fuzzy set [13, 14] and interval-valued fuzzy set
[100, 131, 170, 203] were introduced as generalizations of the concept of fuzzy set
(Definition 1.1). The intuitionistic fuzzy numbers and interval-valued fuzzy num-
bers are important to quantify an ill-known information, have appealing interpreta-
tions and can be easily employed in applications (see, e.g., [61, 62, 63, 64, 147, 161,
189, 190, 201]).

In the present section we refer to intuitionistic fuzzy numbers (see [107]), which
are particular intuitionistic fuzzy sets and extensions of fuzzy numbers as well.

Definition 2.1. ([13, 14]) Let X 6= /0 be a universe of discourse. An intuitionistic
fuzzy set in X is an object A〈〉 given by

A〈〉 = {〈x,µA (x) ,νA (x)〉 : x ∈ X} ,

where the membership function µA :X→ [0,1] and the non-membership function
νA : X→ [0,1] satisfy the condition

0≤ µA (x)+νA (x)≤ 1,

for every x ∈ X.

The values µA (x) and νA (x) represent the degree of membership and the de-
gree of non-membership of x into A〈〉, respectively. Sometimes, for short, we denote
A〈〉 = 〈µA,νA〉.

Definition 2.2. An intuitionistic fuzzy number is an intuitionistic fuzzy set in R,
A〈〉 = {〈x,µA (x) ,vA (x)〉 : x ∈ R}, such that both µA and 1− vA are fuzzy numbers,
where

(1− vA)(x) = 1− vA (x) , ∀x ∈ R.

37
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A family of all intuitionistic fuzzy numbers will be denoted by F〈〉 (R). It is
obvious that any fuzzy number A = {(x,µA (x)) : x ∈ R} could be represented as the
following intuitionistic fuzzy number: A〈〉 = {〈x,µA (x) ,1−µA (x)〉 : x ∈ R}.

With respect to the α-cuts of the fuzzy number 1− vA the following equalities
are immediate

(1−νA)L (α) = (νA)L (1−α) (2.1)

and
(1−νA)U (α) = (νA)U (1−α) , (2.2)

for every α ∈ [0,1] .

Definition 2.3. A trapezoidal intuitionistic fuzzy number A〈〉 is an intuitionistic
fuzzy number A〈〉= 〈µA,νA〉 such that µA =(a1,a2,a3,a4) and 1−νA =(a1,a2,a3,a4)
are trapezoidal fuzzy numbers.

If a2 = a3 and a2 =a3 in the above definition then A〈〉 is a triangular intuitionistic
fuzzy number. If ai =ai = a, for every i∈ {1,2,3,4}, then A〈〉 can be identified with
the trapezoidal fuzzy number (a,a,a,a), the triangular fuzzy number (a,a,a) or the
real number a.

Remark 2.1. It is immediate that A〈〉 = 〈µA,νA〉, where µA = (a1,a2,a3,a4) and
1− νA = (a1,a2,a3,a4), is a trapezoidal intuitionistic fuzzy number if and only if
a1 ≤ a1,a2 ≤ a2,a3 ≤ a3 and a4 ≤ a4.

Example 2.1. The trapezoidal intuitionistic fuzzy number A = 〈µA,νA〉, such that
µA = (2,4,6,8) and 1−νA = (1,3,7,9), is given in Figure 2.1. �

2 4 6 8

0.
0

0.
4

0.
8

x

α

Fig. 2.1 A representation of the trapezoidal intuitionistic fuzzy number 〈µA,νA〉, where the solid
line stands for µA, while the dash line for 1−νA (see Example 2.1).

A natural extension of the weighted L2-type distance dλ of fuzzy numbers (1.42)
to intuitionistic fuzzy numbers A〈〉 = 〈µA,νA〉 ,B〈〉 = 〈µB,νB〉 is defined as follows
(see [16])
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d̃2
λ
(A〈〉,B〈〉) =

1
2

∫ 1

0
((µA)L (α)− (µB)L (α))2

λL (α)dα

+
1
2

∫ 1

0
((µA)U (α)− (µB)U (α))2

λU (α)dα

+
1
2

∫ 1

0
((vA)L (α)− (vB)L (α))2

λL (α)dα

+
1
2

∫ 1

0
((vA)U (α)− (vB)U (α))2

λU (α)dα.

It is immediate that for any A〈〉 = 〈µA,νA〉 ,B〈〉 = 〈µB,νB〉 ∈ F〈〉 (R)

d̃2
λ
(A〈〉,B〈〉) =

1
2

d2
λ
(µA,µB)+

1
2

d2
λ
(1− vA,1− vB).

If λL (α) = λU (α) = 1 for every α ∈ [0,1] then a metric of Euclidean kind be-
tween intuitionistic fuzzy numbers is obtained, namely

d2(A〈〉,B〈〉) =
1
2

∫ 1

0
((µA)L (α)− (µB)L (α))2 dα

+
1
2

∫ 1

0
((µA)U (α)− (µB)U (α))2 dα (2.3)

+
1
2

∫ 1

0
((vA)L (α)− (vB)L (α))2 dα

+
1
2

∫ 1

0
((vA)U (α)− (vB)U (α))2 dα.

The operations on fuzzy numbers could be naturally extended to the family of
intuitionistic fuzzy numbers. Let A〈〉= 〈µA,νA〉 ,B〈〉= 〈µB,νB〉 ∈F〈〉 (R) and λ ∈R.
We define the addition A〈〉+B〈〉 ∈ F〈〉 (R) by

A〈〉+B〈〉 = 〈µA+B,vA+B〉 ,

where µA+B = µA +µB and where vA+B is given by

1− vA+B = (1− vA)+(1− vB) .

We define the scalar multiplication λ ·A〈〉 ∈ F〈〉 (R) by

λ ·A〈〉 = 〈µλ ·A,vλ ·A〉 ,

where µλ ·A = λ ·µA and where vλ ·A is given by

1− vλ ·A = λ · (1− vA) .

Any characteristic associated with a fuzzy number can be also extended in a
natural way to an intuitionistic fuzzy number A〈〉 = 〈µA,νA〉 as the average of the
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characteristics obtained for µA and 1− vA. In particular, taking into account (2.1)-
(2.2), the counterparts of the characteristics introduced in (1.2), (1.71), (1.72) and
(1.78)-(1.82) determined for any A = 〈µA,νA〉 ∈ F〈〉 (R) are given as follows

EI
(
A〈〉
)
=

[
1
2

∫ 1

0
((µA)L (α)+(vA)L (α))dα, (2.4)

1
2

∫ 1

0
((µA)U (α)+(vA)U (α))dα

]
,

EV
(
A〈〉
)
=

1
4

∫ 1

0
((µA)L (α)+(vA)L (α)+(µA)U (α)+(vA)U (α))dα, (2.5)

w
(
A〈〉
)
=

1
2

∫ 1

0
((µA)U (α)+(vA)U (α)− (µA)L (α)− (vA)L (α))dα, (2.6)

Val
(
A〈〉
)
=

1
2

∫ 1

0
α (µA)U (α)dα +

1
2

∫ 1

0
α (µA)L (α)dα (2.7)

+
1
2

∫ 1

0
(1−α)(vA)U (α)dα +

1
2

∫ 1

0
(1−α)(vA)L (α)dα,

Amb
(
A〈〉
)
=

1
2

∫ 1

0
α (µA)U (α)dα− 1

2

∫ 1

0
α (µA)L (α)dα (2.8)

+
1
2

∫ 1

0
(1−α)(vA)U (α)dα− 1

2

∫ 1

0
(1−α)(vA)L (α)dα,

AmbL
(
A〈〉
)
=
∫ 1

0
α

(
EV
(
A〈〉
)
− 1

2
(µA)L (α)− 1

2
((1− v)A)L (α)

)
dα, (2.9)

AmbU
(
A〈〉
)
=
∫ 1

0
α

(
1
2
(µA)U (α)+

1
2
((1− v)A)U (α)−EV

(
A〈〉
))

dα, (2.10)

core
(
A〈〉
)
=

[
(µA)L (1)+(vA)L (0)

2
,
(µA)U (1)+(vA)U (0)

2

]
. (2.11)

2.2 Interval-valued fuzzy numbers

In this section we consider the interval-valued fuzzy numbers (see, e.g. [188]),
which are extensions of fuzzy numbers and particular interval-valued fuzzy sets
as well.

Definition 2.4. ([83, 128, 129]) Let X 6= /0 be a universe of discourse and [I] =
{[a−,a+] : a− ≤ a+,a−,a+ ∈ [0,1]}. An interval-valued fuzzy set in X is charac-
terized by a mapping A[] : X→ [I], which assigns to each object x ∈ X a closed
interval in [0,1].

Keeping the notations as in the above definition, an interval-valued fuzzy set may
be perceived as
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A[] = {(x, [µA−(x),µA+(x)]) : x ∈ X},

where the ordinary fuzzy sets µA− ,µA+ : X→ [0,1], called the lower fuzzy set of the
interval-valued fuzzy set A[] and the upper fuzzy set of A[], respectively, satisfy

0≤ µA−(x)≤ µA+(x)≤ 1

for any x ∈ X. Sometimes, for short, we use the following notation: A[] = [A−,A+].

Definition 2.5. ([188]) An interval-valued fuzzy number A[] is an interval-valued
fuzzy set in R, A[] = {(x, [µA−(x),µA+(x)]) : x ∈ R}, which satisfies the following
properties:

(i) A[] is normal, that is, there is an x0 ∈ R such that A[] (x0) = [1,1],
(ii) A[] is convex, that is, µA− and µA+ are convex fuzzy sets,

(iii) µA− and µA+ are upper semicontinuous,
(iv) cl {x ∈ R : µA−(x)> 0} and cl {x ∈ R : µA+(x)> 0} are bounded.

A family of all interval-valued fuzzy numbers will be denoted by F[] (R). It is
easily seen that the interval-valued fuzzy set

A[] = {(x, [µA−(x),µA+(x)]) : x ∈ R}

is an interval-valued fuzzy number if and only if A− and A+ are fuzzy numbers.
Therefore, the lower fuzzy number A− and the upper fuzzy number A+ can be rep-
resented as (see 1.10)

A− (x) =


0 if x≤ a−1 ,
lA− (x) if a−1 ≤ x≤ a−2 ,
1 if a−2 ≤ x≤ a−3 ,
rA− (x) if a−3 ≤ x≤ a−4 ,
0 if a−4 ≤ x,

A+ (x) =


0 if x≤ a+1 ,
lA+ (x) if a+1 ≤ x≤ a+2 ,
1 if a+2 ≤ x≤ a+3 ,
rA+ (x) if a+3 ≤ x≤ a+4 ,
0 if a+4 ≤ x,

where a−1 ,a
−
2 ,a

−
3 ,a

−
4 ,a

+
1 ,a

+
2 ,a

+
3 ,a

+
4 ∈ R, lA− :

[
a−1 ,a

−
2

]
→ [0,1], lA+ :

[
a+1 ,a

+
2

]
→

[0,1], rA− :
[
a−3 ,a

−
4

]
→ [0,1] and rA+ :

[
a+3 ,a

+
4

]
→ [0,1] are nondecreasing upper

semicontinuous functions,

lA−
(
a−1
)
= rA−

(
a−4
)
= lA+

(
a+1
)
= rA+

(
a+4
)
= 0,

lA−
(
a−2
)
= rA−

(
a−3
)
= lA+

(
a+2
)
= rA+

(
a+3
)
= 1.

If a−i = a+i , i ∈ {1,2,3,4}, lA− = lA+ and rA− = rA+ then the interval-valued fuzzy
number A[] is a fuzzy number.
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Definition 2.6. ([193]) An interval-valued trapezoidal fuzzy number A[] is an
interval-valued fuzzy number A[] = [A−,A+] such that A− =

(
a−1 ,a

−
2 ,a

−
3 ,a

−
4

)
and

A+ =
(
a+1 ,a

+
2 ,a

+
3 ,a

+
4

)
are trapezoidal fuzzy numbers.

If a−2 = a−3 and a+2 = a+3 in Definition 2.6 then A[] is an interval-valued tri-
angular fuzzy number. If a−i = a+i = a, for every i ∈ {1,2,3,4}, then A[] can be
identified with the trapezoidal fuzzy number (a,a,a,a), the triangular fuzzy number
(a,a,a), or the real number a.

Remark 2.2. It is immediate that
[(

a−1 ,a
−
2 ,a

−
3 ,a

−
4

)
,
(
a+1 ,a

+
2 ,a

+
3 ,a

+
4

)]
is an interval-

valued trapezoidal fuzzy number if and only if a+1 ≤ a−1 ,a
+
2 ≤ a−2 , a−3 ≤ a+3 and

a−4 ≤ a+4 .

Example 2.2. The interval-valued trapezoidal fuzzy number [(1,2,3,5) ,(0,1,4,7)]
is given in Figure 2.2. �

0 2 4 6
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α

Fig. 2.2 A representation of the interval-valued trapezoidal fuzzy number A[], where the dot line
stands for A−, while the dash line for A+ (see Example 2.2).

A natural extension of the weighted L2-type distance dλ between fuzzy num-
bers (see (1.42)) to interval-valued fuzzy numbers A[] = [A−,A+] ,B[] = [B−,B+] is
defined as follows (see [98])

dλ

(
A[],B[]

)
=

1
2

(∫ 1

0

(
A−L (α)−B−L (α)

)2
λL (α)dα

+
∫ 1

0

(
A−U (α)−B−U (α)

)2
λU (α)dα

) 1
2
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+
1
2

(∫ 1

0

(
A+

L (α)−B+
L (α)

)2
λL (α)dα

+
∫ 1

0

(
A+

U (α)−B+
U (α)

)2
λU (α)dα

) 1
2

.

It is immediate that

dλ

(
A[],B[]

)
=

1
2

dλ

(
A−,B−

)
+

1
2

dλ

(
A+,B+

)
,

for every A[],B[] ∈ F[] (R).
The operations on fuzzy numbers (see Section 1.4) could be extended to interval-

valued fuzzy numbers. We exemplify this extension by the scalar multiplication and
addition. For any A[] = [A−,A+] ,B[] = [B−,B+] and λ ∈ R we define

A[]+B[] =
[
A−+B−,A++B+

]
and

λ ·A[] =
[
λ ·A−,λ ·A+

]
.

Problems

2.1. Let A〈〉 = 〈µA,νA〉 and B〈〉 = 〈µB,νB〉 be trapezoidal intuitionistic fuzzy num-
bers such that µA = (2,4,6,8), 1− νA = (1,3,7,9), µB = (0,1,3,4) and νB =

(−1,0,4,5). Compute C〈〉=(−2)·A〈〉+3·B〈〉 and d̃λ

(
A〈〉,B〈〉

)
, where λ =(λL,λU ),

λL (α) = λU (α) = 1,α ∈ [0,1].

2.2. Let A〈〉 = 〈µA,νA〉 be a trapezoidal intuitionistic fuzzy number such that µA =

(2,4,6,8), 1− νA = (1,3,7,9). Compute EI
(
A〈〉
)
, EV

(
A〈〉
)
, w
(
A〈〉
)
, Val

(
A〈〉
)
,

Amb
(
A〈〉
)
, AmbL

(
A〈〉
)
, AmbU

(
A〈〉
)
, core

(
A〈〉
)
.

2.3. Let A[] and B[] be the following interval-valued trapezoidal fuzzy numbers:
A[] = [(0,1,2,3) ,(−2,0,4,5)] and B[] = [(1,2,3,5) ,(0,1,4,7)]. Compute C[] =

(−2) ·A[]+ 3 ·B[] and dλ

(
A[],B[]

)
, where λ = (λL,λU ), λL (α) = λU (α) = 1,α ∈

[0,1].

2.4. Let µA : R→ [0,1] given by

µA (x) =


0 if x≤ 2,√

x−2 if 2≤ x≤ 3,
(4− x)2 if 3≤ x≤ 4,
0 if x≥ 4,

and vA : R→ [0,1] given by



44 2 Generalized fuzzy numbers

νA (x) =


1 if x≤ 1,
2x− x2 if 1≤ x≤ 2,
0 if 2≤ x≤ 3,
1−

√
10−2x

2 if 3≤ x≤ 5,
1 if x≥ 5.

Prove that A〈〉 = 〈µA,vA〉 is an intuitionistic fuzzy number.



Chapter 3
Approximations of fuzzy numbers

3.1 General remarks on approximations of fuzzy numbers

Thousands of scientific paper and practical applications proved that fuzzy set theory
was recognized as an effective tool for modeling and processing imprecise infor-
mation. However, sometimes membership functions representing fuzzy sets are too
complicated for calculations, interpretations and further decision making. Actually,
when operating with fuzzy numbers, the result of calculations strongly depend on
the shape of the membership functions of these numbers. i.e. less regular member-
ship functions lead to more complicated calculations. Moreover, fuzzy numbers with
simpler shape of membership functions often have more intuitive and more natural
interpretation. Hence some approximations of underlying fuzzy numbers are neces-
sary.

The biggest simplification is realized via defuzzification, where a fuzzy num-
ber is reduced to a single point on the real line. Unfortunately, although de-
fuzzification leads to simple structures it results in overmuch loss of informa-
tion. Therefore, interval approximation of a fuzzy set is often advisable (see, e.g.
[55, 103, 104, 105, 113, 167, 168]). In this approach we substitute a given fuzzy set
by interval, which is - in some sense - close to the former one. Interval approxima-
tion is usually simple, effective and well-understood especially in engineering ap-
plications. However, in this type of approximation we still abandon this fundamen-
tal achievement of fuzzy set theory related to gradual distinction between objects
belonging and not belonging to the considered set. Indeed, both defuzzification and
interval approximation divide elements of the universe of discourse into two disjoint
sets of these that belong and those that do not belong to given set.

Thus to perform an approximation that keeps gradual membership we have to
look for families of fuzzy numbers with a relatively simple shape but such their
support do not reduces to their core. Therefore, fuzzy numbers having linear sides
appear immediately as obvious desired candidates. Of course, one may also consider
fuzzy number with nonlinear sides but for the sake of simplicity the trapezoidal or
triangular fuzzy numbers are most common in current applications. As noted by

45
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Trillas: “the problems that arise with vague predicates are less concerned with pre-
cision and are more of a qualitative type; thus they are generally written as linearly
as possible. Normally it is sufficient to use a trapezoidal representation, as it makes
it possible to define them with no more than four parameters” (see [132]). Some
justifications for restricting our attention to fuzzy numbers with linear sides are also
given in [162]. Below, in further sections, we discuss some basic approaches to
trapezoidal approximation which is at present a dominating topic in fuzzy number
approximation.

However, before we consider all these methods in details let us look on trape-
zoidal approximation from different perspectives. Firstly, we may distinguish the
following hierarchy of the simplification methods: defuzzification substituting a
fuzzy number by a single point on the real line could be perceived as an “approxi-
mation of the first kind”. Next, the interval approximation replacing a fuzzy number
by an interval which is completely characterized by two points on the real line,
could be considered as an “approximation of the second kind ”. Then simplifying
of a fuzzy number by a triangular fuzzy number lead to “approximation of the third
kind”and finally, trapezoidal approximation might be treated as an “approximation
of the fourth kind” because arbitrary fuzzy number is reduced to a trapezoidal fuzzy
number which is completely characterized by four points on the real line.

Moreover, trapezoidal approximation could be also perceived as a defuzzifica-
tion step considered in approximate reasoning. Roventa and Spircu [168] proposed
to decompose the defuzzification process in two steps: first replacing a fuzzy set by
a crisp set and then replacing the obtained crisp set by a single value. Ma et al. [149]
also considered two-steps defuzzification via triangular fuzzy numbers. In the spirit
of their paper one may treat trapezoidal approximation as a first step of a three-
stepped defuzzification procedure. Of course, one may ask why to introduce such a
sophisticated form of approximation instead of a direct defuzzification. However, it
is widely known that performing defuzzification to early we lose to much informa-
tion and it is better to process fuzzy information as long as possible. This is the case
why we are looking for simplification to avoid difficulties in computation on the
one hand and we do not want to simplify to much on the other hand. It seems that
trapezoidal approximation is a reasonable compromise between these two opposite
tendencies.

This chapter is organized as follows: firstly we discuss some basic properties that
any desired approximation operator used for fuzzy numbers should possess. Then
we describe basic methods of the interval approximation. Later we consider various
approaches of the trapezoidal approximation of fuzzy numbers. Finally we mention
briefly some other techniques used for simplifying fuzzy numbers.

3.2 Approximation criteria

Suppose we want to approximate a fuzzy number A∈F(R) by another fuzzy number
belonging to fixed subfamily of fuzzy numbers, say FN ⊂ F(R). In this section we
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adopt this general notation FN replaced in subsequent sections by FI in the case
of the interval approximation (since FI is isomorphic with the family of all closed
intervals on the real line), or by F∆ (R) for triangular approximation, or by FT (R)
for the trapezoidal approximation, etc. Thus we need an operator T : F(R)→ FN
which transforms a family of all fuzzy numbers into a assumed subfamily of fuzzy
numbers, i.e. T : A 7−→ T (A).

It is clear that whatever subfamily of fuzzy numbers FN we choose there are
infinitely many approximations methods. Hence immediately a natural question
arises: how to construct a “good” approximation operator? A similar problem ap-
pears, e.g. in statistics, if we want to indicate a good estimator of a parameter under
study. And we know that there is no best estimator in a general sense but everything
depends on the specified criteria and requirements. In estimation theory we have
such desired criteria as consistency, unbiasedness, efficiency, etc. (see, e.g. [146]).
Moreover, we face the same problems in defuzzification (here some criteria for a
“good” defuzzification operator are given in [182, 169]).

Therefore, since any kind of a fuzzy number approximation could be also per-
formed in many ways we propose a number of criteria which the approximation
operator should or just can possess. There are, of course, such criteria which are
desired for some specific subfamilies of fuzzy numbers FN, which is not neces-
sarily longer valid for another type of FN (e.g. if FN = FI we refer the reader to
[55, 103, 104, 105], while if FN = FT (R) then see [116, 117, 118]). However, be-
low we list some requirements that might be considered in a general case.

Definition 3.1. Let d : F(R)→ [0,+∞) denote a metric defined in the family of all
fuzzy numbers. We say that an approximation operator T is continuous if for any
A ∈ F(R)

∀(ε > 0) ∃(δ > 0) d(A,B)< δ ⇒ d(T (A),T (B))< ε. (3.1)

The continuity constraint means if two original fuzzy numbers are close (in some
sense) then their approximations should also be close. Or, in other words, that a
small deviations in the degree of membership function should not result in a big
change in the approximation. The continuity criterion is of extreme importance and
hence discontinuous approximation operators seem unnatural.

Definition 3.2. We say that an approximation operator T is invariant to transla-
tions if for any A ∈ F(R)

T (A+ z) = T (A)+ z ∀z ∈ R. (3.2)

Thus translation invariance means that the relative position of the approximation
remains constant when the membership function is moved to the left or to the right.

Definition 3.3. We say that an approximation operator T is scale invariant if for
any A ∈ F(R)

T (λ ·A) = λ ·T (A) ∀λ ∈ R\{0}. (3.3)
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It is worth noting that for λ =−1 we get, so called, symmetry constraint, which
means that the relative position of the approximation does not vary if the orientation
of the support interval changes.

Definition 3.4. We say that an approximation operator T is monotonic if for any
A,B ∈ F(R)

if A⊆ B then T (A)⊆ T (B). (3.4)

Thus the monotonicity criterion states that inclusion remains invariant under ap-
proximation.

Definition 3.5. We say that an approximation operator T : F(R)→ FN satisfies the
identity criterion if

T (A) = A ∀A ∈ FN. (3.5)

This criterion states that, e.g. a reasonable trapezoidal approximation of a trape-
zoidal fuzzy number is equivalent to that fuzzy number.

Definition 3.6. We say that an approximation operator T : F(R)→ FN satisfies the
nearness criterion with respect to metric d if for any A ∈ F(R)

d(A,T (A))≤ d(A,B) ∀B ∈ FN. (3.6)

In other words, T fulfills the nearness criterion if for any fuzzy number A its
output T (A) is the nearest fuzzy number to A with respect to metric d among all
fuzzy numbers in given subfamily FN.

Several interesting characteristics of fuzzy numbers discussed in Section 1.7.
Some of them, like the expected interval, play a key role in fuzzy number analysis
and applications. This is the reason that the invariance of given characteristic of
fuzzy number might be perceived as a desired property during approximation.

Definition 3.7. Let Θ denote a (real or fuzzy) characteristic of a fuzzy number. We
say that an approximation operator T preserves Θ if for any A ∈ F(R)

Θ(T (A)) =Θ(A). (3.7)

Thus, in particular, we say that operator T fulfills the expected interval invari-
ance if it preserves the expected interval of a fuzzy number, i.e.

EI(T (A)) = EI(A). (3.8)

Similarly, we may consider other invariance criteria connected with such character-
istics like the expected value EV , value Val , ambiguity Amb, width w, etc., just by
substituting Θ in (3.7) by given characteristic. As a particular case of Definition 3.7
we also obtain the α−cut invariance.

Definition 3.8. Let α0 denote any fixed value in the unit interval [0,1]. We say that
an approximation operator T is α0−invariant if for any A ∈ F(R)

(T (A))α0 = Aα0. (3.9)



3.2 Approximation criteria 49

Three such operators are of special interest – for α = 0, α = 0.5 and α = 1.
Indeed, α = 0 – invariant operator preserves the support of a fuzzy number A, i.e.

supp(T (A)) = supp(A). (3.10)

Similarly, α = 1 – invariant operator preserves the core of a fuzzy number A, i.e.

core(T (A)) = core(A), (3.11)

while α = 0.5 – invariant operator preserves a set of values that belong to A to the
same extent as they belong to its complement ¬A.

When we approximate one model with another one, this basically means that we
want to replace one type of information with an equal amount of information of
another type. In other words we want to convert uncertainty of one type to another
while, at the same time, preserving its amount. This expresses the spirit of, so called,
the principle of uncertainty invariance (see [138]). Therefore, it seems desirable that
the output of approximation T (A) of a fuzzy number A should contain the same (or
at least similar) amount of uncertainty as the initial fuzzy number A. Here one can
consider different measures of uncertainty, like: specificity or nonspecificity, etc.
(see [138]).

Definition 3.9. Let I(A) denote a measure of information delivered by a fuzzy num-
ber A. We say that an approximation operator T is preserves information (or is
information invariant with respect to I) if for any A ∈ F(R)

I(A) = I(T (A)). (3.12)

There is often a certain degree of vagueness in estimating a membership func-
tion. Thus, the next criterion of compatibility with the extension principle states that
computing an operation on the approximation of fuzzy numbers using the extension
principle will provide a result close to the result of applying this extended operation
to the fuzzy numbers.

Definition 3.10. Let d : F(R)→ [0,+∞) denote a metric defined in the family of
all fuzzy numbers. We say that an approximation operator T is compatible with
the extension principle if for any A ∈ F(R) and for any operation based on the
extension principle ∗ : F(R)→ F(R) we have

if d(A,T (A))< ε, d(B,T (B))< ε then d(A∗B,T (A)∗T (B))< O∗(ε),
(3.13)

O∗(ε) is vanishing when ε → 0 and is also a function of the operation ∗.

Since all fuzzy arithmetic operations are of that type, this criterion enables op-
erations to be performed with assurance that the validity of the final approximate
result will be at least equal to the validity of the intermediate approximation made.

Everybody knows that there is no unique and natural order in a family of all
fuzzy numbers. Several authors have proposed different methods for ranking fuzzy
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numbers (see [49], [205] for a review of methods). No ranking method is the best
one and it is generally chosen with respect to particular applications (we refer the
reader to Chapter 4 for the detailed discussion). However, a reasonable approxima-
tion operator should preserve the accepted ordering.

Definition 3.11. Let A� B means that A is “greater” than B with respect to ordering
�. Then we say that an approximation operator T is order invariant with respect
to � if for any A ∈ F(R)

A� B⇔ T (A)� T (B). (3.14)

In some applications we are interested in finding the correlation between fuzzy
numbers which describes the relationship between these fuzzy numbers.

Definition 3.12. We say that an approximation operator T is correlation invariant
if for any A ∈ F(R)

ρ(A,B) = ρ(T (A),T (B)), (3.15)

where ρ(A,B) denotes a correlation of two fuzzy numbers.

Now, in the successive sections we will consider various approximation operators
which are in some sense reasonable and useful in applications. They usually pos-
sess more or less those desired properties discussed above. But sometimes they are
designed in such way that some other requirements, not mentioned in this section,
have to be fulfilled.

3.3 Interval approximations of fuzzy numbers

3.3.1 Interval approximation without constraints

Suppose we want to approximate a fuzzy number by a crisp interval. Thus we have
to use an operator T : F(R)→ FI which transforms fuzzy numbers into the family of
all closed intervals on the real line (isomorphic with the family of all interval fuzzy
numbers). Different methods for finding interval approximations of fuzzy sets are
used. The easiest way is to substitute a fuzzy number either by its support

T0(A) = supp(A) (3.16)

or by its core
T1(A) = core(A), (3.17)

but using this methods all information due to fuzziness of the notion under discus-
sion is neglected. Hence probably the best known and the most popular in practice
operator is

T0.5(A) = {x ∈ R : µA(x)≥ 0.5}= A0.5. (3.18)

This operator seems to be a compromise between two extremes T0 and T1. More-
over, it has a quite natural interpretation: any x ∈ R belongs to the approximation
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interval T0.5(A) of a fuzzy number A if and only if its degree of belongingness to A
is not smaller than its degree of belongingness to the complement of A (i.e. ¬A). In
literature operator (3.18) is sometimes called the nearest ordinary set of a fuzzy
set A. However, this simple and natural operator has a very unpleasant drawback –
the lack of continuity (see, e.g. [103]).

Last three methods, i.e. (3.16)-(3.18) are particular cases of the general α−cut
method for obtaining interval approximations of fuzzy numbers

Tα(A) = {x ∈ R : µA(x)≥ α}= Aα , α ∈ (0,1], (3.19)

i.e. we substitute given fuzzy number by its α−cut, where α may be interpreted as
a degree of conviction or acceptability of the imprecise information. Unfortunately
all Tα operators reveal the lack of continuity.

Thus, looking for the interval approximation having some desired properties,
Grzegorzewski [103] tried to find the operator TG : F(R)→ FI which produces for
any A ∈ F(R) the interval nearest to A with respect to the popular Euclidean metric
(1.40), i.e.

TG(A) = argmax
I∈FI

d(I,A). (3.20)

In other words, assuming I = [a,b], we seek the solution of the minimization prob-
lem (in variables a,b)

d([a,b],A)→min (3.21)

subject to a≤ b. It is clear that it suffices to minimize function D(a,b)= d2([a,b],A),
i.e. to find partial derivatives

∂D(a,b)
∂a

= −2
1∫

0

(AL(α)−a)dα =−2
1∫

0

AL(α)dα +2a (3.22)

∂D(a,b)
∂b

= −2
1∫

0

(AU (α)−b)dα =−2
1∫

0

AU (α)dα +2b, (3.23)

equate them with 0, solve the system of equations and check whether we have actu-
ally obtained maximum. Finally, we obtain the following solution that the interval
I = [a,b] nearest to a given fuzzy number A is given by

TG(A) =
[∫ 1

0
AL(α)dα,

∫ 1

0
AU (α)dα

]
. (3.24)

Now, comparing our result (3.24) with (1.71) we obtain the following interesting
corollary.

Corollary 3.1. ([103]) The real interval nearest to a given fuzzy number A with
respect to the Euclidean metric d is its expected interval, i.e. TG(A) = EI(A).

Operator TG possesses many desired properties: it is continuous, invariant to
translation and scale, it preserves the expected interval (by the definition), the ex-
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pected value and the width, etc. It also fulfills two natural requirements

TG(A)⊆ supp(A) (3.25)
core(A)⊆ TG(A) (3.26)

stating that those real values that surely do not belong to A do not appear in its
approximation (see (3.25)) and that none of the points that surely belong to A will
be omitted (see (3.26)).

As it was mentioned above, the main drawback of the commonly used approxi-
mation operator (3.18) is its lack of continuity which may cause problems when the
approximations of two similar fuzzy numbers differ significantly (see [103], Exam-
ple 1). However, in particular cases TG may reduce to T0.5 operator. In particular, the
following theorem might be proved.

Theorem 3.1. ([103]) In the subfamily of trapezoidal fuzzy numbers the interval
approximation operators TG and T0.5 are equivalent, i.e.

TG(A) = T0.5(A) ∀A ∈ FT (R). (3.27)

The interval approximation operator TG satisfies the nearness criterion with re-
spect to the Euclidean distance just by its construction. However, it is worth noting
that TG(A) is also the nearest to A with respect to the Hamming distance among all
the intervals of the same width (see [55]).

Here a natural question arises: What happens if we consider different metrics
instead of the Euclidean one in (3.21)? Let us firstly consider metric dλ given by
(1.42) with arbitrary chosen weight λ = (λL,λU ). Thus now we want to find such
approximation operator Tdλ

that

Tdλ
(A) = argmax

I∈FI
dλ (I,A).

It is rather not surprising that the interval approximation operator Tdλ
satisfying the

nearness criterion with respect to the weighted L2-type metric (1.42), which is a
direct generalization of the Euclidean distance (1.40), is a simple generalization of
operator (3.24) including weights. Indeed, after some calculations we obtain

Tdλ
(A) =

[
1∫ 1

0 λL(α)dα

∫ 1

0
AL(α)λL(α)dα,

1∫ 1
0 λU (α)dα

∫ 1

0
AU (α)λU (α)dα

]
,

(3.28)
and comparing our result with (1.84) we obtain the following corollary.

Corollary 3.2. The real interval nearest to a given fuzzy number A with respect to
the weighted L2-type metric (1.42) with the weight λ is its λ -weighted expected
interval, i.e. Tdλ

(A) = EIλ (A).

Another interesting distance we take into account is the Trutschnig distance
(1.49), quite often used especially in fuzzy statistics. Our problem now is to find
such approximation operator TD∗

ψ,θ
that
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TD∗
ψ,θ

(A) = argmax
I∈FI

D∗ψ,θ (I,A).

A similar reasoning as given before leads us to the following solution (see [113])

TD∗
ψ,θ

(A) =

[
1∫ 1

0 ψ(α)dα

∫ 1

0
AL(α)ψ(α)dα,

1∫ 1
0 ψ(α)dα

∫ 1

0
AU (α)ψ(α)dα

]
.

(3.29)
Looking on (3.29) we get immediately the following conclusion:

Corollary 3.3. ([113]) For any parameter θ ∈ (0,1] the interval approximation op-
erator TD∗

ψ,θ
: F(R)→ FI producing intervals nearest to the input with respect to

Trutschnig distance (1.49) does not depend on θ .

In other words, the interval approximation of a fuzzy number we obtain using
this operator does not depend on the parameter indicating the relative importance
of the spreads against the mids. It means that the interval approximation operator
(3.29) may be no longer denoted as TD∗

ψ,θ
but as TD∗ψ .

It can be proved (see [113]) that the interval approximation operator (3.29) is
invariant to translations and scale, is monotonic and fulfills the identity criterion,
is continuous and preserves some important characteristics like the expected value,
value and ambiguity.

One may also ask about the relationship between TD∗1,θ
and other interval approx-

imation operators discussed in this section. In particular, by (3.29) and (3.28) we get
the following conclusion.

Corollary 3.4. The interval approximation operator TD∗
ψ,θ

coincides with the inter-
val operator Tdλ

nearest to a given fuzzy number A with respect to the weighted
L2-type metric (1.42) with equal weight for both sides, i.e. λL(α) = λU (α) = ψ(α).

The following theorem could be also proved.

Theorem 3.2. ([113]) Let TD∗1,θ
:F(R)→FI denote an interval approximating oper-

ator producing intervals nearest to the input with respect to metric D∗
ψ,θ with equally

weighted α-cuts, i.e. ψ(α) = 1 for each α ∈ (0,1]. Then the interval approximation
operator TD∗1,θ

is equivalent to operator (3.24), i.e. TD∗1,θ
= TG.

Moreover, we get interesting results if the weighting function ψ is linear. The
following theorem holds.

Theorem 3.3. ([113]) Let TD∗
α,θ

denote the interval approximation operator (3.29)
for the linear weighting function ψ(α)=α . Then for any fuzzy number A its interval
approximation TG(A) contains TD∗

α,θ
(A), i.e. TD∗

α,θ
(A)⊆ TG(A).

We can also prove a relationship between approximation operators similar to
those given in Theorem 3.1
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Theorem 3.4. ([113]) Let TD∗
α,θ

denote the interval approximation operator (3.29)
for the linear weighting function ψ(α) = α . Then in the subfamily of trapezoidal
fuzzy numbers the interval approximation operator TD∗

α,θ
is equivalent to the interval

approximation operator (3.19) for α = 2
3 , i.e.

TD∗
α,θ

(A) = T2/3(A) ∀A ∈ FT (R). (3.30)

3.3.2 Interval approximation preserving ambiguity

In previous section we considered the interval approximation of fuzzy numbers un-
der the only requirement of being the nearest to the input with respect to a given
metric. Here we discuss a situation with additional invariance assumption required
together with the nearness criterion.

Because a real interval I = [a,b] can be represented as a fuzzy number with the
α-cuts Iα = [a,b] for every α ∈ [0,1], by (1.79) we get

Amb([a,b]) =
b−a

2
.

Suppose now we are looking for the operator Tamb : F(R)→ FI which produces
for any A ∈ F(R) the interval nearest to A with respect to the popular Euclidean
metric (1.40), which preserves, additionally, the ambiguity of A, i.e.

Tamb(A) = argmax
I∈FI

d(I,A), (3.31)

such that
Amb(Tamb(A)) = Amb(A). (3.32)

Thus, assuming I = [a,b], we seek the solution of the minimization problem

d([a,b],A)→min,

where ∫ 1

0
α(AU (α)−AL(α))dα =

b−a
2

.

The above problem is equivalent to find a,b such that(∫ 1

0
(AL(α)−a)2dα +

∫ 1

0
(AU (α)−b)2dα

)
→min, (3.33)

b−a
2

=
∫ 1

0
α(AU (α)−AL(α))dα (3.34)

a≤ b. (3.35)
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After simple calculations our problem (3.33)-(3.35) reduces to(
2a2 +

(
4
∫ 1

0
αAU (α)dα−4

∫ 1

0
αAL(α)dα

−2
∫ 1

0
AU (α)dα−2

∫ 1

0
AL(α)dα

)
a
)
→min,

b = 2
∫ 1

0
α(AU (α)−AL(α))dα +a

and the following result is immediate

a =
∫ 1

0

(
α +

1
2

)
AL(α)dα +

∫ 1

0

(
−α +

1
2

)
AU (α)dα (3.36)

b =
∫ 1

0

(
−α +

1
2

)
AL(α)dα +

∫ 1

0

(
α +

1
2

)
AU (α)dα. (3.37)

By (1.79) and (1.72) we obtain a nice result:

Theorem 3.5. ([32]) The nearest interval to A ∈ F(R), which preserves the ambi-
guity of A is given by Tamb(A) = [a,b] such that

Tamb(A) = [EV (A)−Amb(A),EV (A)+Amb(A)] . (3.38)

Example 3.1. Consider two fuzzy numbers: A = (1,2,3,4) and B = (1,2,3,4)2,2.
Hence Aα = [1+α,4−α] and Bα = [1+

√
α,4−

√
α]. Using different interval ap-

proximation operators discussed in last two sections we get the following intervals:
TG(A) =

[ 3
2 ,

7
2

]
, TG(B) =

[ 5
3 ,

10
3

]
, Tamb(A) =

[ 5
3 ,

10
3

]
and Tamb(B) =

[ 9
5 ,

16
5

]
. �

3.4 Triangular approximations of fuzzy numbers

Triangular approximation of fuzzy numbers is usually treated as a special case of
the trapezoidal approximation. Here we also do not devote too much time on this
type of approximation restricting ourselves to two particular situations connected
with the approximation under some specific restrictions.

Firstly let us mention an interesting paper by Ma et al. [149] where the triangular
approximation is considered as a step of the defuzzification. The basic idea of the
method suggested in [149] is to obtain a symmetric triangular fuzzy number nearest
to the fuzzy quantity under study. Although so defined problem exceeds our interests
(indeed, generally a fuzzy quantity might not be a fuzzy number), we describe it here
in a way suitable to our context.

Let us consider a fuzzy number A. Our goal is to find a symmetric triangular
fuzzy number T (A) such that T (A) = (t1, t2, t3), where t3− t2 = t2− t1 > 0, which
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minimizes the Euclidean distance between A and T (A). Thus we seek the solution
of the minimization problem

d((t1, t2, t3),A)→min,

where
t3− t2 = t2− t1 > 0,

which is equivalent to finding x0 := t2 and δ := t3− t2 = t2− t1 > 0 such that

D(x0,δ ) =

(∫ 1

0
(AL(α)− x0−σ +σα)2dα (3.39)

+
∫ 1

0
(AU (α)− x0 +σ −σα)2dα

)
→min .

After simple algebra we get the following solution:

x0 =
1
2

∫ 1

0
(AL(α)+AU (α))dα (3.40)

σ =
3
2

∫ 1

0
(AU (α)−AL(α))(1−α)dα (3.41)

Looking on the problem from the perspective of defuzzification the suggested ap-
proach delivers not only a desired real value (i.e. x0) but also provides an index to
determine the fuzziness of the original quantity (i.e. σ ).

By (1.72) (1.79) and (1.82) we obtain the following result:

Theorem 3.6. A symmetric triangular fuzzy number nearest to A ∈ F(R) with re-
spect to the Euclidean distance is given by T (A) = (t1, t2, t3) such that

t1 = EV (A)− 3
2
(w(A)−Amb(A)) (3.42)

t2 = EV (A) (3.43)

t3 = EV (A)+
3
2
(w(A)−Amb(A)). (3.44)

An approximation of fuzzy numbers by triangular fuzzy numbers preserving am-
biguity was considered by Ban and Coroianu [32]. They proved, in particular, the
following theorem.

Theorem 3.7. ([32]) The nearest (with respect to the Euclidean distance) symmetric
triangular fuzzy number preserving ambiguity of the fuzzy number A is given by
T (A) = (t1, t2, t3) such that

t1 = EV (A)−3Amb(A) (3.45)
t2 = EV (A) (3.46)
t3 = EV (A)+3Amb(A). (3.47)
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For the details, we refer the reader to [22, 32].

3.5 Trapezoidal approximations of fuzzy numbers

3.5.1 Trapezoidal approximations preserving expected interval

This section is devoted to trapezoidal approximation of fuzzy numbers, which un-
doubtedly plays the central role among various approaches to fuzzy number ap-
proximation. It is so because, as it was mentioned in Section 3.1, trapezoidal fuzzy
numbers form a reasonable compromise between complexity and simplicity in dif-
ferent aspects including data processing and management, calculations, applications
and interpretation of fuzzy notions.

Suppose we want to approximate a fuzzy number by a trapezoidal fuzzy number.
Thus we need an operator T : F(R)→ FT (R) which transforms a family of all fuzzy
numbers into a family of trapezoidal fuzzy numbers, i.e. T : A 7−→ T (A).

It is clear that one can approximate a fuzzy number by a trapezoidal one in in-
finite number of ways. For example, the simplest idea is to substitute a fuzzy num-
ber A by T (A) = (t1, t2, t3, t4) designed by the borders of the support and core, i.e.
t1 = infsupp(A), t2 = infcore(A), t3 = supcore(A) and t4 = supsupp(A). However,
as it was motivated in Section 3.2, a suitable approximation operator should possess
some desired properties and fulfill some necessary and minimal requirements. Del-
gado et al. [81] in their paper also claim that the approximation should preserve at
least some parameters of the original fuzzy number. It was shown in many paper that
the approximation operator that guarantees many desired properties can be obtained
as the operator T which produces a trapezoidal fuzzy number T (A) that is closest
with respect to given distance to the original fuzzy number A among all trapezoidal
fuzzy numbers having identical expected interval as the original one. It is so since
the invariance of the expected interval often implies many other advantages.

Thus our goal is to find the operator T : F(R)→ FT (R) which produces for any
A ∈ F(R) a trapezoidal fuzzy number T (A) nearest to A with respect to the popular
Euclidean metric (1.40), i.e.

T (A) = arg max
B∈FT (R)

d(B,A) (3.48)

such that
EI(T (A)) = EI(A). (3.49)

The above mentioned problem was suggested firstly in [115, 117], developed in
[118] and considered also in [119]. Its proper final solution containing four possible
operators Ti(A) = Ti(t1, t2, t3, t4), i = 1, . . . ,4, was proposed independently in [17,
108, 195]. Let us formulate this solution as the following theorem.
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Theorem 3.8. The nearest trapezoidal approximation operator preserving expected
interval is such operator T : F(R)→ FT (R) which for any fuzzy number A assigns
the trapezoidal fuzzy number T (A) = T (t1, t2, t3, t4) as follows

(a) if Amb(A)≥ 1
3 w(A) then

t1 =−6
∫ 1

0
αAL (α) dα +4

∫ 1

0
AL (α) dα, (3.50)

t2 = 6
∫ 1

0
αAL (α) dα−2

∫ 1

0
AL (α) dα, (3.51)

t3 = 6
∫ 1

0
αAU (α) dα−2

∫ 1

0
AU (α) dα, (3.52)

t4 =−6
∫ 1

0
αAU (α) dα +4

∫ 1

0
AU (α) dα; (3.53)

(b) if Amb(A)< 1
3 w(A) and EV1

3
(A)≤Val(A)≤ EV2

3
(A) then

t1 = 3
∫ 1

0
AL(α)dα−3

∫ 1

0
αAL (α) dα−3

∫ 1

0
αAU (α) dα +

∫ 1

0
AU (α)dα,

(3.54)

t2 = t3 = 3
∫ 1

0
αAL (α) dα +3

∫ 1

0
αAU (α) dα−

∫ 1

0
AL(α)dα−

∫ 1

0
AU (α)dα,

(3.55)

t4 = 3
∫ 1

0
AU (α)dα−3

∫ 1

0
αAL (α) dα−3

∫ 1

0
αAU (α) dα +

∫ 1

0
AL(α)dα;

(3.56)

(c) if Amb(A)< 1
3 w(A) and Val(A)< EV1

3
(A) then

t1 = t2 = t3 =
∫ 1

0
AL(α)dα, (3.57)

t4 = 2
∫ 1

0
AU (α)dα−

∫ 1

0
AL(α)dα; (3.58)

(d) if Amb(A)< 1
3 w(A) and Val(A)> EV2

3
(A) then

t1 = 2
∫ 1

0
AL(α)dα−

∫ 1

0
AU (α)dα, (3.59)

t2 = t3 = t4 =
∫ 1

0
AU (α)dα. (3.60)

Proof. As T (A) = (t1, t2, t3, t4) is a trapezoidal fuzzy number, its α-cuts have a fol-
lowing form [t1 +(t2− t1)α, t4− (t4− t3)α], where α ∈ (0,1]. Therefore, we have
to minimize
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d(A,T (A)) =

=

√∫ 1

0
[AL(α)− (t1 +(t2− t1)α)]2 dα +

∫ 1

0
[AU (α)− (t4− (t4− t3)α)]2 dα,

with respect to t1, t2, t3, t4. Moreover, we are looking for such operator satisfying the
expected invariance condition (3.49) which, by (1.71), we can rewrite as follows[

t1 + t2
2

,
t3 + t4

2

]
=

[∫ 1

0
AL(α)dα,

∫ 1

0
AU (α)dα

]
.

Finally, we have to assure that the output would be indeed a trapezoidal fuzzy num-
ber, i.e. t1 ≤ t2 ≤ t3 ≤ t4. Last requirement might be expressed by the following
inequalities

t1− t2 ≤ 0,
t2− t3 ≤ 0,
t3− t4 ≤ 0.

It is easily seen that it suffices to minimize a function f (t) = f (t1, t2, t3, t4) =
d2(A,T (A)). Thus, to sum up, we wish to minimize function

f (t) =
1∫

0

[AL(α)− (t1 +(t2− t1)α)]2 dα +

1∫
0

[AU (α)− (t4− (t4− t3)α)]2 dα

subject to

h(t) =
[

t1 + t2−2
∫ 1

0
AL(α)dα, t3 + t4−2

∫ 1

0
AU (α)dα

]T

= 0T ,

g(t) = [t1− t2, t2− t3, t3− t4]≤ 0,

where t ∈ R4.
By the Karush-Kuhn-Tucker theorem, if t∗ is a local minimizer for the problem

of minimizing f subject to h(t) = 0 and g(t) ≤ 0, then there exist the Lagrange
multiplier vector λ and the Karush-Kuhn-Tucker multiplier ξ such that

∇ f (t∗)+λ
T

∇h(t∗)+ξ
T

∇g(t∗) = 0T , (3.61)

ξ
T g(t∗) = 0, (3.62)

ξ ≥ 0. (3.63)

In our case, after some calculations, we get
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∇ f (t∗) =
[

2
3

t1 +
1
3

t2 +2
∫ 1

0
αAL (α) dα−2

∫ 1

0
AL (α) dα,

1
3

t1 +
2
3

t2−2
∫ 1

0
αAL (α) dα,

2
3

t3 +
1
3

t4−2
∫ 1

0
αAU (α) dα,

1
3

t3 +
2
3

t4 +2
∫ 1

0
αAU (α) dα,

2
3

t3−2
∫ 1

0
αAU (α) dα

]
,

∇h(t∗) =
[

1 1 0 0
0 0 1 1

]
,

∇g(t∗) =

1 −1 0 0
0 1 −1 0
0 0 1 −1

 .
Therefore, we can rewrite the Karush-Kuhn-Tucker conditions in a following

way

2
3

t1 +
1
3

t2 +2
∫ 1

0
αAL (α) dα−2

∫ 1

0
AL (α) dα +λ1 +ξ1 = 0, (3.64)

1
3

t1 +
2
3

t2−2
∫ 1

0
αAL (α) dα +λ1−ξ1 +ξ2 = 0, (3.65)

2
3

t3 +
1
3

t4−2
∫ 1

0
αAU (α) dα +λ2−ξ2 +ξ3 = 0, (3.66)

1
3

t3 +
2
3

t4 +2
∫ 1

0
αAU (α) dα−2

∫ 1

0
AU (α) dα +λ2−ξ3 = 0, (3.67)

t1 + t2−2
∫ 1

0
AL(α)dα = 0, (3.68)

t3 + t4−2
∫ 1

0
AU (α)dα = 0, (3.69)

ξ1(t1− t2) = 0, (3.70)
ξ2(t2− t3) = 0, (3.71)
ξ3(t3− t4) = 0, (3.72)

ξ1 ≥ 0, (3.73)
ξ2 ≥ 0, (3.74)
ξ3 ≥ 0. (3.75)

To find points that satisfy the above conditions, we first try ξ1 = ξ2 = ξ3 = 0.
Then the system of equations (3.64)-(3.75) reduces to following six linear equations
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2
3

t1 +
1
3

t2 +2
∫ 1

0
αAL (α) dα−2

∫ 1

0
AL (α) dα +λ1 = 0,

1
3

t1 +
2
3

t2−2
∫ 1

0
αAL (α) dα +λ1 = 0,

2
3

t3 +
1
3

t4−2
∫ 1

0
αAU (α) dα +λ2 = 0,

1
3

t3 +
2
3

t4 +2
∫ 1

0
αAU (α) dα−2

∫ 1

0
AU (α) dα +λ2 = 0,

t1 + t2−2
∫ 1

0
AL(α)dα = 0,

t3 + t4−2
∫ 1

0
AU (α)dα = 0.

Solving the above equations we obtain

t1 =−6
∫ 1

0
αAL (α) dα +4

∫ 1

0
AL (α) dα, (3.76)

t2 = 6
∫ 1

0
αAL (α) dα−2

∫ 1

0
AL (α) dα, (3.77)

t3 = 6
∫ 1

0
αAU (α) dα−2

∫ 1

0
AU (α) dα, (3.78)

t4 =−6
∫ 1

0
αAU (α) dα +4

∫ 1

0
AU (α) dα, (3.79)

λ1 = 0,
λ2 = 0.

Now suppose ξ2 = ξ3 = 0 and ξ1 > 0, which by (3.70) and (3.68) implies

t1 = t2 =
∫ 1

0
AL(α)dα. (3.80)

Substituting (3.80) into (3.64) and (3.65) we get

λ1 = 0,

ξ1 =
∫ 1

0
AL(α)dα−2

∫ 1

0
αAL (α) dα.

However, it is not difficult to see that inequality
∫ 1

0 AL(α)dα−2
∫ 1

0 αAL (α) dα >
0 does not hold in general which contradicts the assumption that ξ1 > 0. Hence, there
is no solution for ξ2 = ξ3 = 0 and ξ1 > 0. In a similar way one may conclude that
assuming ξ2 = 0 the solution exists if and only if both ξ1 = 0 and ξ3 = 0.

Now let us suppose that ξ2 > 0. Thus by (3.71) we get immediately t2 = t3.
Assume firstly that ξ1 = ξ3 = 0. The system of equations (3.64)-(3.75) reduces to
following six linear equations:
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2
3

t1 +
1
3

t2 +2
∫ 1

0
αAL (α) dα−2

∫ 1

0
AL (α) dα +λ1 = 0,

1
3

t1 +
2
3

t2−2
∫ 1

0
αAL (α) dα +λ1 +ξ2 = 0,

2
3

t2 +
1
3

t4−2
∫ 1

0
αAU (α) dα +λ2−ξ2 = 0,

1
3

t2 +
2
3

t4 +2
∫ 1

0
αAU (α) dα−2

∫ 1

0
AU (α) dα +λ2 = 0,

t1 + t2−2
∫ 1

0
AL(α)dα = 0,

t2 + t4−2
∫ 1

0
AU (α)dα = 0.

Solving the above system of equations we get

t1 = 3
∫ 1

0
AL(α)dα−3

∫ 1

0
αAL (α) dα−3

∫ 1

0
αAU (α) dα +

∫ 1

0
AU (α)dα,

(3.81)

t2 = t3 = 3
∫ 1

0
αAL (α) dα +3

∫ 1

0
αAU (α) dα−

∫ 1

0
AL(α)dα−

∫ 1

0
AU (α)dα,

(3.82)

t4 = 3
∫ 1

0
AU (α)dα−3

∫ 1

0
αAL (α) dα−3

∫ 1

0
αAU (α) dα +

∫ 1

0
AL(α)dα,

(3.83)

λ1 =
1
3

∫ 1

0
AL(α)dα−

∫ 1

0
αAL (α) dα +

∫ 1

0
αAU (α) dα− 1

3

∫ 1

0
AU (α)dα,

λ2 =−
1
3

∫ 1

0
AL(α)dα +

∫ 1

0
αAL (α) dα−

∫ 1

0
αAU (α) dα +

1
3

∫ 1

0
AU (α)dα,

ξ2 = 2
∫ 1

0
αAL (α) dα−2

∫ 1

0
αAU (α) dα− 2

3

∫ 1

0
AL(α)dα +

2
3

∫ 1

0
AU (α)dα.

(3.84)

However, by the assumption that ξ2 > 0 and (3.84), we have a legitimate solution
to the Karush-Kuhn-Tucker conditions if and only if

1
3

(∫ 1

0
AU (α)dα−

∫ 1

0
AL(α)dα

)
>
∫ 1

0
αAU (α)dα−

∫ 1

0
αAL(α)dα (3.85)

and then we get a solution t = (t1, t2, t3, t4), given by (3.81)-(3.83).
Now let us consider a situation when not only ξ2 > 0 but also ξ1 > 0 and still

ξ3 = 0. Then by (3.68)-(3.71) we get immediately

t1 = t2 = t3 =
∫ 1

0
AL(α)dα (3.86)
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and

t4 = 2
∫ 1

0
AU (α)dα−

∫ 1

0
AL(α)dα. (3.87)

Thus we get another solution t = (t1, t2, t3, t4), given by (3.86)-(3.87), provided
ξ2 > 0, i.e. if inequality (3.85) holds, and

ξ1 =
2
3

∫ 1

0
AL(α)dα +

1
3

∫ 1

0
AL(α)dα−

∫ 1

0
α(AL(α)+AU (α))dα > 0. (3.88)

We may also consider another situation when ξ2 > 0, ξ3 > 0 and ξ1 = 0 which
leads to the fourth solution

t1 = 2
∫ 1

0
AL(α)dα−

∫ 1

0
AU (α)dα, (3.89)

t2 = t3 = t4 =
∫ 1

0
AU (α)dα, (3.90)

which holds provided inequalities (3.85) and

ξ3 =
∫ 1

0
α(AL(α)+AU (α))dα− 1

3

∫ 1

0
AL(α)dα− 2

3

∫ 1

0
AU (α)dα > 0 (3.91)

are fulfilled.
Finally one may ask what happen if ξ1 > 0, ξ2 > 0 and still ξ3 > 0. But it is seen

immediately that this situation has no sense.
Now we have to verify that all our solutions t = (t1, t2, t3, t4) satisfy the second-

order sufficient conditions. For this we form a matrix

L(t,λ ,ξ ) = ∇
2 f (t)+ [λ∇

2h(t)]+ξ ∇
2g(t), (3.92)

where [λ∇2h(t)] = λ1∇2h1(t) + λ2∇2h2(t) and ∇2hi(t) is the Hessian of hi(t).
One check easily that for our four solutions t we have yT L(t,λ ,ξ )y > 0 for all
vectors y in the tangent space to the surface defined by active constraints, i.e.
{y : ∇h(t)y = 0,∇2g(t)y = 0}.

Therefore, we conclude that we have received four different solutions which lead
to the nearest trapezoidal fuzzy number that preserves the expected value of the
original fuzzy number. Theses solutions are the outputs of four different trapezoidal
approximation operators: Ti(A) = Ti(t1, t2, t3, t4), i = 1,2,3,4, where T1 denotes the
approximation operator given by (3.50)-(3.53) that lead to a trapezoidal (but not tri-
angular) fuzzy number, T2 stands for the operator given by (3.54)-(3.56) that leads to
triangular fuzzy number with two sides, T3 given by (3.57)-(3.58) produces a trian-
gular fuzzy number with the right side only and T4 given by (3.59)-(3.60) produces
a triangular fuzzy number with the left side only. Which one should be used in a
particular situation depends on a given fuzzy number, i.e. it depends on conditions
(3.85), (3.88) and (3.91) that seem to be very artificial and technical. To make them
more clear and to get a better interpretation of those conditions.

Firstly, let us notice that by (1.79) and (1.82) we can rewrite condition (3.85) as
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Amb(A)<
1
3

w(A). (3.93)

It corresponds to situations when we approximate A by a triangular fuzzy number.
It means that for less vague fuzzy numbers the solution is always a triangular fuzzy
number.

Now the proper choice of the operator (T2, T3 or T4) depends also on the loca-
tion of the typical value of the fuzzy number. In particular, using the notion of the
weighted expected value (1.73) for q = 1

3 and the so-called value of a fuzzy number
(1.78), we can rewrite condition (3.88) in a following way

Val(A)< EV1
3
(A).

It might be interpreted in such a way that a fuzzy number with a slight ambiguity
and which typical value is located closely to the left border of its support would be
approximated by a trapezoidal fuzzy number with the right side only, produced by
the operator T3.

Similarly, substituting the value of a fuzzy number (1.78) and the weighted ex-
pected value (1.73) for q = 2

3 in (3.91) we get

Val(A)> EV2
3
(A),

which means that a fuzzy number with a slight ambiguity and which typical value
is located closely to the right border of its support would be approximated by a
trapezoidal fuzzy number with the left side only, produced by the operator T4. All
other fuzzy numbers with a slight ambiguity, i.e. satisfying (3.93), but simultane-
ously neither too skew to the left nor to the right, would be approximated by the
operator T2.

On the other hand, more vague fuzzy numbers A satisfying the inverse of (3.93),
i.e.

Amb(A)≥ 1
3

w(A),

will be approximated by the operator T1 leading to trapezoidal but not triangular
fuzzy numbers. This ends the proof. �

To sum up we get a following algorithm for computing the nearest trapezoidal
approximation preserving the expected interval.

Algorithm 1 For any A ∈ F(R)

Step 1. If Amb(A)≥ 1
3 w(A) then apply operator T1 given by (3.50)-(3.53), else

Step 2. if EV1
3
(A) ≤ Val(A) ≤ EV2

3
(A) then apply operator T2 given by (3.54)-

(3.56), else
Step 3. if Val(A)< EV1

3
(A) then apply operator T3 given by (3.57)-(3.58), else
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Step 4. apply operator T4 given by (3.59)-(3.60).

Let us now consider some examples illustrating different possible situations de-
scribed in Theorem 3.8.

Example 3.2. Suppose a fuzzy number A has the following membership function

µA (x) =
{

1− x2 if −1≤ x≤ 1,
0 otherwise.

It can be shown that Amb(A) = 8
15 > 1

3 w(A) = 4
9 . Thus we apply the trapezoidal

approximation operator T1(A) given by (3.50)–(3.53) and we get a trapezoidal fuzzy
number T1(A) = (− 16

15 ,−
4

15 ,
4
15 ,

16
15 ). Membership functions of A and its trapezoidal

approximation T1(A) are given in Figure 3.1.
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Fig. 3.1 Membership functions of A and its trapezoidal approximation T1(A), see Example 3.2.

Example 3.3. Let us consider a fuzzy number A with membership function

µA (x) =

 (x+1)2 if −1≤ x≤ 0,
(1− x)2 if 0≤ x≤ 1,
0 otherwise.

One can easily see that Amb(A)= 1
5 <

1
3 w(A)= 2

9 . Moreover, since A is symmetrical
around zero we get immediately Val(A) = 0, while EV2

3
(A) = 1

9 and EV1
3
(A) =− 1

9 .
Theorem 3.8, (b) is applicable, so the nearest trapezoidal approximation is given by
(3.54)-(3.56). Finally we obtain a trapezoidal fuzzy number T2(A) = (− 2

3 ,0,0,
2
3 ).

Membership functions of A and its trapezoidal approximation T3(A) are given in
Figure 3.2. �
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Fig. 3.2 Membership functions of A and its trapezoidal approximation T3(A), see Example 3.3.

Example 3.4. Now let us consider a fuzzy number A with membership function

µA (x) =


(x+1)2 if −1≤ x≤ 0,
1 if 0≤ x≤ 1,
( 40−x

39 )2 if 1≤ x≤ 40,
0 otherwise.

We get Amb(A) = 9
2 < 1

3 w(A) = 43
9 and Val(A) = 43

10 < EV1
3
(A) = 40

9 which means
that case (c) in Theorem 3.8 is applicable. Thus the nearest trapezoidal approx-
imation is given by (3.57)-(3.58). Finally we obtain a triangular fuzzy number
T3(A) = (− 1

3 ,−
1
3 ,−

1
3 ,

85
3 ).Membership functions of A and its trapezoidal approxi-

mation T3(A) are given in Figure 3.3. �
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Fig. 3.3 Membership functions of A and its trapezoidal approximation T3(A), see Example 3.4.
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Example 3.5. Consider also another fuzzy number A with membership function

µA (x) =


( x+40

39 )2 if −40≤ x≤−1,
1 if −1≤ x≤ 0,
(1− x)2 if 0≤ x≤ 1,
0 otherwise.

Here we get as before Amb(A) = 9
2 < 1

3 w(A) = 43
9 but now Val(A) = − 43

10 >

EV2
3
(A) = − 40

9 . Since conditions in Theorem 3.8, (d) hold, the nearest trapezoidal
approximation is given by (3.59)-(3.60) and we obtain a triangular fuzzy number
T4(A) = (− 85

3 , 1
3 ,

1
3 ,

1
3 ). Membership functions of A and its trapezoidal approxima-

tion T4(A) are given in Figure 3.4. �
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Fig. 3.4 Membership functions of A and its trapezoidal approximation T4(A), see Example 3.5.

We can also obtain an equivalent algorithm for choosing a proper approximation
operator using parameter y(A) called the y-coordinate of the centroid point of a
fuzzy number A. In [185] the authors showed that

y(A) =
∫ 1

0 α(AU (α)−AL(α))dα∫ 1
0 (AU (α)−AL(α))dα

. (3.94)

It is easily see that

y(A) =
Amb(A)

w(A)
. (3.95)

Therefore, we get immediately that our condition (a) in Theorem 3.8 is equivalent
to the following one

y(A)≥ 1
3
. (3.96)
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It means that we approximate a fuzzy number A by the trapezoidal approximation
operator T1 if the y-coordinate of the centroid point of A is not smaller than one third.
Otherwise, we apply operator T2 or T3 or T4. The consecutive steps for choosing a
suitable operator remains as before. Thus we get another algorithm (which is in fact
a conjunction of our Algorithm 1 the algorithm given in [196]).

Algorithm 2 For any A ∈ F(R)

Step 1. If y(A)≥ 1
3 then apply operator T1 given by (3.50)-(3.53), else

Step 2. if EV1
3
(A) ≤ Val(A) ≤ EV2

3
(A) then apply operator T2 given by (3.54)-

(3.56), else
Step 3. if Val(A)< EV1

3
(A) then apply operator T3 given by (3.57)-(3.58), else

Step 4. apply operator T4 given by (3.59)-(3.60).

Since one can propose many approximation methods for fuzzy numbers the ques-
tion about the quality of approximation is of importance. However, before we dis-
cuss the properties of the method given in Theorem 3.8 let us notice that - according
to that theorem - we can consider the family F(R) of all fuzzy numbers as a union
of four subfamilies Fi(R) corresponding to different approximation operators to be
used. Namely, we may say that a fuzzy number A belongs to subfamily Fi(R) if and
only if Ti (i = 1, . . . ,4) is an appropriate operator that should be used for getting
a proper trapezoidal approximation. Thus, by the considerations given above and
some simple calculations we get following lemmas (see [110, 111]).

Lemma 3.1. The following conditions are equivalent:

(a) A ∈ F1(R),
(b) Amb(A)≥ 1

3 w(A),
(c) y(A)≥ 1

3 .

Lemma 3.2. The following conditions are equivalent:

(a) A ∈ F2(R),
(b) Amb(A)< 1

3 w(A) and EV1
3
(A)≤Val(A)≤ EV2

3
(A),

(c) y(A)< 1
3 and EV1

3
(A)≤Val(A)≤ EV2

3
(A),

(d) Amb(A)< 1
3 w(A) and |EV (A)−Val(A)| ≤ 1

6 w(A),
(e) Amb(A)< 1

3 w(A) and |∆Amb(A)| ≤ 1
6 w(A),

where ∆Amb(A) = AmbU (A)−AmbL(A), while the right-hand ambiguity AmbU (A)
and the left-hand ambiguity AmbL(A) are given by (1.81) and (1.80), respectively.



3.5 Trapezoidal approximations of fuzzy numbers 69

Lemma 3.3. The following conditions are equivalent:

(a) A ∈ F3(R),
(b) Val(A)< EV1

3
(A),

(c) Val(A)< EV (A)+ 1
6 w(A),

(d) ∆Amb(A)< 1
6 w(A).

Lemma 3.4. The following conditions are equivalent:

(a) A ∈ F4(R),
(b) Val(A)> EV2

3
(A),

(c) Val(A)> EV (A)+ 1
6 w(A),

(d) ∆Amb(A)> 1
6 w(A).

One may notice that subfamilies F1(R), . . . ,F4(R) form a partition of a family
of all fuzzy numbers F(R). Actually, by lemmas given above, we may conclude
immediately that

F1(R)∪ . . .∪F4(R) = F(R)

and
Fi(R)∩F j(R) = /0 for i 6= j.

Introducing this useful notation we can now turn back to properties of the trape-
zoidal approximation operators. It can be shown that for A∈Fi(R) the nearest trape-
zoidal approximation operator Ti, i = 1, . . . ,4, preserving the expected interval is
invariant to translations and scale invariant, is monotonic and fulfills identity crite-
rion, preserves the expected interval and fulfills the nearness criterion with respect
to metric (1.40) in subfamily of all trapezoidal fuzzy numbers with fixed expected
interval. Moreover, it is continuous and compatible with the extension principle, is
order invariant with respect to some preference fuzzy relations, is correlation invari-
ant and it preserves the width. For more details we refer the reader to [20, 118, 119].

Now let us consider the behavior of the value and ambiguity of fuzzy number
under trapezoidal approximation operators Ti, i = 1, . . . ,4. According to [20, 118,
119] we know that these two parameters are not generally preserved. The following
theorem clarifies the situation for all four approximation operators.

Theorem 3.9. ([110]) Let A ∈ F(R) and T1,T2,T3,T4 : F(R)→ FT (R) denote the
nearest trapezoidal approximation operators preserving the expected interval, given
in Theorem 3.8. Then:

(a) if A ∈ F1(R), then

Val(T1(A)) =Val(A),

Amb(T1(A)) = Amb(A),

(b) if A ∈ F2(R), then
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Val(T2(A)) =Val(A),

Amb(T2(A))> Amb(A),

(c) if A ∈ F3(R), then

Val(T3(A))>Val(A),

Amb(T3(A))> Amb(A),

(d) if A ∈ F4(R), then

Val(T4(A))<Val(A),

Amb(T4(A))> Amb(A).

Thus the value of a fuzzy number is preserved by T1 and T2 only, while the
ambiguity is invariant solely under T1. Directly from the proof of Theorem 3.9 we
get a following corollary.

Corollary 3.5. Let A ∈ F(R). Then

(a) Val(T3(A)) = EV1
3
(A) for A ∈ F3(R),

(b) Val(T4(A)) = EV2
3
(A) for A ∈ F4(R),

(c) Amb(Ti(A)) = 1
3 w(A) for A ∈ Fi(R), i = 2,3,4.

One may be also interested whether the y-coordinate of the centroid point of a
fuzzy number A is invariant under the nearest trapezoidal approximation operators
preserving the expected interval.

Theorem 3.10. ([110]) Let A ∈ F(R). Then

(a) y(T1(A)) = y(A) for A ∈ F1(R),
(b) y(Ti(A)) = 1

3 > y(A) for A ∈ Fi(R), i = 2,3,4.

One may also ask if the weighted expected value EVq, q ∈ [0,1], defined by
(1.73), is preserved by the nearest trapezoidal approximation operators discussed
above. It turn out, that this parameter - contrary to value, ambiguity or the y-
coordinate of the centroid point of a fuzzy number - is preserved by all four ap-
proximation operators.

Theorem 3.11. ([110]) If A ∈ Fi(R), i = 1,2,3,4, then for each q ∈ [0,1]

EVq(Ti(A)) = EVq(A). (3.97)

For the proofs of the above theorems we refer the reader to [110].
In the end of this section let us also mention some interesting distance prop-

erties between fuzzy numbers and their trapezoidal approximations preserving the
expected interval. Ban and Coroianu [27] proved that the trapezoidal approxima-
tion operator which preserves the expected interval satisfies the Lipschitz property.
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Moreover, since in that case, by Theorem 3.8, we actually have four different ap-
proximation operators, each one corresponding to a subfamily of fuzzy numbers (see
Theorem 3.9 and the discussion above), we may find the best Lipschitz constant for
each subfamily Fi(R), i = 1,2,3,4.

Theorem 3.12. Let A and B denote two fuzzy numbers such that∫ 1

0
BU (α)dα−

∫ 1

0
BL(α)dα ≥

∫ 1

0
AU (α)dα−

∫ 1

0
AL(α)dα. (3.98)

Then:

(a) if A ∈ F1(R), then
d(T (A),T (B))≤ d(A,B) (3.99)

(b) if A ∈ F2(R), then

d(T (A),T (B))≤ 2
√

3
3

d(A,B) (3.100)

(c) if A ∈ F3(R), then

d(T (A),T (B))≤
√

5
3

d(A,B) (3.101)

(d) if A ∈ F4(R), then

d(T (A),T (B))≤
√

5
3

d(A,B). (3.102)

For the proof we refer the reader to [71], Corollary 9.
It is worth noting that the results given above are not only interesting from the

theoretical perspective but might appear useful in practice because they allow to
approximate fuzzy numbers with an acceptable error in the case when the direct
formula is difficult to apply. Other details on the continuity of the trapezoidal fuzzy
number-valued operators can be found in [27, 29].

3.5.2 Trapezoidal approximations with restrictions on support and
core

Unfortunately, for very skew membership functions our optimal approximation op-
erators may reveal very unpleasant behavior. Namely, if Val(A) < EV1/3(A) or
Val(A) > EV2/3(A), then it may happen that the core of the corresponding oper-
ator’s output T3(A) or T4(A), respectively, is disjoint with the core of the original
fuzzy number A. To illustrate such situation let us consider the following example.
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Example 3.6. By Example 3.4 we get α-cuts Aα = [
√

α−1,40−39
√

α] of the fuzzy
number A and its nearest trapezoidal approximation T3(A) = (− 1

3 ,−
1
3 ,−

1
3 ,

85
3 ).

It is easily seen that core(A) = [0,1], core(T (A)) = {− 1
3} and hence core(A)∩

core(T (A)) = /0 (see also Figure 3.3). �

It is obvious that the solution shown in Example 3.6 although mathematically
proper is completely unacceptable from the practical point of view. Actually, dis-
joint cores of the input and output means that the approximation indicates other
“sure” element than the original fuzzy number. To avoid such undesired situations
Abbasbandy and Hajjari [5] considered trapezoidal approximation preserving the
core of a fuzzy number, i.e. satisfying

core(T (A)) = core(A). (3.103)

Although this idea sometimes might be useful, some objections remain. Actually,
µA(x) = 1 leads to perfect information that x surely belongs to A. If µA(x) is close
to 1 we say that x rather belongs to A. And conversely, µA(x) = 0 shows that x
surely does not belong to A (and belongs to ¬A) which is also a perfect information.
Similarly, x such that µA(x) is close to 0 is interpreted as a point that rather does
not belong to A. However, if µA(x) is close to 0.5 we dot know how to classify x
because it belong to A and to its completion ¬A more or less with the same degree.
Thus, degrees of membership both high (close to 1) and low (close to 0) are much
more informative than those close to 0.5 and hence there is no reason to favor the
core only and to discriminate against the support. So one may also argue the need
of the support preservation, i.e.

supp(T (A)) = supp(A). (3.104)

Unfortunately, if we fix both the core and support we obtain a naive approximation
T (A) = T (a1,a2,a3,a4) which neglects completely the shape of the sides of the
original fuzzy number A.

Therefore, to evade this trap we have to weaken slightly requirements (3.103)
and (3.104). However, we should do it without loosing the main idea at the same
time. It seems that the right direction was suggested in [103], Def. 2, or [112], i.e.
instead of the core and support preservation the appropriate inclusions would be
desirable. Namely, it seems that the sufficiently strong requirement to be satisfied is
to substitute equalities in (3.103) and (3.104) by the appropriate inclusions, i.e.

core(A) ⊆ core(T (A)) (3.105)
supp(T (A)) ⊆ supp(A) (3.106)

or, using notation adopted above, we may demand for

[a2,a3] ⊆ [t2, t3] (3.107)
[t1, t4] ⊆ [a1,a4]. (3.108)
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These conditions reflect our concern that each point which surely belongs to A
would also belongs to its approximation T (A) and that each point which surely does
not belong to A would also not belong to T (A).

Now, having in mind the above discussion we will try to improve the solution de-
livered in Section 3.5.1 so that conditions (3.105) and (3.106) for the core and sup-
port would be also fulfilled. Therefore, combing these requirements with the prob-
lem (3.48)-(3.49) considered above, our current problem is to find T ∗(A) ∈ FT (R)
such that

d(A,T ∗(A)) = min
T∈FT (R)

d(A,T ), (3.109)

with respect to the following conditions:

EI(T ∗(A)) = EI(A), (3.110)
core(A) ⊆ core(T ∗(A)) (3.111)

supp(T ∗(A)) ⊆ supp(A). (3.112)

Since the α-cut of a trapezoidal fuzzy number is equal to [t1+(t2−t1)α, t4−(t4−
t3)α], thus our goal might be expressed as follows: find t1, t2, t3, t4 which minimize

D(t1, t2, t3, t4) =
∫ 1

0
[AL(α)− (t1 +(t2− t1)α)]2 dα

+
∫ 1

0
[AU (α)− (t4− (t4− t3)α)]2 dα

with respect to conditions[
t1 + t2

2
,
t3 + t4

2

]
=

[∫ 1

0
AL(α)dα,

∫ 1

0
AU (α)dα

]
,

a1 ≤ t1 ≤ t2 ≤ a2 ≤ a3 ≤ t3 ≤ t4 ≤ a4.

Further on we assume that a1 < a2 and a3 < a4 because otherwise the lineariza-
tion of the left or right side has no sense.

Since a2 ≤ a3 are fixed, it is easily seen that the above stated problem can be
solved as two separate minimization programs. Denoting by EIL(A) =

∫ 1
0 AL(α)dα

and EIU (A) =
∫ 1

0 AU (α)dα the left and right border of the expected interval EI(A),
respectively, we may express these two programs as follows:

Program 1: find t1 and t2 which minimize

f1(t1, t2) =
∫ 1

0
[AL(α)− (t1 +(t2− t1)α)]2 dα

such that
t1 + t2

2
−EIL(A) = 0,

a1 ≤ t1 ≤ t2 ≤ a2.
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Program 2: find t3 and t4 which minimize

f2(t3, t4) =
∫ 1

0
[AU (α)− (t4− (t4− t3)α)]2 dα

such that
t3 + t4

2
−EIU (A) = 0,

a3 ≤ t3 ≤ t4 ≤ a4.

Similarly as in Section 3.5.1 to get a solution of Program 1 we apply the Karush-
Kuhn-Tucker theorem for the local minimizer of f1(t) subject to h1(t) = t1 + t2−
2EIL(A) = 0 and g1(t) = [a1− t1, t1− t2, t2−a2]≤ 0. Then there exist the Lagrange
multiplier vector λ and the Karush-Kuhn-Tucker multiplier ξ such that

∇ f1(t∗)+λ
T

∇h1(t∗)+ξ
T

∇g1(t∗) = 0T , (3.113)
ξ

T g1(t∗) = 0, (3.114)
ξ ≥ 0. (3.115)

After some calculations and discussion similarly to those performed in Section
3.5.1, we get the solution expressed by the following proposition.

Proposition 3.1. Let A denote a fuzzy number with the support [a1,a4] and core
[a2,a3]. Then Program 1 has four possible solutions depending on A, given as fol-
lows:

(a) if a1 ≤ 4EIL(A)− 6
∫ 1

0 αAL(α)dα and 6
∫ 1

0 αAL(α)dα − 2EIL(A) ≤ a2 then
t1 = 4EIL(A)−6

∫ 1
0 αAL(α)dα and t2 = 6

∫ 1
0 αAL(α)dα−2EIL(A)

(b) if 4EIL(A)− 6
∫ 1

0 αAL(α)dα < a1 and 6
∫ 1

0 αAL(α)dα − 2EIL(A) ≤ a2 then
t1 = a1 and t2 = 2EIL(A)−a1

(c) if a1 ≤ 4EIL(A)− 6
∫ 1

0 αAL(α)dα and a2 < 6
∫ 1

0 αAL(α)dα − 2EIL(A) then
t1 = 2EIL(A)−a2 and t2 = a2

(d) if 4EIL(A)− 6
∫ 1

0 αAL(α)dα < a1 and a2 < 6
∫ 1

0 αAL(α)dα − 2EIL(A) then
t1 = a1 and t2 = a2.

For the proof we refer the reader to [123].
Looking on Proposition 3.1 one immediately conclude that the particular solu-

tion depends on the relationship between the lower bounds of the support and core
of the fuzzy number under study and two values 4EIL(A)− 6

∫ 1
0 αAL(α)dα and

6
∫ 1

0 αAL(α)dα−2EIL(A), respectively. Thus let us try to find a suitable interpreta-
tion for these two critical values. It seems that the notion of the left spread LSP(A)
of a fuzzy number A might be helpful there (see [122]). We define LSP(A) by

LSP(A) = 6
∫ 1

0
(α− 1

2
)AL (α) dα (3.116)

= 6
∫ 1

0
αAL(α)dα−3EIL(A).
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It can be shown (see [123]) that LSP(A) ≥ 0 for any fuzzy number A. To get some
intuition related to (3.116) please note, that if A is a rectangular fuzzy number, then
LSP(A) = 0, which is obvious since A corresponds to the crisp interval and hence its
membership function does not change gradually. If A is a trapezoidal fuzzy number,
i.e. A = A(a1,a2,a3,a4), then LSP(A) = 1

2 (a2−a1), which is equal to the half of the
range of the left side of the membership function µA describing A. Hence, longer
the distance between a1 and a2, where µA is increasing, the greater is the left spread
LSP(A). It is clear, that the right side of a fuzzy number might be characterized in a
similar way, by the upper spread introduced later in (3.122).

It is easily seen that using this notion we can express the conditions given in
Proposition 3.1 in a more friendly way, i.e.

4EIL(A)−6
∫ 1

0
αAL(α)dα = EIL(A)−LSP(A), (3.117)

6
∫ 1

0
αAL(α)dα−2EIL(A) = EIL(A)+LSP(A). (3.118)

In a similar way we can solve Program 2 devoted to the right side of a fuzzy
number. We apply again the Karush-Kuhn-Tucker theorem for the local minimizer
of f2(t) subject to h2(t)= t3+t4−2EIU (A)= 0 and g2(t)= [a3−t3, t3−t4, t4−a4]≤
0. Then there exist the Lagrange multiplier vector η and the Karush-Kuhn-Tucker
multiplier τ such that

∇ f2(t∗)+η
T

∇h2(t∗)+ τ
T

∇g2(t∗) = 0T , (3.119)
τ

T g2(t∗) = 0, (3.120)
τ ≥ 0. (3.121)

Now, as in the case of Program 1, we have to consider different situations and
finally we get again four possible solutions of Program 2 depending of the particular
shape of the original fuzzy number A. Here we omit these tedious calculations.
Moreover, to express the solutions in a nice form we utilize the upper spread USP(A)
of a fuzzy number A defined by (see [122])

USP(A) = 6
∫ 1

0
(

1
2
−α)AU (α) dα (3.122)

= 3EIU (A)−6
∫ 1

0
αAU (α)dα.

It can be shown that USP(A)≥ 0 for any fuzzy number A.
Finally, summing up the above discussion we may conclude that the following

theorem describes the desired approximation of a fuzzy number.

Theorem 3.13. For any fuzzy number A there exist a unique trapezoidal approxi-
mation T ∗(A) = (t1, t2, t3, t4) of A closest to A with respect to metric (1.40) and pre-
serving the expected interval with restrictions on the support and core, i.e. satisfying
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conditions (3.109)-(3.112). Moreover, if supp(A) = [a1,a4] and core(A) = [a2,a3],
then the left side of the trapezoidal approximation, i.e. t1 and t2, are given by

(1) if a1 ≤ EIL(A)−LSP(A) and EIL(A)+LSP(A)≤ a2 then

t1 = EIL(A)−LSP(A) (3.123)
t2 = EIL(A)+LSP(A) (3.124)

(2) if EIL(A)−LSP(A)< a1 and EIL(A)+LSP(A)≤ a2 then

t1 = a1 (3.125)
t2 = 2EIL(A)−a1 (3.126)

(3) if a1 ≤ EIL(A)−LSP(A) and a2 < EIL(A)+LSP(A) then

t1 = 2EIL(A)−a2 (3.127)
t2 = a2 (3.128)

(4) if EIL(A)−LSP(A)< a1 and a2 < EIL(A)+LSP(A) then

t1 = a1 (3.129)
t2 = a2, (3.130)

while the right side, i.e. t3 and t4, are given as by

(5) if a3 ≤ EIU (A)−USP(A) and EIU (A)+USP(A)≤ a4 then

t3 = EIU (A)−USP(A) (3.131)
t4 = EIU (A)+USP(A) (3.132)

(6) if EIU (A)−USP(A)< a3 and EIL(A)+USP(A)≤ a4 then

t3 = a3 (3.133)
t4 = 2EIU (A)−a3 (3.134)

(7) if a3 ≤ EIU (A)−USP(A) and a4 < EIL(A)+USP(A) then

t3 = 2EIU (A)−a4 (3.135)
t4 = a4 (3.136)

(8) if EIU (A)−USP(A)< a3 and a4 < EIL(A)+USP(A) then

t3 = a3 (3.137)
t4 = a4. (3.138)

Before discussing properties of the trapezoidal approximation preserving the ex-
pected interval with restrictions on the support and core, suggested in the previous
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section, let us go back to Examples 3.4 and 3.6 which gave the motivations for our
considerations.

Example 3.7. One can easily compute basic characteristics of the fuzzy number
considered in Example 3.4 and required for choosing the proper trapezoidal ap-
proximation. Namely, EIL(A) =− 1

3 , EIU (A) = 14, LSP(A) = 2
5 and USP(A) = 78

5 .
Since EIL(A)− LSP(A) = − 11

15 > a1 = −1 and EIL(A)+ LSP(A) = 1
15 > a2 = 0,

hence by Theorem 3.13 t1 = 2EIL(A)−a2 = − 2
3 and t2 = a2 = 0. Moreover, since

EIU (A)−USP(A) =− 8
5 < a3 = 1 and EIU (A)+USP(A) = 148

5 < a4 = 40, we get
t3 = a3 = 1 and t4 = 2EIU (A)−a3 = 27.

Therefore, finally the desired trapezoidal approximation of our fuzzy number A is
T (A) = (− 2

3 ,0,1,27). It is easily seen that core(A) = core(T (A)) and supp(T (A))⊂
supp(A). Membership functions of A and its trapezoidal approximation T (A) are
given in Figure 3.5. �
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Fig. 3.5 Membership functions of A and its trapezoidal approximation T (A), see Example 3.7.

One may ask about the relationship between trapezoidal approximation described
in this and in the previous section, i.e. with and without restrictions on support and
core. Some light in this topic is delivered by the following lemma (see [123]).

Lemma 3.5. Suppose A is a fuzzy number with supp(A) = [a1,a4] and core(A) =
[a2,a3] and such that

a1 ≤ EIL(A)−LSP(A)

a2 ≥ EIL(A)+LSP(A)

a3 ≤ EIU (A)−USP(A)

a4 ≥ EIU (A)+USP(A).
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Then the trapezoidal approximation T ∗(A) of A closest to A with respect to metric
(1.40) and preserving the expected interval with restrictions on the support and
core is equal to the trapezoidal approximation operator T1 given by (3.50)-(3.53) in
Theorem 3.8 without requirements on the support and core, i.e. T ∗(A) = T1(A).

The proof is evident. However, the interpretation of Lemma 3.5 is worth com-
menting. Namely, operator T1 is chosen by Theorem 3.8 (or, equivalently by Al-
gorithms 1 or 2) if and only if the input fuzzy number A is not too asymmetrical.
These four conditions mentioned in Lemma 3.5 also characterize a fuzzy number
with a slight or moderate asymmetry. Thus it is clear that additional restrictions on
the support and core (3.105)-(3.106) are crucial only for fuzzy numbers with skew
membership functions.

Our trapezoidal approximation operator T ∗ has many desired properties. Some
of them are listed below.

Lemma 3.6. ([123], Lemma 4) Let T ∗ denote the trapezoidal approximation closest
to the input fuzzy number with respect to metric (1.40) and preserving the expected
interval with restrictions on the support and core, given by Theorem 3.13. Then

1) T ∗ is invariant to translations, i.e. T ∗(A+ z) = T ∗(A)+ z (∀z ∈ R);
2) T ∗ fulfills the identity criterion, i.e. T ∗(A) = A (∀A ∈ FT (R));
3) T ∗ preserves the expected value, i.e. EV (T ∗(A)) = EV (A);
4) T ∗ preserves the width, i.e. w(T ∗(A)) = w(A).

We omit the proof. It is straightforward but requires tedious calculations for each
combination of possible left and right sides of a fuzzy number we may get by the
Theorem 3.13. Last two properties are immediate because they are just the con-
sequence of the expected interval invariance. Some other desired properties of the
trapezoidal approximation operators are described and discussed e.g. in [118, 119].

Although the expected interval invariance in the trapezoidal approximation is
hardly recommended because it guaranties many useful properties, in some situation
the user would like to omit this requirement. However, even then we should look not
only for the trapezoidal fuzzy number nearest to the original one but have to keep
restrictions (3.105)-(3.106) on the support and core. Otherwise it may happen that
the output would be inadmissible, similarly as in Example 3.6.

Therefore, we should solve the following problem: given a fuzzy number A find
a trapezoidal approximation T ∗∗(A) such that

d(A,T ∗∗(A)) = min
T∈FT (R)

d(A,T ), (3.139)

core(A) ⊆ core(T ∗∗(A)) (3.140)
supp(T ∗∗(A)) ⊆ supp(A). (3.141)

It is clear that our problem now is quite similar to that discussed above. So we
will not go into details but only sketch the reasoning and present final solution.

As before our problem might be solved as two separate minimization programs:
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Program 3: find t1 and t2 which minimize

f1(t1, t2) =
∫ 1

0
[AL(α)− (t1 +(t2− t1)α)]2 dα

such that a1 ≤ t1 ≤ t2 ≤ a2.

Program 4: find t3 and t4 which minimize

f2(t3, t4) =
∫ 1

0
[AU (α)− (t4− (t4− t3)α)]2 dα

such that a3 ≤ t3 ≤ t4 ≤ a4.

To solve Program 3 we apply again the Karush-Kuhn-Tucker theorem for the
local minimizer of f1 subject to g1 and solve the system of equations nearly identical
as (3.113)-(3.115) but without function h1. Similarly, for solving Program 4 we have
to consider the system of equations like (3.119)-(3.121) but without function h2.
And finally, we may present the solution of these two programs in the form of the
following theorem.

Theorem 3.14. For any fuzzy number A there exist a unique trapezoidal approxima-
tion T ∗∗(A) = (t1, t2, t3, t4) of A closest to A with respect to metric (1.40) and pre-
serving the restrictions on the support and core, i.e. satisfying conditions (3.139)-
(3.141). Moreover, if supp(A) = [a1,a4] and core(A) = [a2,a3], then the left side of
the trapezoidal approximation, i.e. t1 and t2, are given by

(1) If a1 ≤ EIL(A)−LSP(A) and EIL(A)+LSP(A)≤ a2 then

t1 = EIL(A)−LSP(A) (3.142)
t2 = EIL(A)+LSP(A) (3.143)

(2) if EIL(A)−LSP(A)< a1 and EIL(A)+LSP(A)≤ a2 then

t1 = a1 (3.144)

t2 =
3
2

EIL(A)+
1
2

LSP(A)− 1
2

a1 (3.145)

(3) if a1 ≤ EIL(A)−LSP(A) and a2 < EIL(A)+LSP(A) then

t1 =
3
2

EIL(A)−
1
2

LSP(A)− 1
2

a2 (3.146)

t2 = a2 (3.147)

(4) if EIL(A)−LSP(A)< a1 and a2 < EIL(A)+LSP(A) then

t1 = a1 (3.148)
t2 = a2, (3.149)

while the right side, i.e. t3 and t4, are given as
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(5) If a3 ≤ EIU (A)−USP(A) and EIU (A)+USP(A)≤ a4 then

t3 = EIU (A)−USP(A) (3.150)
t4 = EIU (A)+USP(A) (3.151)

(6) if EIU (A)−USP(A)< a3 and EIL(A)+USP(A)≤ a4 then

t3 = a3 (3.152)

t4 =
3
2

EIU (A)+
1
2

USP(A)− 1
2

a3 (3.153)

(7) if a3 ≤ EIU (A)−USP(A) and a4 < EIL(A)+USP(A) then

t3 =
3
2

EIU (A)−
1
2

USP(A)− 1
2

a4 (3.154)

t4 = a4 (3.155)

(8) if EIU (A)−USP(A)< a3 and a4 < EIL(A)+USP(A) then

t3 = a3 (3.156)
t4 = a4. (3.157)

We omit the long proof because it requires calculations very similar to those
shown in Section 3.5.1.

Comparing Theorem 3.13 and Theorem 3.14 one easily conclude that in some
cases we may obtain the same trapezoidal approximation no matter whether we
assume the expected interval invariance or not. Before we formulate a theorem de-
scribing the relationship between these two kinds of approximations we have to
introduce some notation.

Definition 3.13. Let A denote a fuzzy number with the support [a1,a4] and core
[a2,a3]. We sat that

(a) A ∈ F(l1, ·) iff a1 ≤ EIL(A)−LSP(A) and a2 ≥ EIL(A)+LSP(A),
(b) A ∈ F(l2, ·) iff a1 > EIL(A)−LSP(A) and a2 ≥ EIL(A)+LSP(A),
(c) A ∈ F(l3, ·) iff a1 ≤ EIL(A)−LSP(A) and a2 < EIL(A)+LSP(A),
(d) A ∈ F(l4, ·) iff a1 > EIL(A)−LSP(A) and a2 < EIL(A)+LSP(A)),
(e) A ∈ F(·,r1) iff a3 ≤ EIU (A)−USP(A) and a4 ≥ EIU (A)+USP(A),
(f) A ∈ F(·,r2) iff a3 > EIU (A)−USP(A) and a4 ≥ EIU (A)+USP(A),
(g) A ∈ F(·,r3) iff a3 ≤ EIU (A)−USP(A) and a4 < EIU (A)+USP(A),
(h) A ∈ F(·,r4) iff a3 > EIU (A)−USP(A) and a4 < EIU (A)+USP(A)).

One can find easily that the subfamilies F(li,r j)⊂ F(R) for i = 1, . . . ,4 and j =
1, . . . ,4 introduced in Definition 3.13 are disjoint, i.e. F(li,r j)∩F(lm,rn) = /0 for
i 6= m and j 6= n. Moreover, these sixteen subfamilies cover the whole family of

fuzzy numbers. Indeed,
4⋃

i=1

4⋃
j=1
F(li,r j) = F(R).
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Looking carefully one realize that F(l1, ·), . . . ,F(l4, ·) correspond to those sub-
classes of fuzzy numbers which appear in points (1)-(4) in Theorem 3.13 and The-
orem 3.14, while F(·,r1), . . . ,F(·,r4) to the subclasses discussed in points (5)-(8) of
those theorems, respectively. Now we are able to formulate a theorem on the rela-
tions (equivalence or inclusion) between trapezoidal fuzzy approximations T ∗(A)
and T ∗∗(A).

Theorem 3.15. ([123], Theorem 7) Suppose A is a fuzzy number with the support
[a1,a4] and core [a2,a3]. Then

(s1) T ∗(A) = T ∗∗(A) if and only if A ∈ F(l1,r1)∪F(l1,r4)∪F(l4,r1)∪F(l4,r4).
(s2) T ∗(A)⊂ T ∗∗(A) if and only if A ∈ F(l1,r2)∪F(l3,r1)∪F(l3,r2)∪F(l3,r4)∪
F(l4,r2).

(s3) T ∗(A)⊃ T ∗∗(A) if and only if A ∈ F(l1,r3)∪F(l2,r1)∪F(l2,r3)∪F(l2,r4)∪
F(l4,r3).

Proof. Combining situations described in points (1), (4), (5) and (8) of Theorem
3.13 and Theorem 3.14 we get immediately the equivalence of the approximations,
i.e. point (s1) holds.

Now we have to consider fuzzy numbers that appear in points (2), (3), (6) and
(7) of Theorem 3.13 and Theorem 3.14. Further on we will adopt the following
notation: T ∗(A) = (t∗1 , t

∗
2 , t
∗
3 , t
∗
4 ) and T ∗∗(A) = (t∗∗1 , t∗∗2 , t∗∗3 , t∗∗4 ).

If A ∈ F(l2, ·), i.e. we focus our attention on point (2) in Theorems 3.13 and 3.14
then t∗1 = a1 = t∗∗1 and we get

t∗∗2 − t∗2 =
1
2

a1−
1
2
(EIL(A)−LSP(A))> 0,

because a1 > EIL(A)−LSP(A) by Definition 3.13 (b). Hence

A ∈ F(l2, ·)⇔ t∗2 < t∗∗2 . (3.158)

Suppose now A ∈ F(l3, ·), which corresponds to point (3) in Theorems 3.13 and
3.14. Then t∗2 = a2 = t∗∗2 and we obtain

t∗1 − t∗∗1 =
1
2
(EIL(A)+LSP(A))− 1

2
a2 > 0,

since a2 < EIL(A)+LSP(A) by Definition 3.13 (c). Thus

A ∈ F(l3, ·)⇔ t∗1 > t∗∗1 . (3.159)

If A∈ F(·,r2), like in point (6) in Theorems 3.13 and 3.14, then t∗3 = a3 = t∗∗3 and

t∗∗4 − t∗4 =
1
2

a3−
1
2
(EIU (A)−USP(A))> 0,

since by Definition 3.13 (f) we have a3 > EIU (A)−USP(A). Therefore
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A ∈ F(·,r2)⇔ t∗4 < t∗∗4 . (3.160)

Now assume that A ∈ F(·,r3), like in point (7) in Theorems 3.13 and 3.14. Then
t∗4 = a4 = t∗∗4 . Moreover,

t∗3 − t∗∗3 =
1
2
(EIU (A)+USP(A))− 1

2
a4 > 0,

because by Definition 3.13 (g) we have a4 < EIU (A)+USP(A). So

A ∈ F(·,r3)⇔ t∗3 > t∗∗3 . (3.161)

Since any trapezoidal fuzzy number has linear sides thus the inclusion T ∗(A) ⊆
T ∗∗(A) holds if and only if t∗1 ≥ t∗∗1 , t∗2 ≥ t∗∗2 , t∗3 ≤ t∗∗3 and t∗4 ≤ t∗∗4 . To get strict
inclusion, i.e. T ∗(A) ⊂ T ∗∗(A), at least one of those four inequalities should be
strict. Therefore, summing up cases (3.158)-(3.161), we can conclude that T ∗(A)⊂
T ∗∗(A) holds if and only if the input fuzzy number A belongs to F(l1,r2)∪F(l3,r1)∪
F(l3,r2)∪F(l3,r4)∪F(l4,r2), which proves (s2). The similar reasoning applies for
the opposite inclusion (s3), which proves the theorem. �

Example 3.8. Let us consider once more the fuzzy number A that appears in Exam-
ples 3.4 and 3.7. In Example 3.7 we have obtained T ∗(A) = (− 2

3 ,0,1,27). Now,
by Theorem 3.14 we get T ∗∗(A) = (−0.7,0,1,28.3). Here T ∗(A)⊂ T ∗∗(A) because
A ∈ F(l3,r2). �

Please, notice, that Theorem 3.15 describes the relationship between trapezoidal
approximations with and without additional requirement on the expected interval
invariance for fuzzy numbers belonging to 14 of 16 subfamilies F(li,r j). Actually,
two subfamilies: F(l2,r2) and F(l3,r3) were left. Thus one may wonder what happen
for fuzzy numbers from these very two subfamilies. Before stating next theorem let
us recall the most natural partial ordering in F(R) defined as

A≺ B⇔ (AL(α) ≤ BL(α),AU (α) ≤ BU (α), ∀α ∈ [0,1]), (3.162)

i.e. A≺ B when both sides of A are not greater than the sides of B (see [137]).

Theorem 3.16. ([123], Theorem 8) Suppose A is a fuzzy number with the support
[a1,a4] and core [a2,a3]. Then

(i) T ∗(A)≺ T ∗∗(A) if and only if A ∈ F(l2,r2).
(ii) T ∗∗(A)≺ T ∗(A) if and only if A ∈ F(l3,r3).

Proof. Suppose A ∈ F(l2,r2). By Definition 3.13 and Theorems 3.13 and 3.14 we
obtain t∗1 = t∗∗1 = a1, t∗2 < t∗∗2 , t∗3 = t∗∗3 = a3 and t∗4 < t∗∗4 . Hence, because of the
linearity of the sides of T ∗(A) and T ∗∗(A) and (3.162) we have T ∗(A)≺ T ∗∗(A).
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On the other hand, if A ∈ F(l3,r3) then we get t∗1 > t∗∗1 = a1, t∗2 = t∗∗2 = a2,
t∗3 > t∗∗3 and t∗4 = t∗∗4 = a4. This time the linearity of the sides and (3.162) gives
T ∗∗(A)≺ T ∗(A), which completes the proof. �

Example 3.9. Now suppose a fuzzy number A has the following membership func-
tion

µA (x) =


( x−1

27 )2 if 1≤ x≤ 28,
1 if 28≤ x≤ 30,
1− ( x−30

20 )2 if 30≤ x≤ 50,
0 otherwise.

So we get α-cuts Aα = [1+ 27
√

α,30+ 20
√

1−α] and hence we may compute
EIL(A) = 19, EIU (A) = 130

3 , LSP(A) = 54
5 and USP(A) = 8. We get EIL(A)−

LSP(A) = 41
5 > a1 = 1, EIL(A)+ LSP(A) = 149

5 > a2 = 28, EIU (A)−USP(A) =
106

3 > a3 = 30 and EIU (A)+USP(A) = 154
3 > a4 = 50. Hence A∈ F(l3,r3). By The-

orems 3.13 and 3.14 we get T ∗(A) = (10,28, 110
3 ,50) and T ∗∗(A) = ( 91

10 ,28,36,50).
Here T ∗∗(A)≺ T ∗(A) which is obvious since A ∈ F(l3,r3). �

3.5.3 Bi-symmetrically weighted trapezoidal approximations of
fuzzy numbers

In some situations other distances than metric (1.40) might be more suitable. Using
metric (1.40) all α-cuts are treated evenly. This feature is sometimes criticized by
authors who claim that elements belonging to α1-cut should be treated with the
higher attention that those from α2-cut if α1 > α2 because the membership degree
for the first group is higher and so they are less uncertain. This point of view can
be found, e.g., in [204], where the trapezoidal approximation with respect to the
weighted distance

dZL(A,B) =
(∫ 1

0
α[AL(α)−BL(α)]2dα (3.163)

+
∫ 1

0
α[AU (α)−BU (α)]2dα

)1/2

with increasing weighting function is applied (one may notice that (3.163) is a par-
ticular version of the weighted L2-type distance (1.42)).

Although such increasing weighting might be useful in some occasions, another
weighted distances would be more interesting in general. This is a straightforward
conclusion from the fact that the least informative α-cut is not zero but 0.5. Actu-
ally, situation µA(x) = 1 leads to perfect information that x surely belongs to A. If
µA(x) is close to 1 we’ll say that x rather belongs to A. And conversely, µA(x) = 0
shows that x surely does not belong to A (and belongs to ¬A) which is also a perfect
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information. Similarly, x such that µA(x) is close to 0 is interpreted as a point that
rather does not belong to A. However, if µA(x) = 0.5 we dot know how to classify
x because it belong to A and to it’s completion ¬A with the same degree. The same
happens if µA(x) is close to 0.5. Thus, to sum up, degrees of membership both high
(close to 1) and low (close to 0) are much more informative than those close to
0.5. Hence, if we try to incorporate this obvious conclusion into practice we have
to consider not increasing weighted distance (3.163) but so-called bi-symmetrical
weighted distance suggested in [121]. More precisely, the authors of [121] consid-
ered the following two bi-symmetrical weighted functions

λ1(α) =

{
1−2α if α ∈ [0, 1

2 ],
2α−1 if α ∈ [ 1

2 ,1],
(3.164)

and

λ2(α) =

{
1 if α ∈ [0, 1

4 ]∪ [
3
4 ,1],

0 if α ∈ ( 1
4 ,

3
4 ).

(3.165)

Function (3.164) is in some sense a bi-symmetrical counterpart of the increasing
weighted function such as applied in [204]. The second one, contrary to previous
continuous weighted function is a noncontinuous one which appreciates only ele-
ments with high or low degree of membership and does not take into account the
other. In some sense (3.165) corresponds to Pedrycz’s viewpoint expressed in his
shadowed sets (see [163]) where we consider only these points which rather belong
to a set under study or those that rather do not belong to it. The other elements with
intermediate membership degree form the so-called shadow.

One can, of course, propose many other weighted functions having properties
similar to (3.164) or (3.165). Thus it would be interesting to specify a general def-
inition of the bi-symmetrical weighted function. Then for the defined family of bi-
symmetrical weighted functions we will consider trapezoidal approximation based
on the bi-symmetrical weighted distance obtained for any representant of that fam-
ily.

Definition 3.14. Any function λ : [0,1]→ [0,1] such that

(a) λ ( 1
2 −α) = λ ( 1

2 +α) for all α ∈ [0, 1
2 ],

(b) λ ( 1
2 )≤ λ (α) for any α ∈ [0,1],

is called a bi-symmetrical weighted function.

Thus each bi-symmetrical weighted function λ is symmetrical around 1
2 and λ

reaches its minimum in 1
2 . Further on we will examine a reach subclass of all bi-

symmetrical weighted function, called regular bi-symmetrical weighted functions.

Definition 3.15. A bi-symmetrical weighted function λ is called regular if

(a) λ ( 1
2 ) = 0,

(b) λ (0) = λ (1) = 1,
(c)

∫ 1
0 λ (α)dα = 1

2 .
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It is obvious that both (3.164) and (3.165) are regular bi-symmetrical weighted
functions. A family of all regular bi-symmetrical weighted functions will be denoted
by ΛBS.

Now let us go back to the trapezoidal approximation of fuzzy numbers which
produce a trapezoidal fuzzy number T (A) that is the closest to given original fuzzy
number A among all trapezoidal fuzzy numbers having identical expected interval
as the original one, discussed in Section 3.5.1. However, now we will look for the
operators which minimize the weighted distance (1.42) based on bi-symmetrical
function, i.e. when λL = λU = λ ∈ ΛBS. Keeping in mind all desired formulae for
the expected interval (1.71) and the weighted distance (1.42) and substituting there
the α-cut of a trapezoidal fuzzy number T = (t1, t2, t3, t4) our problem might be
expressed as follows:
given λ ∈ΛBS find t1, t2, t3, t4 ∈ R which minimize

f (t1, t2, t3, t4) =
(∫ 1

0
λ (α) [AL(α)− (t1 +(t2− t1)α)]2 dα (3.166)

+
∫ 1

0
λ (α) [AU (α)− (t4− (t4− t3)α)]2 dα

)1/2

with respect to conditions

t1 + t2
2

=
∫ 1

0
AL(α)dα, (3.167)

t3 + t4
2

=
∫ 1

0
AU (α)dα (3.168)

t1 ≤ t2 ≤ t3 ≤ t4. (3.169)

This problem for bi-symmetrical weighted functions (3.164) and (3.165) was
solved in [121], while the general solution for any bi-symmetrical weighted function
was given in [122]. To present this general solution in a nice form with a possibly
clear interpretation some useful notation should be introduced.

Firstly let us notice that by Definition 3.15 the centroid of a bi-symmetrical
weighted function is 1

2 . Therefore, the dispersion of a bi-symmetrical weighted func-
tion λ is given by

η =
∫ 1

0
(α− 1

2
)2

λ (α) dα. (3.170)

We also introduce another two parameters characterizing the dispersion of the
left side and of the right side of given fuzzy number A with respect to given bi-
symmetrical weighted function λ . Namely, the left (lower) spread of a fuzzy num-
ber A with respect to considered bi-symmetrical weighted function λ is a number
LSPλ (A) given by

LSPλ (A) =
1

2η

∫ 1

0
(α− 1

2
)λ (α)AL (α)dα, (3.171)
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while the right (upper) spread of a fuzzy number A with respect to considered bi-
symmetrical weighted function λ is a following number USPλ (A)

USPλ (A) =
1

2η

∫ 1

0
(

1
2
−α)λ (α)AU (α)dα. (3.172)

It can be shown that LSPλ (A) ≥ 0 and USPλ (A) ≥ 0. Let us also denote the to-
tal spread of a given fuzzy number A with respect to considered bi-symmetrical
weighted function λ by T SPλ (A), i.e.

T SPλ (A) = LSPλ (A)+USPλ (A). (3.173)

The difference between the right and the left spread of a fuzzy number will be
denoted by ∆SPλ (A), i.e.

∆SPλ (A) =USPλ (A)−LSPλ (A). (3.174)

It is easily seen that as T SPλ (A) is always nonnegative, while ∆SPλ (A) might be
positive or negative as A is more asymmetrical to the right or to the left. Let us also
recall that w(A) denotes the width of a fuzzy number A as it was defined by (1.82),
while EIL(A) and EIU (A) stand for the left and right bound of the expected interval
EI(A) of a fuzzy number A, respectively.

We can now formulate our main result in this section, i.e. the solution of problem
(3.166)-(3.169).

Theorem 3.17. ([122], Theorem 5)
For any regular bi-symmetrical weighted function λ ∈ ΛBS the nearest trape-

zoidal approximation operator preserving expected interval with respect to distance
(1.42) based on λ is such operator T : F(R)→ FT (R), that for any fuzzy number A
assigns the trapezoidal fuzzy number T (A) = (t1, t2, t3, t4), where

(a) if w(A)≥ T SPλ (A) then

t1 = EIL(A)−LSPλ (A),

t2 = EIL(A)+LSPλ (A),

t3 = EIU (A)−USPλ (A),

t4 = EIU (A)+USPλ (A);

(b) if |∆SPλ (A)| ≤ w(A)< T SPλ (A) then

t1 = EIL(A)−
1
2

w(A)+
1
2

∆SPλ (A),

t2 = t3 = EV (A)− 1
2

∆SPλ (A),

t4 = EIU (A)+
1
2

w(A)+
1
2

∆SPλ (A);
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(c) if w(A)< ∆SPλ (A) then

t1 = t2 = t3 = EIL(A),

t4 = 2EIU (A)−EIL(A);

(d) if ∆SPλ (A)< 0 and w(A)< |∆SPλ (A)| then

t1 = 2EIL(A)−EIU (A),

t2 = t3 = t4 = EIU (A).

To prove this theorem the minimization problem under given constraints should
be performed and hence the Karush-Kuhn-Tucker theorem would be useful here, as
it was in Section 3.5.1.

It is worth noting that, similarly as in Theorem 3.8, we have received not a single
operator but four different operators providing the nearest trapezoidal fuzzy number
that preserves the expected value of the original fuzzy number, where T1, corre-
sponding to point (a), leads to a regular trapezoidal fuzzy number, T2 corresponding
to point (b), stands for the operator that leads to a triangular fuzzy number with two
sides, while T3 and T4, corresponding to points (c) and (d), produce triangular fuzzy
numbers with the right or the left side only, respectively. In other words, we ap-
proximate a fuzzy number A by the trapezoidal approximation operator T1 provided
the total dispersion of the given fuzzy number with respect to the considered bi-
symmetrical weighted function measured by the sum of the lower and upper spread
is large enough. Otherwise, we will approximate A by a triangular fuzzy number.
However, for less dispersed fuzzy numbers we have three possible situations: to ap-
proximate a fuzzy number A we apply operator T2 provided the asymmetry of A
is not too big (i.e. there is no big difference between the lower and upper spread).
If A reveals high right asymmetry (i.e. the right spread is significantly larger than
the lower spread) it would be approximated by a triangular fuzzy number with the
right side only, produced by operator T3. Otherwise, a fuzzy number with high left
asymmetry would be approximated by a triangular fuzzy number with the left side
only, produced by operator T4.

It is interesting that in the trapezoidal approximation with the bi-symmetrical
weighted function we have obtained four possible solutions like in the problem with
non-weighted distance considered in Theorem 3.8. Moreover, operators T3 and T4
are identical as given in Theorem 3.8. It means that for very asymmetrical fuzzy
numbers its nearest trapezoidal approximation preserving the expected interval re-
mains independent whether we use weighted or non-weighted distance.

Looking for parallels with the problem with non-weighted distance considered
in Section 3.5.1 we can also notice that the family F(R) of all fuzzy numbers can
be considered as a union of four subfamilies Fi(R) corresponding to different ap-
proximation operators to be used. We may say that a fuzzy number A belongs to
subfamily Fi(R) if and only if Ti (i = 1, . . . ,4) is an appropriate operator that should
be used for getting a proper trapezoidal approximation. One may notice that sub-
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families F1(R), . . . ,F4(R) form a partition of a family of all fuzzy numbers F(R),
i.e. F1(R)∪ . . .∪F4(R) = F(R) and Fi(R)∩F j(R) = /0 for i 6= j.

3.5.4 Trapezoidal approximations preserving the ambiguity and
value

In Section 1.7 we have discussed several characteristics of fuzzy numbers that are
often applied to describe in a concise way some specific features of a fuzzy number
and to unease their representation and handling. One can find among them the value
(1.78) and ambiguity (1.79) of a fuzzy number, that capture the relevant information
on its location and dispersion, respectively, introduced in [81].

In the same paper the authors discussed how to approximate a given fuzzy num-
ber by a suitable trapezoidal one preserving the value and ambiguity. Since it is not
possible to uniquely determine a trapezoidal fuzzy number which is characterized
by four numbers by two conditions only, some additional conditions must be intro-
duced. In particular, we may solve the problem by finding the nearest trapezoidal
approximation of a fuzzy number with respect to given metric and such that the
value and ambiguity are preserved (see [25]).

Thus our goal is to find the operator T : F(R)→ FT (R) which produces for any
A∈F(R) a trapezoidal fuzzy number T (A) nearest to A with respect to the Euclidean
metric (1.40), i.e.

T (A) = arg max
B∈FT (R)

d(B,A) (3.175)

such that

Val(T (A)) = Val(A), (3.176)
Amb(T (A)) = Amb(A). (3.177)

It is worth recalling that the nearest trapezoidal approximation operator preserv-
ing the expected interval, given by Theorem 3.8, does not preserve in general the
value and ambiguity of a fuzzy number (see Theorem 3.9).

Although one can use the Karush-Kuhn-Tucker theorem to solve our problem,
here we present another method, maybe less sophisticated but avoiding the laborious
calculus. Firstly let us introduce some concepts and notation proposed by Yeh in
[195].

An extended trapezoidal fuzzy number is an ordered pair of polynomial func-
tions of degree less than or equal to 1. A family of all extended trapezoidal fuzzy
numbers is given by

FT
e (R) =

{
T = [l,u,x,y] : TL(α) = l + x(α− 1

2
), (3.178)

TU (α) = u− y(α− 1
2
), α ∈ [0,1], l,u,x,y ∈ R

}



3.5 Trapezoidal approximations of fuzzy numbers 89

One can notice immediately the similarity between the notation used in the above
formula and those considered in Section 1.6 for usual fuzzy numbers. Although an
extended trapezoidal fuzzy number may not be a fuzzy number, but the Euclidean
distance between two extended trapezoidal fuzzy numbers is similarly defined as in
(1.40). Moreover, we define the value and the ambiguity of an extended trapezoidal
fuzzy number in the same way as in the case of a trapezoidal fuzzy number.

The extended trapezoidal approximation Te(A) = [le,ue,xe,ye] of a fuzzy number
A is the extended trapezoidal fuzzy number which minimizes the Euclidean distance
d(A,X), where X ∈ FT

e (R) and it is determined by the following formulae:

le =
∫ 1

0
AL(α)dα (3.179)

ue =
∫ 1

0
AU (α)dα (3.180)

xe = 12
∫ 1

0
(α− 1

2
)AL(α)dα (3.181)

ye =−12
∫ 1

0
(α− 1

2
)AU (α)dα (3.182)

One may check that xe and ye are non-negative real number while le ≤ ue by the
definition of a fuzzy number.

The following distance properties of the extended trapezoidal approximation op-
erator are of interest (see [30] for a more general approach).

Proposition 3.2. ([194], Proposition 4.2) Let A be a fuzzy number. Then for any
trapezoidal fuzzy number B

d2(A,B) = d2(A,Te(A))+d2(Te(A),B).

Proposition 3.3. ([194], Proposition 4.4) For any fuzzy numbers A and B

d(Te(A),Te(B))≤ d(A,B).

A straightforward calculations show the invariance of the value and ambiguity
under the extended trapezoidal approximation. Indeed, the following proposition
holds.

Proposition 3.4. ([25], Proposition 4.4) For any fuzzy number A

Val(Te(A)) = Val(A),

Amb(Te(A)) = Amb(A).

Let us now return to our main goal of designing the approximation operator T (A)
satisfying (3.175)-(3.177). Let us also recall the notation introduced in Section 1.6
and the alternative expression (1.70) of the Euclidean metric (1.40). By Propositions
3.2 and 3.3, T (A) = [lT ,uT ,xT ,yT ] if and only if (lT ,uT ,xT ,yT ) ∈ R4 is a solution
of the problem
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min
(
(l− le)2 +(u−ue)

2 +
1

12
(x− xe)

2 +
1

12
(y− ye)

2
)

(3.183)

under the conditions

x≥ 0 (3.184)
y≥ 0 (3.185)

x+ y≤ 2u−2l (3.186)
−6l +6u− x− y =−6le +6ue− xe− ye (3.187)

6l +6u+ x− y = 6le +6ue + xe− ye, (3.188)

where le,ue,xe,ye are given by (3.179)-(3.182). One may immediately obtain that
problem (3.183)-(3.188) becomes

min
(
(x− xe)

2 +(y− ye)
2) (3.189)

under the conditions

x≥ 0 (3.190)
y≥ 0 (3.191)

x+ y≤ 3ue−3le−
1
2

xe−
1
2

ye. (3.192)

Moreover we have
l = le−

1
6
(x− xe) (3.193)

and
u = ue +

1
6
(y− ye). (3.194)

Let us consider the set

MA =

{
(x,y) ∈ R2 : x≥ 0,y≥ 0,x+ y≤ 3ue−3le−

1
2

xe−
1
2

ye

}
(3.195)

and let us denote by PM(Z) the orthogonal projection of Z ∈ R2 on non-empty set
M ⊂ R2 with respect to the Euclidean metric on R2.

It is shown in [25] (Theorem 5) that problem (3.183)-(3.188) has a unique solu-
tion.

As a conclusion, T (A) = [lT ,uT ,xT ,yT ] is the nearest trapezoidal fuzzy number
to a given fuzzy number A such that (3.176) and (3.177) hold if and only if (xT ,yT )
is the orthogonal projection of (xe,ye) on MA and

lT = le−
1
6
(x− xe) (3.196)

uT = ue +
1
6
(y− ye). (3.197)



3.5 Trapezoidal approximations of fuzzy numbers 91

Since xe ≥ 0 and ye ≥ 0, we may obtain the following possible orthogonal projec-
tions PMA(Ze) of Ze = (xe,ye) on MA:

(i) if (xe,ye) ∈ MA, i.e. xe + ye ≤ 3ue− 3le− 1
2 xe− 1

2 ye, then we get xe + ye ≤
2ue−2le, so PMA(xe,ye) = (xe,ye) and hence xT = xe and yT = ye.

(ii) if 3
2 xe− 1

2 ye−3ue +3le > 0 then PMA(xe,ye) = (3ue−3le− 3
2 xe− 1

2 ye,0) and
thus xT = 3ue−3le− 1

2 xe− 1
2 ye and yT = 0.

(iii) if 1
2 xe− 3

2 ye +3ue−3le < 0 then PMA(xe,ye) = (0,3ue−3le− 3
2 xe− 1

2 ye) and
hence xT = 0 and yT = 3ue−3le− 1

2 xe− 1
2 ye.

(iv) otherwise, i.e. if xe + ye > 2ue− 2le, 3
2 xe− 1

2 ye− 3ue + 3le ≤ 0, 1
2 xe− 3

2 ye +
3ue− 3le ≥ 0, then (xT ,yT ) is the orthogonal projection of (xe,ye) on the line
x+y = 3ue−3le− 1

2 xe− 1
2 ye and therefore xT = 3

2 ue− 3
2 le + 1

4 xe− 3
4 ye and yT =

3
2 ue− 3

2 le− 3
4 xe +

1
4 ye.

Now, by (3.179)-(3.182) and (3.196)-(3.197), we get the following theorem (see
[25], Theorem 7).

Theorem 3.18. For any fuzzy number A the trapezoidal fuzzy number T (A) =
[lT ,uT ,xT ,yT ] nearest to A with respect to (1.40), which preserves the value and
ambiguity, is given as follows

(a) if
∫ 1

0 (3α−1)AL(α)dα−
∫ 1

0 (3α−1)AU (α)dα ≤ 0 then

lT =
∫ 1

0
AL(α)dα (3.198)

uT =
∫ 1

0
AU (α)dα (3.199)

xT = 6
∫ 1

0
(2α−1)AL(α)dα (3.200)

yT = −6
∫ 1

0
(2α−1)AU (α)dα, (3.201)

(b) if
∫ 1

0 (3α − 1)AL(α)dα −
∫ 1

0 (3α − 1)AU (α)dα > 0,
∫ 1

0 (3α − 1)AL(α)dα +∫ 1
0 (α − 1)AU (α)dα ≤ 0 and

∫ 1
0 (α − 1)AL(α)dα +

∫ 1
0 (3α − 1)AU (α)dα ≥ 0

then

lT =
1
2

∫ 1

0
(3α +1)AL(α)dα− 1

2

∫ 1

0
(3α−1)AU (α)dα (3.202)

uT = −1
2

∫ 1

0
(3α−1)AL(α)dα +

1
2

∫ 1

0
(3α +1)AU (α)dα (3.203)

xT = 3
∫ 1

0
(α−1)AL(α)dα +3

∫ 1

0
(3α−1)AU (α)dα (3.204)

yT = −3
∫ 1

0
(3α−1)AL(α)dα−3

∫ 1

0
(α−1)AU (α)dα. (3.205)
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(c) if
∫ 1

0 (3α−1)AL(α)dα +
∫ 1

0 (α−1)AU (α)dα > 0 then

lT = 3
∫ 1

0
αAL(α)dα−

∫ 1

0
αAU (α)dα (3.206)

uT = 2
∫ 1

0
αAU (α)dα (3.207)

xT = −6
∫ 1

0
αAL(α)dα +6

∫ 1

0
αAU (α)dα (3.208)

yT = 0, (3.209)

(d) if
∫ 1

0 (α−1)AL(α)dα +
∫ 1

0 (3α−1)AU (α)dα < 0 then

lT = 2
∫ 1

0
αAL(α)dα (3.210)

uT = −
∫ 1

0
αAL(α)dα +3

∫ 1

0
αAU (α)dα (3.211)

xT = 0 (3.212)

yT = −6
∫ 1

0
αAL(α)dα +6

∫ 1

0
αAU (α)dα, (3.213)

By (1.55)-(1.58) we can express the formula for T (A) = [lT ,uT ,xT ,yT ] given in
Theorem 3.18 in the traditional notation, i.e. T (A) = (t1, t2, t3, t4). Moreover, using
expressions for such characteristics of a fuzzy number like its width (1.82), left-hand
ambiguity (1.80) and right-hand ambiguity (1.81), we can rewrite the conditions that
appear in the above theorem in a way more suitable for interpretation.

Corollary 3.6. The nearest trapezoidal approximation operator preserving the value
and ambiguity is such operator T : F(R)→ FT (R) which for any fuzzy number A
assigns the trapezoidal fuzzy number T (A) = T (t1, t2, t3, t4) as follows

(a) if Amb(A)≥ 1
3 w(A) then

t1 = −6
∫ 1

0
αAL(α)dα +4

∫ 1

0
AL(α)dα, (3.214)

t2 = 6
∫ 1

0
αAL(α)dα−2

∫ 1

0
AL(α)dα, (3.215)

t3 = 6
∫ 1

0
αAU (α)dα−2

∫ 1

0
AU (α)dα, (3.216)

t4 = −6
∫ 1

0
αAU (α)dα +4

∫ 1

0
AU (α)dα; (3.217)

(b) if Amb(A)< 1
3 w(A) and 1

3 AmbL(A)≤ AmbU (A)≤ 3AmbL(A) then
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t1 = 2
∫ 1

0
AL(α)dα +2

∫ 1

0
AU (α)dα−6

∫ 1

0
αAU (α)dα, (3.218)

t2 = t3 = 3
∫ 1

0
αAL(α)dα +3

∫ 1

0
αAU (α)dα−

∫ 1

0
AL(α)dα−

∫ 1

0
AU (α)dα,

(3.219)

t4 = 2
∫ 1

0
AL(α)dα +2

∫ 1

0
AU (α)dα−6

∫ 1

0
αAL(α)dα; (3.220)

(c) if Amb(A)< 1
3 w(A) and AmbU (A)< 1

3 AmbL(A) then

t1 = t2 = t3 = 2
∫ 1

0
αAL(α)dα, (3.221)

t4 = 6
∫ 1

0
αAU (α)dα−4

∫ 1

0
αAL(α)dα; (3.222)

(d) if Amb(A)< 1
3 w(A) and AmbU (A)> 3AmbL(A) then

t1 = 6
∫ 1

0
αAL(α)dα−4

∫ 1

0
αAU (α)dα, (3.223)

t2 = t3 = t4 = 2
∫ 1

0
αAU (α)dα. (3.224)

Let us notice that, similarly as in Theorem 3.8, the desired operator may assume
four possible forms depending on shape of the original fuzzy number A. If the input
is rather vague and quite dispersed, i.e. if

Amb(A)≥ 1
3

w(A) (3.225)

holds, then T (A) is a trapezoidal but not triangular fuzzy number identical as in
Theorem 3.8. Actually, t1, t2, t3, t4 given by (3.214)-(3.217) are the same as in (3.50)-
(3.53).

Otherwise, i.e. if condition (3.225) is not fulfilled since A is less vague (and
less dispersed), we obtain a triangular output T (A). It is worth stressing that this
is identically as in the case of the nearest trapezoidal approximation preserving the
expected value considered in Section 3.5.1. Moreover, similarly as in that case we
may get here three possible solutions depending on the symmetry of A: for a sym-
metrical fuzzy number A or for A with a slight asymmetry its approximation T (A)
is given by (3.218)-(3.220); if the left-hand ambiguity is much bigger than the right-
hand ambiguity then T (A) is given by (3.221)-(3.222) and conversely, if the right-
hand ambiguity is much bigger than the left-hand ambiguity then T (A) is given by
(3.223)-(3.224).

To sum up, the nearest trapezoidal approximation preserving the value and the
ambiguity might be determined using the following algorithm:
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Algorithm 3 For any A ∈ F(R)

Step 1. If Amb(A)≥ 1
3 w(A) then apply operator T1 given by (3.214)-(3.217), else

Step 2. if 1
3 AmbL(A) ≤ AmbU (A) ≤ 3AmbL(A) then apply operator T2 given by

(3.218)-(3.220), else
Step 3. if AmbU (A)< 1

3 AmbL(A) then apply operator T3 given by (3.221)-(3.222),
else

Step 4. apply operator T4 given by (3.223)-(3.224).

Let us also discuss briefly main properties of the nearest trapezoidal approxi-
mation preserving the value and the ambiguity. Such properties like the translation
invariance, scale invariance or identity (see Section 3.2) are immediate.

The continuity of the operator T is an immediate consequence of the following
Lipschitz property:

Theorem 3.19. For any fuzzy numbers A and B the nearest trapezoidal approxima-
tion operator T preserving the ambiguity and value satisfies

d(Te(A),Te(B))≤ (2
√

2+1)d(A,B). (3.226)

For the proof we refer the reader to [25], Theorem 19. The problem of finding the
best Lipschitz constant of the trapezoidal approximation operator given in Theorem
3.18 is not easy to study (for the deeper discussion we also refer the reader to [25]).

As we have mention above the nearest trapezoidal approximation operator pre-
serving the expected interval, considered in Section 3.5.1, does not preserve - in
general - the value and ambiguity. Actually, according to Theorem 3.9, we have in-
variance of both characteristics only for more dispersed fuzzy numbers. In all other
cases the ambiguity of the output exceeds the ambiguity of the input. Moreover,
the value of the output depends on the symmetry of the input, i.e. it may remain
invariant for the inputs neither too skew to the left nor to the right or be smaller or
bigger than Val(A) depending on whether A is is relatively skew to the left or to the
right. In all cases the expected value and the width are invariant under such approx-
imation since it is guaranteed by the invariance of the expected interval. Indeed, the
expected value is the middle point of the expected interval while the width is equal
to its length.

Keeping this in mind one may ask about the behavior of this two characteristics
under the nearest trapezoidal approximation operator preserving the value and ambi-
guity. Since by Theorem 3.18 and Corollary 3.6 our operator may assume different
forms depending on the shape of the input fuzzy number A, we have to consider
each case separately.

Firstly, we may conclude that for those fuzzy numbers that satisfy (3.225) we get
the invariance of the expected value and of the width since for such fuzzy numbers
- as it was stated above - the nearest trapezoidal approximation operator preserving
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the value and ambiguity behaves identically as the nearest trapezoidal approxima-
tion operator preserving the expected interval.

In all other cases, i.e. if condition (3.225) is not satisfied, we may compute the
width of the output using appropriate formulae from Theorem 3.18. By (1.82) and
(1.51)-(1.52) we get

w(T (A)) = uT − lT .

Please note, that in three cases (b)-(d) considered in Theorem 3.18 we obtain the
same value of w(T (A)), i.e.

w(T (A)) = 3
(∫ 1

0
αAU (α)dα−

∫ 1

0
αAL(α)dα

)
= 3Amb(A).

However, by Corollary 3.6, in these three cases Amb(A)< 1
3 w(A), hence we obtain

w(T (A))< w(A).
By (1.72) and (1.51)-(1.52) we get the formula for the expected value of the

output

EV (T (A)) =
1
2
(lT +uT ). (3.227)

Substituting (3.202) and (3.203) into (3.227) we get

EV (T (A)) =
1
2

(∫ 1

0
AL(α)dα +

∫ 1

0
AU (α)dα

)
= EV (A).

Now, let us consider case (c) and substitute (3.206) and (3.207) into (3.227). We
get

EV (T (A)) =
1
2

(
3
∫ 1

0
αAL(α)dα +

∫ 1

0
αAU (α)dα

)
.

However, since in this case
∫ 1

0 (3α − 1)AL(α)dα +
∫ 1

0 (α − 1)AU (α)dα > 0,
therefore 3

∫ 1
0 αAL(α)dα +

∫ 1
0 αAU (α)dα >

∫ 1
0 AL(α)dα +

∫ 1
0 AU (α)dα . Thus,

EV (T (A))> 1
2 (
∫ 1

0 AL(α)dα +
∫ 1

0 AU (α)dα) = EV (A).
Finally, substituting (3.210) and (3.211) into (3.227) we get

EV (T (A)) =
1
2

(∫ 1

0
αAL(α)dα +3

∫ 1

0
αAU (α)dα

)
,

but since in case (d) the required condition is
∫ 1

0 (α − 1)AL(α)dα +
∫ 1

0 (3α −
1)AU (α)dα < 0, thus we have

∫ 1
0 αAL(α)dα + 3

∫ 1
0 αAU (α)dα <

∫ 1
0 AL(α)dα +∫ 1

0 AU (α)dα . Therefore, EV (T (A))< 1
2 (
∫ 1

0 AL(α)dα +
∫ 1

0 AU (α)dα) = EV (A).
This way we have proved the following theorem.

Theorem 3.20. Let A∈ F(R) and T : F(R)→ FT (R) denote the nearest trapezoidal
approximation operators preserving the value and ambiguity. Then:

(a) if Amb(A)≥ 1
3 w(A) then
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EV (T (A)) = EV (A),

w(T (A)) = w(A),

(b) if Amb(A)< 1
3 w(A) and 1

3 AmbL(A)≤ AmbU (A)≤ 3AmbL(A) then

EV (T (A)) = EV (A),

w(T (A)) < w(A),

(c) if Amb(A)< 1
3 w(A) and AmbU (A)< 1

3 AmbL(A) then

EV (T (A)) > EV (A),

w(T (A)) < w(A),

(d) if Amb(A)< 1
3 w(A) and AmbU (A)> 3AmbL(A) then

EV (T (A)) < EV (A),

w(T (A)) < w(A).

One may easily notice that Theorem 3.20 is somehow dual to Theorem 3.9.

3.6 Nearest piecewise linear approximation of fuzzy numbers

Trapezoidal approximation of fuzzy numbers delivers the outputs with the simplest
possible membership function acquired by linear sides. Approximation of a fuzzy
number by the closest trapezoidal one does not guarantee automatically any other
interesting properties. Therefore, we often look for the approximation that has some
additional properties like the invariance of the expected interval, discussed in Sec-
tion 3.5.

It seems that the core and the support belong to the most important characteristics
of fuzzy numbers. It is quite obvious since these very sets are the only ones which
are connected with our “sure” knowledge. Actually, the core contains all the points
which surely belong to the fuzzy set under study. On the other hand, the comple-
ment of the support consists of the points that surely do not belong to given fuzzy
set. The belongingness of all other points to the fuzzy set under discussion is just a
matter of degree described quantitatively by the membership function. Hence, one
may easily agree that both the support and core play a key role in fuzzy set anal-
ysis. However, if we try to approximate a fuzzy number by a trapezoidal one that
preserves both the support and core of the input, the approximation problem sim-
plifies too much since we obtain the unique solution just by joining the borders of
the support and core by the straight lines. Unfortunately, the output of such approx-
imation may be significantly distant from the input. The way out from this dilemma
is to consider the approximation by a trapezoidal fuzzy number which is as close
as possible to the input and preserves either the core or the support. However, one
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may easily indicate examples where the output of the approximation with fixed core
has the support significantly different than the support of the input. And conversely,
the output of the approximation with fixed support may have the core significantly
different than the core of the input. A possible way-out from that dilemma is to
consider the trapezoidal approximation with restrictions on support and core dis-
cussed in Section 3.5.2. Unfortunately, the solution given there does not guarantee
the preservation of the support and core but some relations between support/core
input and the output expressed by appropriate inequalities only.

This discussion shows that usually we cannot obtain a satisfying trapezoidal ap-
proximation of an arbitrary fuzzy number that fulfills the nearness criterion and
preserves both the support and core. In this paper we propose to consider the 1-knot
piecewise linear fuzzy numbers (described in Section 1.3.8) as a reasonable solution
of the approximation problem satisfying requirements. More precisely, we suggest
to approximate a fuzzy number by the closest piecewise linear 1-knot fuzzy number
having the same core and the same support as the input.

Let us consider any fuzzy number A ∈ F(R). Suppose we want to approximate
A by an α0-piecewise linear 1-knot fuzzy number S. Our goal now is to find the
approximation which fulfills the following requirements:

1. Indicate the optimal knot α0 for the piecewise linear 1-knot fuzzy number ap-
proximation of A, i.e. we are looking for the solution S(A) in Fπ[0,1](R).

2. The solution should fulfill the so-called nearness criterion, i.e. for any fuzzy
number A the solution S(A) should be the α0-piecewise linear 1-knot fuzzy
number nearest to A with respect to some predetermined metric. In our case we
consider the distance d given by (1.40).

3. The solution should preserve the core and the support of A.

More formally, we are looking for such S∗ = S∗(A) ∈ Fπ[0,1](R) that

d(A,S∗) = min
S∈Fπ[0,1](R)

d(A,S), (3.228)

which satisfies the following constraints:

core(S∗) = core(A), (3.229)
supp(S∗) = supp(A). (3.230)

At first, let us investigate whether the above problem has at least one solution
for every A ∈ F(R). For that we will use the property that the space (F(R),d,+, ·)
can be embedded in the Hilbert space

(
L2[0,1]×L2[0,1], d̃,⊕,�

)
(see e.g. [76]).

Therefore, we have d(A,B) = d̃(A,B), A+B = A⊕B and λ ·A = λ �A, for all
A,B ∈ F(R) and λ ∈ [0,∞). By Proposition 4 in [76] it is known that Fπ[0,1](R) is a
closed subset of L2[0,1]×L2[0,1] in the topology generated by d̃. Unfortunately, it
may happen that the set

CS(A) =
{

S ∈ Fπ[0,1](R) : core(S) = core(A),supp(S) = supp(A)
}

(3.231)
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would not be closed in Fπ[0,1](R). Indeed, suppose that Aβ = [β 3,1], β ∈ [0,1].
Then let us consider a sequence (S(αn,sn))n≥1, sn = (sn,1, ...,sn,6) in CS(A), where
for each n ≥ 1 we have αn = (n− 1)/n, sn,1 = sn,2 = 0 and sn,3 = ... = sn,6 = 1.
It is immediate that (d̃) limn→∞ S(αn,sn) = (d) limn→∞ S(αn,sn) = [0,1] and since
core([0,1]) 6= core(A) it results that the set CS(A) is not closed in L2[0,1]×L2[0,1],
nor in F(R). Therefore, it is an open question whether problem (3.228)-(3.230) has
a solution for any A ∈ F(R).

Interestingly, the solution always exists if we consider a local approximation
problem. Suppose that 0 < a < b < 1 and let us consider the set Fπ[a,b](R) =
{S(α,s) ∈ Fπ[0,1](R) : a≤ α ≤ b}. Now let us consider the following set

CSa,b(A) =
{

S ∈ Fπ[a,b](R) : core(S) = core(A),supp(S) = supp(A)
}
. (3.232)

We are looking for such S∗ = S∗(A) ∈CSa,b(A) that

d(A,S∗) = min
S∈CSa,b(A)

d(A,S). (3.233)

Obviously, there is a sequence (S(αn,sn))n≥1, in CSa,b(A), such that

lim
n→∞

d(A,S(αn,sn)) = inf
S∈CSa,b(A)

d(A,S) := m. (3.234)

Let n0 ∈ N be such that d(A,S(αn,sn)) ≤ m+ 1 for all n ≥ n0. This implies that
d(0,S(αn,sn)) ≤ d(0,A)+ d(A,S(αn,sn)) ≤ d(0,A)+m+ 1 for all n ≥ n0. There-
fore, the sequence (S(αn,sn))n≥1 is bounded with respect to metric d and hence
with respect to d̃. By Lemma 2 (iii) in [76] it results that each sequence (cn,i)n≥1 ,
i = 1, . . . ,8, is bounded, where

sn,1 = cn,1, sn,2 = cn,2 ·αn + cn,1, sn,3 = cn,3 + cn,4,
sn,4 = cn,7 + cn,8, sn,5 = cn,5 + cn,6 ·αn, sn,6 = cn,5.

Without loss of generality let us suppose that limn→∞ αn =α0 (obviously we have
α0 ∈ [a,b]) and limn→∞ cn,i = ci, i = 1, . . . ,8. Letting n→ ∞ in the above equations
and denoting s =(s1, ...,s6), where si = limn→∞ sn,i, i = 1, . . . ,6, it easily results that
S(α0,s) ∈ Fπ[a,b](R). Then, since S(αn,sn) ∈CSa,b(A) for all n ≥ 1, it follows that
sn,1 =AL(0), sn,3 =AL(1), sn,4 =AU (1) and sn,6 =AU (0) and therefore we easily ob-
tain that S(α0,s) preserves the core and support of A and hence S(α0,s) ∈CSa,b(A).
On the other hand, by Lemma 3 in [76] (making some suitable substitutions) we
also obtain that (d̃) limn→∞ S(αn,sn) = S(α0,s). This property together with rela-
tion (3.234) and the continuity of d, implies that d(A,S(α0,s)) = m. Hence we have
just proved that problem (3.233) has at least one solution. Note that one can easily
prove that CSa,b(A) is not convex in L2[0,1]×L2[0,1] which means that the solution
of problem (3.233) may not be unique. The results are summarized in the following
theorem.
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Theorem 3.21. ([77], Theorem 1) If A ∈ F(R) and 0 < a < b < 1, then there exists
at least one element S∗ = S∗(A) ∈ Fπ[a,b](R) such that d(A,S∗) = min

S∈CSa,b(A)
d(A,S).

Let us show how to find a solution to problem (3.233). We have to minimize the
function

f (α,x,y) =
∫

α

0

(
AL(β )−

(
AL(0)+(x−AL(0)) ·

β

α

))2

dβ

+
∫ 1

α

(
AL(β )−

(
x+(AL(1)− x) · β −α

1−α

))2

dβ

+
∫

α

0

(
AU (β )−

(
y+(AU (0)− y) · α−β

α

))2

dβ

+
∫ 1

α

(
AU (β )−

(
AU (1)+(y−AU (1)) ·

1−β

1−α

))2

dβ

subject to AL(0)≤ x≤ AL(1) and AU (1)≤ y≤ AU (0).
This problem may have more than one solution and, in addition, it seems to be

difficult to be solved analytically in this form since the equation f
′
α(α,x,y) = 0

cannot be solved in general as we are forced to work with functions where we
cannot separate α from the integral. Therefore, we will start by considering the
knot α = α0 being fixed. For some α0 ∈ (0,1) we want to minimize the function
gα0(x,y) = f (α0,x,y) with the same restrictions as above. Obviously we can split
this problem into two independent sub-problems. Firstly, we have to minimize the
function

x 7→
∫

α0

0

(
AL(β )−

(
AL(0)+(x−AL(0)) ·

β

α0

))2

dβ

+
∫ 1

α0

(
AL(β )−

(
x+(AL(1)− x) · β −α0

1−α0

))2

dβ

on the interval [AL(0),AL(1)] and then we have to minimize the function

y 7→
∫

α0

0

(
AU (β )−

(
y+(AU (0)− y) · α0−β

α0

))2

dβ

+
∫ 1

α0

(
AU (β )−

(
AU (1)+(y−AU (1)) ·

1−β

1−α0

))2

dβ

on the interval [AU (1),AU (0)]. Obviously, the above functions are quadratic func-
tions of one variable and after some simple calculations we obtain their unique min-
imum points on R as
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xm = 3
∫

α0

0

(
AL(β )−AL(0) ·

α0−β

α0

)
· β

α0
dβ

+3
∫ 1

α0

(
AL(β )−AL(1) ·

β −α0

1−α0

)
· 1−β

1−α0
dβ

and

ym = 3
∫

α0

0

(
AU (β )−AU (0) ·

α0−β

α0

)
· β

α0
dβ

+3
∫ 1

α0

(
AU (β )−AU (1) ·

β −α0

1−α0

)
· 1−β

1−α0
dβ .

From here we easily obtain the solutions of our two sub-problems as

x0 =

AL(0) if xm < AL(0),
AL(1) if xm > AL(1),
xm if AL(0)≤ xm ≤ AL(1)

(3.235)

and

y0 =

AU (1) if ym < AU (1),
AU (0) if ym > AU (0),
ym if AU (1)≤ ym ≤ AU (0).

(3.236)

When a computer implementation is needed, in most of the cases, xm and ym may
be easily calculated via numeric integration (see [96]).

Thus we have just proved for fixed α the existence and uniqueness of the piece-
wise linear 1-knot approximation which preserves the core and the support. More
precisely, we have the following approximation result.

Theorem 3.22. ([77], Theorem 2) Suppose that α0 ∈ (0,1) and for some fuzzy num-
ber A let us define the set

CSα0(A) = {S ∈ F
π(α0)(R) : core(S) = core(A) and supp(S) = supp(A)}.

Then there exists a unique best approximation (with respect to metric d) of A rel-
atively to the set CSα0(A). This approximation is Sα0(A) = S(α0,s(A)), s(A) =
(s1(A), ...,s6(A)), where

s1(A) = AL(0), s2(A) = x0, s3(A) = AL(1),
s4(A) = AU (1), s5(A) = y0, s6(A) = AU (0),

and x0,y0 are given by (3.235) and (3.236) respectively.

To sum up, we use the previous theorem to approach a solution S∗(A)∈CSa,b(A)
of problem (3.233). We construct a sequence (Sαn(A))n≥1 in CSa,b(A) such that
(d) limn→∞ Sαn(A) = S∗(A). Here, Sαn(A) is the unique best approximation of A
relatively to the set CSαn(A).
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It is worth noticing that when using numerical optimization techniques, one can
get a local minimum which is not its global minimum, so an algorithm falls not
into optimal but a suboptimal solution. For more details and examples we refer the
reader to [77].

Finally let us mention that a general case of the piecewise linear 1-knot fuzzy
number approximation is broadly discussed in [76]. We consider there an approxi-
mation without restrictions on the support and core both with a fixed knot and the
problem of the optimal choice of the knot of the piecewise linear fuzzy number.

3.7 Nonlinear approximations of fuzzy numbers

3.7.1 Basic ideas and tools

Trapezoidal approximation of fuzzy numbers plays a fundamental role in many
fields and applications where extended or massive fuzzy computations are required.
As we have mentioned above, the main advantage of the trapezoidal approxima-
tion is its simplicity in calculations, natural interpretation and satisfying properties.
However, it seems that in some situations a nonlinear approximation of fuzzy num-
bers would be desirable. The piecewise linear approximation of fuzzy numbers de-
scribed in Section 3.6 may be perceived as an idea of extending possible outputs still
remaining in a family of membership functions having simple shapes. Although it
is a quite intuitive solution, its shortcoming is nondifferentiation of its sides. Some
suggestions of other approaches to nonlinear approximation of fuzzy numbers can
be found e.g. in [1, 2, 20, 21, 158]. In this section we present a general framework for
the nonlinear approximation of fuzzy numbers satisfying the following key points:

• the basic general model should be able to apply for fuzzy numbers given both in
L-R and L-U representations;

• the families of parameterized monotonic functions to be used are sufficiently
flexible to cover a large set of possible curves of membership functions;

• our method should fulfill some approximation criteria, depending usually on the
application at hand, such as least squares or other distance minimization, support
or core or expected interval preservation, nearest ambiguity or value approxima-
tion among others.

To reach this goal we need special families of flexible monotonic curves de-
scribed by sufficiently large number of parameters to allow multiple approximation
criteria and satisfy various requirements. Let us consider the following two families
of nonlinear monotonic functions to use as shape generators (see [178]).

(1) the (2,2)-rational standardized monotonic spline

pR2(t;β0,β1) =
t2 +β0t(1− t)

1+(β0 +β1−2)t(1− t)
, (3.237)
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where β0,β1 ≥ 0 and t ∈ [0,1];
(2) the mixed cubic-exponential spline

pMS(t;β0,β1) =
1
a

[
t2(3−2t)+β0−β0(1− t)a +β1ta] , (3.238)

where a = 1+β0 +β1, β0,β1 ≥ 0 and t ∈ [0,1].

It is easy to verify that for arbitrary nonnegative values of parameters β0,β1 the
two families of functions are monotonic for all t ∈ [0,1] and satisfy following con-
ditions (the derivatives p′ are made with respect to the first variable t):

p(0) = 0,
p(1) = 1,

p′(0) = β0,

p′(1) = β1,

where p denotes either pR2 or pMS spline.
All the proposed shape functions are monotonic over [0,1]. Note that generally

it is not true for standard splines or other polynomials of degree greater than two.
Please also note the following properties that might be of interest:

• if β0 = β1 = 1 then both pR2 and pMS are linear;
• if β0 +β1 = 2 then both pR2 and pMS are quadratic;
• if β0 +β1 is integer (or zero) then pMS is a non-monotonic polynomial.

One may prove the following important lemma.

Lemma 3.7. ([124], Lemma 1) Let p denote either pR2 or pMS spline. Then we have

(i) 0 <
∫ 1

0 p(t;β0,β1)dt < 1 ∀β0,β1 ≥ 0,
(ii) lim

β1→+∞

∫ 1
0 p(t;0,β1)dt = 0,

(iii) lim
β0→+∞

∫ 1
0 p(t;β0,0)dt = 1.

By Lemma 3.7 both pR2 and pMS are able to “cover” the whole square [0,1]×
[0,1] giving an infinite number of shape functions.

Some particular cases of these functions are of interest to meet specific re-
quirements. For example, pR2(

1
2 ;β0,β1) =

1
2 if and only if β0 = β1 = β and then∫ 1

0 pR2(t;β ,β )dt = 1
2 for all β ≥ 0.

A family of curves obtained from pR2(t;β0,β1) for different values of parameters
is depicted in Figure 3.6.

We can also use other one-parameter flexible forms of the splines discussed
above, like pR2,1(t,a) = pR2(t;a,0), i.e.

pR2,1(t,a) =
t2−at2 +at

1+at−at2−2t +2t2 , (3.239)
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Fig. 3.6 pR2(t;β0,β1) curves for different β0,β1 (pointed lines correspond to β0 = β1).

where t ∈ [0,1], a≥ 0 or pR2,2(t,b) = pR2(t;0,b), i.e.

pR2,2(t,b) =
t2

1+bt−bt2−2t +2t2 , (3.240)

where t ∈ [0,1], b ≥ 0. Possible shapes obtained for different values of parameters
a and b are shown in Figure 3.7 and Figure 3.8, respectively. Note that pR2,1(t;a)+
pR2,2(1− t;a) = 1 for all t ∈ [0,1].

We can also consider the combinations of two splines, i.e.

PR2,λ (t;a,b) = (1−λ )pR2,1(t;a)+λ pR2,2(t;b), (3.241)

where λ ∈ [0,1], getting thus three-parameter curves.
Analogous constructions can be obtained by using pMS splines, like pMS,1(t,a) =

pMS(t;a,0), i.e.

pMS,1(t,a) =
1

1+a
[t2(3−2t)+a−a(1− t)1+a], (3.242)

where t ∈ [0,1] and a≥ 0, or pMS,2(t,b) = pMS(t;0,b), i.e.

pMS,2(t,b) =
1

1+b
[t2(3−2t)+bt1+b], (3.243)

where t ∈ [0,1] and b≥ 0. We can also combine the two with λ ∈ [0,1] obtaining

PMS,λ (t;a,b) = (1−λ )pMS,1(t;a)+λ pMS,2(t;b). (3.244)
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Fig. 3.7 pR2,1(t;a) for different a≥ 0.

Fig. 3.8 pR2,2(t;b) for different b≥ 0.

Examples of curves PMS,0.5(t;a,b) are in Figure 3.9.
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Fig. 3.9 PMS,0.5(t;a,b) for different a,b≥ 0.

3.7.2 Splines and fuzzy numbers

We have discussed the parametric functions pR2(.;β0,β1) and pMS(.;β0,β1) because
of their capability to construct fuzzy numbers. Actually, if p denotes either pR2 or
pMS spline then

µW (x) =


p( x−w1

w2−w1
;β0,L,β1,L) if x ∈ [w1,w2]

1 if x ∈ [w2,w3]

1− p( x−w3
w4−w3

;β0,R,β1,R) if x ∈ [w3,w4]

0 otherwise

(3.245)

is a membership function of a fuzzy number W expressed using the L-R represen-
tation. The same fuzzy number can be expressed in the L-U representation by its
alpha-cuts [WL(α),WU (α)] for α ∈ [0,1], where

WL(α) = w1 +(w2−w1)p(α;β
−
0 ,β−1 ), (3.246)

WU (α) = w4 +(w3−w4)p(α;β
+
0 ,β+

1 ). (3.247)

Here, obviously, w1 ≤ w2 ≤ w3 ≤ w4. If needed, we may denote w1,w2,w3 and w4
also by WL(0), WL(1), WU (1) and WU (0), respectively.

As it is possible to go from the L-R to the L-U representations by inverting the
model functions, further on we will use the L-U form only (however, analogous
formulations are possible for the L-R form as well). The obvious relations between
the derivatives of µW (x) and the derivatives of WL(α) and WU (α) gives (provided
they are not null)
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β0,L =
1

β
−
0

, β1,L =
1

β
−
1

, β0,R =
1

β
+
0

, β1,R =
1

β
+
1

. (3.248)

A family of all fuzzy numbers with sides modeled by pR2 or pMS spline will be
denoted by FpR2 or FpMS , respectively (or simply Fp when we discuss fuzzy numbers
modeled by p which is either pR2 or pMS).

Let us consider the expected interval EI(W ) = [EIL(W ),EIU (W )] of a fuzzy
number W ∈ Fp. By (1.71) and (3.246)-(3.247) it is given by

EIL(W ) = w1 +(w2−w1)
∫ 1

0
p(α;β

−
0 ,β−1 )dα, (3.249)

EIU (W ) = w4 +(w3−w4)
∫ 1

0
p(α;β

+
0 ,β+

1 )dα

and hence we have four parameters β
−
0 ,β−1 ,β+

0 ,β+
1 ≥ 0 free for our further pur-

poses. Moreover, we may have six parameters of freedom if PR2,λ−(t;a−,b−) and
PR2,λ+(t;a+,b+) or PMS,λ−(t;a−,b−) and PMS,λ+(t;a+,b+) are used.

If β
−
0 = β

−
1 = β− and β

+
0 = β

+
1 = β+ we get

∫ 1
0 pR2(t;β±,β±)dt = 1

2 and the
expected interval is

EI(W ) =

[
w1 +w2

2
,

w3 +w4

2

]
,

for all nonnegative β−,β+. Therefore, if we are interested in such approximation
of a fuzzy number A that preserves its expected interval then we set the following
constraints

w1 +w2 = 2
∫ 1

0
AL(α)dα,

w3 +w4 = 2
∫ 1

0
AU (α)dα

on w1 ≤ w2 ≤ w3 ≤ w4 while the two parameters β−,β+ ≥ 0 still can be used for
additional requirements. Thus, using our approach we obviously loose the benefits
of the approximation with linear sides but the form of p(t;β ,β ) is simple and it is
easy to invert analytically by solving a quadratic equation instead of linear. It also
reduces to linear if β = 1.

If we like to preserve or approximate the middle set (i.e. the alpha cut for α = 0.5)
we have

p(
1
2

;β0,β1) =
1+β0

β0 +β1 +2

and we obtain the following conditions

w1 +(w2−w1)
1+β

−
0

β
−
0 +β

−
1 +2

= AL(0.5),

w4 +(w3−w4)
1+β

+
0

β
+
0 +β

+
1 +2

= AU (0.5),
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giving (if w1,w2,w3,w4 are known) the following equations/constraints for the pa-
rameter β :

(w2−AL(0.5))β−0 +(w1−AL(0.5))β−1 = 2AL(0.5)−w1−w2,

(w3−AU (0.5))β+
0 +(w4−AU (0.5))β+

1 = 2AU (0.5)−w3−w4.

In the special case of β0 +β1 = 2 we obtain a parabolic shape function

p(t;β0,β1) = Q(t;β ) = t2 +(2−β )t(1− t)

where β0 = 2−β ,β1 = β with β ∈ [0,2] and∫ 1

0
Q(α;β )dα =

1
3
+

1
6

β

is in the range [ 1
3 ,

2
3 ]. In this case the equations for the expected interval invariance

are as follows

a1 +(a2−a1)(
1
3
+

1
6

β
−) = 2

∫ 1

0
AL(α)dα,

a4 +(a3−a4)(
1
3
+

1
6

β
+) = 2

∫ 1

0
AU (α)dα.

Sometimes we are interested in the value and the ambiguity of fuzzy numbers.
For a given reducing function s = s(α), by (1.74)-(1.75), these characteristics for a
fuzzy number W ∈ Fp might be expressed as follows

Vals(W ) =
w1 +w4

2
+ (w2−w1)

∫ 1

0
s(α)p(α;β

−
0 ,β−1 )dα

+ (w3−w4)
∫ 1

0
s(α)p(α;β

+
0 ,β+

1 )dα

and

Ambs(W ) =
w4−w1

2
+ (w1−w2)

∫ 1

0
s(α)p(α;β

−
0 ,β−1 )dα

+ (w3−w4)
∫ 1

0
s(α)p(α;β

+
0 ,β+

1 )dα.

The integrals above can be computed by numerical approximations (e.g. the trape-
zoidal or the Simpson formulas) but for specific cases, like s(α) = 1 or s(α) = α ,
we can proceed analytically.

With reference to equations (3.246)-(3.247) let us define the following integrals
depending on the slope parameters:
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I(β0,β1) =
∫ 1

0
p(α;β0,β1)dα, (3.250)

J(β0,β1) =
∫ 1

0
α p(α;β0,β1)dα. (3.251)

For the family of parametric functions pMS(α;β0,β1) we obtain the nonlinear func-
tions of β0,β1

IMS(β0,β1) =
2+(3+2β0)(β0 +β1)

2(1+β0 +β1)(2+β0 +β1)
,

JMS(β0,β1) =
42+(84+40β0)(β0 +β1)

20(1+β0 +β1)(2+β0 +β1)(3+β0 +β1)
,

which become linear if, for example, we know or we assume a given value of
m = β0 +β1 ≥ 0. Note that fixing the value of m (we suggest m to be integer) is
equivalent to fixing the “degree” of pMS as a function of α . If m is integer then pMS
in a polynomial of degree one if β0 = β1 = 1, of degree two if β0+β1 = 2, of degree
three if β0 = β1 = 0 or of degree m+1 if m = β0 +β1 ≥ 3. In these cases we obtain

IMS(β0,m−β0) =
2+(3+2β0)m

2(1+m)(2+m)
,

JMS(β0,m−β0) =
42+(84+40β0)m

20(1+m)(2+m)(3+m)
,

with constraint 0≤ β0 ≤ m.

3.7.3 Nonlinear approximations with fixed support and core

Suppose we want to approximate given fuzzy number A by a fuzzy number W ∈ Fp

which preserves the support and core of A. Assuming that supp(A) = [a1,a4] and
core(A) = [a2,a3], our requirements immediately reduce to wi = ai for i = 1, . . .4.
Now we have to estimate the shape-parameters β

−
0 ,β−1 and β

+
0 ,β+

1 such that a dis-
tance measure Dist(A,u) is minimized subject to the nonnegativity constraints on
β
−
0 ,β−1 and β

+
0 ,β+

1 . Here W results to be a function of (β−0 ,β−1 ,β+
0 ,β+

1 ). So our
problem is

Dist(A,W (β−0 ,β−1 ,β+
0 ,β+

1 )−→min

with respect to β
−
0 ,β−1 ,β+

0 ,β+
1 ≥ 0.

The distance Dist(A,W (β−0 ,β−1 ,β+
0 ,β+

1 )) can be calculated if we have other in-
formation on A. For example, if the membership function of A is known at other
points we can approximate the distance by the least squares functional. Suppose
that µA(x j) = µ j for given x j ∈ (a1,a2), j = 1,2, ..., jL and for given x j ∈ (a3,a4),
where j = jL +1, jL +2, ..., jL + jR (i.e. jL values correspond to the left side of the
fuzzy number A while jR values to the right side). So we should minimize
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Dist(A,W (β−0 ,β−1 ,β+
0 ,β+

1 )) = (3.252)

=
jL

∑
j=1

{
x j−

[
a1 +(a2−a1)p(µ j;β

−
0 ,β−1 )

]}2

+
jL+ jR

∑
j= jL+1

{
x j−

[
a4 +(a3−a4)p(µ j;β

+
0 ,β+

1 )
]}2

with respect to β
−
0 ,β−1 ,β+

0 ,β+
1 ≥ 0.

Therefore, we have obtained a nonlinear least squares problem with four vari-
ables and nonnegativity constraints which can be solved by any numerical proce-
dure. The minimization (3.252) can be split into two independent problems, one to
determine β

−
0 ,β−1 and the other for β

+
0 ,β+

1 .
A special case applies if we have available a single additional observation for the

left side ( jL = 1), say µA(x−) = µ− with x− ∈ (a1,a2), µ− ∈ (0,1) and for the right
( jR = 1), say µA(x+) = µ+ with x+ ∈ (a3,a4), µ+ ∈ (0,1).

An interpolating solution satisfies equations

a1 +(a2−a1)p(µ−;β
−
0 ,β−1 ) = x−,

a4 +(a3−a4)p(µ+;β
+
0 ,β+

1 ) = x+.

If we use pR2(t;β0,β1) for p(t;β0,β1), we obtain two equations and four nonnega-
tive variables

(a2− x−)β−0 +(a1− x−)β−1 = γ
−, (3.253)

(a3− x+)β+
0 +(a4− x+)β+

1 = γ
+, (3.254)

where

γ
− =

(a1− x−)(2µ−
2
+2µ−−1)− (a2−a1)µ

−2

µ−(1−µ−)
,

γ
+ =

(a4− x+)(2µ+2
+2µ+−1)− (a3−a4)µ

+2

µ+(1−µ+)
.

Equations (3.253)-(3.254) represent a line in the plane (β0,β1) having an infinite
number of nonnegative solutions (note that a2−x− > 0, a1−x− < 0 and a3−x+ <
0, a4− x+ > 0). So we have many possible choices. We suggest three interesting
solutions:

1. The unique solution minimizing β 2
0 + β 2

1 is obtained at the intersections of
lines (3.253)-(3.254) with the axes and has the following closed form:
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if γ
− = 0 then β

−
0 = 0,β−1 = 0; (3.255)

if γ
− > 0 then β

−
0 =

γ−

b− x−
,β−1 = 0;

if γ
− < 0 then β

−
0 = 0,β−1 =

γ−

a− x−
.

and

if γ
+ = 0 then β

+
0 = 0,β+

1 = 0; (3.256)

if γ
+ > 0 then β

+
0 = 0,β+

1 =
γ+

d− x+
;

if γ
+ < 0 then β

+
0 =

γ+

c− x+
,β+

1 = 0.

Solutions (3.255)-(3.256) for two fuzzy numbers A1 and A2 with the same sup-
port and core given by a1 = 0, a2 = 2.5, a3 = 3, a4 = 5 and such that µA1(0.5) = 0.5,
µA1(3.5) = 0.9 and µA2(0.6) = 0.5, µA2(3.5) = 0.8, are illustrated in Figure 3.10.

Fig. 3.10 Solutions (3.255)-(3.256) for two examples data.

2. Recall that functions p(t;β0,β1) are linear if and only if β0 = β1 = 1. So it
is reasonable to “measure” its nonlinearity by the distance between actual values of
(β0,β1) and (1,1). Moreover, one may be interested to find such (β0,β1) that min-
imize this distance, i.e. which minimize (β0−1)2+ (β1−1)2. The unique solution
for this criterion is obtained by the following procedure:
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if β̂
−
0 ≥ 0 and β̂

−
1 ≥ 0 then β

−
0 = β̂

−
0 , β

−
1 = β̂

−
1 ; (3.257)

if β̂
−
0 < 0 then β

−
0 = 0, β

−
1 =

γ−

a1− x−
;

if β̂
−
1 < 0 then β

−
0 =

γ−

a2− x−
,β−1 = 0.

where

β̂
−
0 =

γ−(a2− x−)+(a1− x−)2− (a2− x−)(a1− x−)
(a2− x−)2 +(a1− x−)2

β̂
−
1 = 1+

(a1− x−)(β̂−0 −1)
(a2− x−)

;

for β
+
0 , β

+
1 the procedure is analogous

if β̂
+
0 ≥ 0 and β̂

+
1 ≥ 0 then β

+
0 = β̂

+
0 , β

+
1 = β̂

+
1 ; (3.258)

if β̂
+
0 < 0 then β

+
0 = 0, β

+
1 =

γ+

a3− x+
;

if β̂
+
1 < 0 then β

+
0 =

γ+

a4− x+
,β+

1 = 0.

where

β̂
+
0 =

γ+(a3− x+)+(a4− x+)2− (a4− x+)(a3− x+)
(a3− x+)2 +(a4− x+)2

β̂
+
1 = 1+

(a4− x+)(β̂+
0 −1)

(a3− x+)
.

and

if γ
+ = 0 then β

+
0 = 0,β+

1 = 0; (3.259)

if γ
+ > 0 then β

+
0 =

γ+

a4− x+
,β+

1 = 0;

if γ
+ < 0 then β

+
0 = 0,β+

1 =
γ+

a3− x+
.

Solutions (3.257)-(3.258) for the same data as before are illustrated in Figure
3.11.

3. In cases 1. and 2. we made no assumptions on the parameters β
−
0 , β

−
1 , β

+
0 , β

+
1

but in practise we may know or desire to have them partially fixed. For example, we
require a differentiable membership function and this is equivalent to have β1,L = 0
and β1,R = 0. Writing the fitting equations in terms of the L-R representation (3.245)
we obtain the following solution
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Fig. 3.11 Solutions (3.257)-(3.258) for two examples data.

β0,L =

{
ω−

t−(1−t−)(1−µ−) if ω− > 0
0 if ω− ≤ 0,

(3.260)

where t− = x−−a
b−a and ω− = (1−2t−)µ−− (1−2µ−)(t−)2,

β0,R =

{
ω+

t+(1−t+)µ+ if ω+ > 0
0 if ω+ ≤ 0,

(3.261)

where t+ = x+−a3
a4−a3

and ω+ = (1−µ+)(1−2t+)−(2µ+−1)(t+)2. Solution (3.260)-
(3.261) for the same data as considered before are illustrated in Figure 3.12.

3.7.4 Nonlinear approximations with fixed shapes

Suppose now that the general shape of W is fixed by determining values of the
parameters (β−0 ,β−1 ,β+

0 ,β+
1 )) and we like to find such W which approximates best

the core and support of A, i.e. to find w1,w2,w3 and w4 such that

Dist(A,W (w1,w2,w3,w4))→min .

Actually, now W is a function of w1,w2,w3,w4 that should fulfill the requirement
w1 ≤ w2 ≤ w3 ≤ w4.
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Fig. 3.12 Solutions (3.260)-(3.261) for two examples data.

In this case the resulting optimization problem is easier than in Section 3.7.3.
Suppose, as before, that we know the membership of A at jL+ jR points, µA(x j)= µ j
for given x j ∈ (a1,a2), j = 1,2, ..., jL and for given x j ∈ (a3,a4), j = jL + 1, jL +
2, ..., jL + jR. Define p j = p(µ j;β

−
0 ,β−1 ) for j = 1,2, ..., jL and p j = p(µ j;β

+
0 ,β+

1 )
for j = jL +1, jL +2, ..., jL + jR.

Now we have to minimize

Dist(A,W (w1,w2,w3,w4)) =
jL

∑
j=1

{
x j− [w1 +(w2−w1)p j]

}2 (3.262)

+
jL+ jR

∑
j= jL+1

{
x j− [w3 +(w3−w4)p j]

}2

where

w1−w2 ≤ 0
w2−w3 ≤ 0
w3−w4 ≤ 0.

We obtain a linear least squares problem with four variables and three linear con-
straints that can be solved using standard well known procedures (see, e.g., [143]).
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3.8 Fuzzy number approximation via shadowed sets

3.8.1 Shadowed sets

A membership function indicates a grade to which a given point in the universe of
discourse belongs to a concept under study described by given fuzzy set. Numerous
methods for constructing membership functions have been described in the literature
(see, e.g., [112] or [137] and references given there) and it has been found that the
most uncertainty in the determination of the membership function is associated with
those grades situated around 0.5. In contrast, one is usually much more confident in
assigning values close to 1 or close to 0 corresponding to elements which might
be surely included or excluded from the concept, respectively. This observation led
Pedrycz to the idea of shadowed sets ([163] and developed later [165, 164]) which
form an alternative way of modeling vagueness that relies on basic concepts of truth
values (yes/no) and on entire unit interval perceived as a zone of uncertainty.

Although one can model an imprecise object under study directly by an appro-
priate shadowed set, these very shadowed sets might be also conceived as another
method for simplifying fuzzy sets. More precisely, starting with the initial fuzzy set
we may try to construct a corresponding shadowed set that capture the essence of the
fuzzy set while reducing simultaneously computational efforts and simplifying the
interpretation. This perspective was suggested from the very beginning by Pedrycz
who even proposed an approximation algorithm (see [163]). Another algorithm for
fuzzy number approximation that throws a bridge to interval and trapezoidal approx-
imation mentioned above was proposed by Grzegorzewski [114]. However, before
showing it let us define formally shadowed sets.

Formally speaking, a shadowed set S in a universe of discourse X is a set-valued
mapping S : X→{0, [0,1],1} having the following interpretation (see [163]):

• all elements of X for which S(x) = 1 are called a core of the shadowed set S and
they embraced all elements that are fully compatible with the concept conveyed
by S,

• all elements of X for which S(x) = 0 are completely excluded from the concept
described by S,

• all elements of X for which S(x) = [0,1], called a shadow, are uncertain.

Thus for a shadowed set S we define the core as core(S) = {x ∈ X : S(x) = 1},
the shadow by sh(S) = {x ∈X : S(x) = [0,1]} and the support by supp(S) = cl({x ∈
X : S(x) 6= 0}).

The usage of the unit interval in this last case reflects and helps quantify the
effect of hesitation and shows that any element from the shadow could be excluded
or exhibit partial membership or could be fully allocated to S.

One can view shadowed sets as an example of a three-valued logic. In particular,
basic operations on shadowed sets are isomorphic with those encountered in the
three-valued logic, i.e.
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• A∪B
A\B 0 [0,1] 1

0 0 [0,1] 1
[0,1] [0,1] [0,1] 1

1 1 1 1

• A∩B
A\B 0 [0,1] 1

0 0 0 0
[0,1] 0 [0,1] [0,1]

1 0 [0,1] 1

• ¬A
A ¬A
0 1

[0,1] [0,1]
1 0

Further on we consider shadowed sets defined on the real line, i.e. when X= R.
An example of such shadowed set is given in Figure 3.13, where core(S) = [s2,s3] =
[2,4], sh(S) = (s1,s2)∪ (s3,s4) = [1,2]∪ [4,5] and supp(S) = [s1,s4] = [1,5].

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

α

Fig. 3.13 An example of a shadowed set.

3.8.2 The shadowed set approximation

Our aim now is to construct a shadowed set preserving the uncertainty associated
with the original fuzzy set. When trying to achieve this goal we have to keep in
mind that while in fuzzy set we encounter intermediate membership grades located
between 0 and 1, in shadowed set we have to allocate the entire uncertainty in a
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compact shadow. We create this shadow using two successive interval approxima-
tions (see Section 3.3). This idea comes from the observation that a shadowed set A
might be perceived as a conjunction of two rectangular fuzzy numbers: the “wider”
one describing all points which possibly belong to A and the second one - more
“narrow” - corresponding to elements almost surely belonging to A. Since degrees
of membership both high (close to 1) and low (close to 0) are much more informative
than those close to 0.5 we try to combine two interval approximations for two dif-
ferent weighting functions: the first one with increasing weighting function w∗(α)
and the second one with decreasing weighting function w∗∗(α). Therefore, our goal
is to reach two intervals C∗(A) = [C∗L,C

∗
U ] and C∗∗(A) = [C∗∗L ,C∗∗U ] that correspond

to our optimization problem under w∗(α) and w∗∗(α), respectively. In this section
we consider two following weighting functions: w∗(α) = α and w∗∗(α) = 1−α .

Thus, by (1.42), we have to minimize

d2
w(A,C

∗(A)) =
∫ 1

0
α(AL(α)−C∗L)

2dα +
∫ 1

0
α(AU (α)−C∗U )

2dα (3.263)

with respect to C∗L and C∗U and to minimize

d2
w(A,C

∗∗(A)) =
∫ 1

0
(1−α)(AL(α)−C∗∗L )2dα +

∫ 1

0
(1−α)(AU (α)−C∗∗U )2dα

(3.264)
with respect to C∗∗L and C∗∗U .

In order to minimize D(C∗L,C
∗
U ) = d2

w(A,C
∗(A)) we have to solve a following

system of equations 
∂D(C∗L,C

∗
U )

∂C∗L
= 0

∂D(C∗L,C
∗
U )

∂C∗U
= 0

which is equivalent to { ∫ 1
0 α(AL(α)−C∗L)dα = 0∫ 1
0 α(AU (α)−C∗U )dα = 0.

The solution is

C∗L = 2
∫ 1

0
αAL(α)dα (3.265)

C∗U = 2
∫ 1

0
αAU (α)dα. (3.266)

After simple calculations it is easy to prove that C∗(A) = [C∗L,C
∗
U ] with the bor-

ders (3.265) and (3.266) is indeed the nearest interval approximation of fuzzy
number A with respect to metric (3.263). Similarly, when minimizing function
D(C∗∗L ,C∗∗U ) = d2

w(A,C
∗∗(A)) we obtain C∗∗(A) = [C∗∗L ,C∗∗U ] with the borders given

by
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C∗∗L = 2
∫ 1

0
(1−α)AL(α)dα = 2

∫ 1

0
AL(α)dα−C∗L, (3.267)

C∗∗U = 2
∫ 1

0
(1−α)AU (α)dα = 2

∫ 1

0
AU (α)dα−C∗U . (3.268)

It can be shown that

Lemma 3.8. For any fuzzy number A we have

C∗(A)⊆C∗∗(A). (3.269)

Proof. We have to show that C∗∗L ≤C∗Land C∗U ≤C∗∗U . Actually,

C∗L−C∗∗L = 4
∫ 1

0
αAL(α)dα−2

∫ 1

0
AL(α)dα

= 2
∫ 1

0
(2α−1)AL(α)dα

= 2
[∫ 1/2

0
(2α−1)AL(α)dα +

∫ 1

1/2
(2α−1)AL(α)dα

]
= 2

[∫ 1/2

0
(2α−1)AL(α)dα−

∫ 1/2

0
(2γ−1)AL(1− γ)dγ

]
= 2

∫ 1/2

0
(2α−1)[AL(α)−AL(1−α)]dα.

Since 0 ≤ α ≤ 1
2 then 2α − 1 ≤ 0 and AL(α)−AL(1−α) ≤ 0. Consequently C∗L−

C∗∗L ≥ 0. Similarly we can show that C∗U −C∗∗U ≤ 0 which proves the lemma. �

Now we are able to present our shadowed set approximation operator. Let SH(R)
denote a family of shadowed sets on R.

Definition 3.16. A shadowed set approximation operator nearest to given fuzzy
number A is an operator S : F(R)→ SH(R) that produces a shadowed set S(A)
given by points S(A) = (s1,s2,s3,s4) = (C∗∗L ,C∗L,C

∗
U ,C

∗∗
U ), where

C∗∗L = 2
∫ 1

0
AL(α)dα−2

∫ 1

0
αAL(α)dα, (3.270)

C∗L = 2
∫ 1

0
αAL(α)dα, (3.271)

C∗U = 2
∫ 1

0
αAU (α)dα, (3.272)

C∗∗U = 2
∫ 1

0
AU (α)dα−2

∫ 1

0
αAU (α)dα. (3.273)

Going back our previous remarks and formulae we can conclude that



118 3 Approximations of fuzzy numbers

core(S(A)) = [C∗L,C
∗
U ],

while the shadow is given by

sh(S(A)) = (C∗∗L ,C∗L)∪ (C∗U ,C∗∗U )

and the support is
supp(S(A)) = [C∗∗L ,C∗∗U ].

One may notice that the points describing the shadowed-set approximation of
a fuzzy number might be expressed by some characteristics of that fuzzy number.
Actually, by (1.78) and (1.79) we get immediately

Val(A)+Amb(A) = 2
∫ 1

0
αAU (α)dα,

Val(A)−Amb(A) = 2
∫ 1

0
αAL(α)dα.

Hence by (1.71) we get the shadowed set representation equivalent to that given in
Definition 3.16. Namely

Lemma 3.9. The shadowed set approximation operator nearest to given fuzzy num-
ber A is an operator S : F(R)→ SH(R) that produces a shadowed set S(A) given
by points S(A) = (s1,s2,s3,s4) = (C∗∗L ,C∗L,C

∗
U ,C

∗∗
U ), where

C∗∗L = 2EIL(A)−C∗L, (3.274)
C∗L = Val(A)−Amb(A), (3.275)
C∗U = Val(A)+Amb(A), (3.276)
C∗∗U = 2EIU (A)−C∗U . (3.277)

Let us consider the following example.

Example 3.10. Suppose a fuzzy number A has a following membership function (see
Example 3.2)

µA (x) =
{

1− x2 if −1≤ x≤ 1,
0 otherwise.

The α-cuts of A are of the form Aα = [−
√

1−α,
√

1−α]. Using our approximation
method we get a following shadowed set S(A) = (− 8

10 ,−
8
15 ,

8
15 ,

8
10 ). The original

fuzzy set and its shadowed set approximation are shown in Figure 3.14.

As it was noticed in [120] there is one-to-one correspondence between shadowed
sets and the particular families of intuitionistic fuzzy sets or interval-valued fuzzy
sets (see Chapter 2). Actually, from the mathematical point of view, a shadow set
is in fact nothing else than as an intuitionistic fuzzy set such that its membership
function µ and nonmembership function ν are of the type µ,ν : X→ {0,1}. Or,
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Fig. 3.14 Fuzzy number approximation by a shadowed set, see Example 3.10.

using the second mentioned formalism, a shadow set is such interval-valued fuzzy
set where a lower fuzzy set and a upper fuzzy sets of take values not in the interval
[0,1] but in {0,1}. However, shadow sets have quite nice and natural interpretation
and thus there is nothing wrong in that they exist under their own name. Anyway, we
may utilize concepts that appear in the theory of intuitionistic fuzzy sets (interval-
valued fuzzy sets) to get the corresponding definitions for shadowed sets.

Let us turn our attention for a moment to intuitionistic fuzzy sets for some tools
required for further considerations. It is worth noting that each intuitionistic fuzzy
number A〈〉 = 〈µA,νA〉 is a conjunction of two fuzzy numbers: A+ with a member-
ship function µA+(x) = µA(x) and A− with a membership function µA−(x) = 1−
νA(x). It is seen that suppA+ ⊆ suppA−. Moreover, we have EI(A+) ⊆ EI(A−),
where EI(A+)= [EIL(A+),EIU (A+)] and EI(A−)= [EIL(A−),EIU (A−)]. Hence we
can define a expected interval of an intuitionistic fuzzy number A〈〉 = 〈µA,νA〉 as a
crisp interval ẼI(A〈〉) given by (see [106])

ẼI(A〈〉) =
[
ẼIL(A〈〉), ẼIU (A〈〉)

]
,

where

ẼIL(A〈〉) =
EIL(A−)+EIL(A+)

2
,

ẼIU (A〈〉) =
EIU (A−)+EIU (A+)

2
.

In the same way we may generalize the notion of the width, given by (1.82),
into intuitionistic fuzzy numbers. Thus width of an intuitionistic fuzzy number
A〈〉 = 〈µA,νA〉 is a real number given by

w̃(A〈〉) =
1
2

[∫
∞

−∞

µA(x)dx+
∫

∞

−∞

(1−νA(x))dx
]
.
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One may easily seen that

w̃(A〈〉) =
w(A+)+w(A−)

2
.

It can be shown, that similarly as in the case of fuzzy numbers, the width of an intu-
itionistic fuzzy number is equal to the length of the expected interval corresponding
to this intuitionistic fuzzy number, i.e.

w̃(A〈〉) = ẼIU (A〈〉)− ẼIL(A〈〉).

Now, using the notions given above for a shadowed set S = S(s1,s2,s3,s4) we get
immediately

ẼI(S) =
[

s1 + s2

2
,

s3 + s4

2

]
and

w̃(S) =
s3 + s4

2
− s1 + s2

2
.

Now, after introducing these concepts, we may discuss some interesting proper-
ties of the shadowed set approximation. As we have shown in Section 3.3 the nearest
interval approximation operator preserves the expected interval of a fuzzy number.
As an immediate consequence, this operator preserves the expected value and the
width of fuzzy numbers. It appears that this nice and desired property also holds for
shadowed set approximation i.e.

ẼI(S(A)) = EI(A)

and
w̃(S(A)) = w(A).

For easy proofs we refer the reader to [114].

Problems

3.1. Let T : F(R)→ FT (R) be the trapezoidal approximation operator preserving
the expected interval proposed in Subsection 3.5.1. Compute T (A) if

a) AL(α) = 1+
√

α and AU (α) = 30−27
√

α;
b) AL(α) = 2α−2 and AU (α) = 1−

√
α .

3.2. Let T : F(R)→ FT (R) be the trapezoidal approximation operator preserving
the ambiguity and value proposed in Subsection 3.5.4. Compute T (A) if

a) AL(α) = 1+α2 and AU = 4−α;
b) AL(α) = 2α−20 and AU (α) = 1−

√
α .
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3.3. A distance d on F(R) is called translation invariant if d(A+C,B+C)= d(A,B),
for all A,B,C ∈ F(R). Let Pk : F(R)→R, where k = 1, . . . ,n, be parameters associ-
ated with fuzzy numbers such that

Pk (A+ z) = Pk (A)+ fk(z),

for every A ∈ F(R) and z ∈ R, where, fk, k = 1, . . . ,n, are real functions of real
variable. If Ω ⊂F(R) satisfies z+Ω =Ω ∀z∈R and ω (A)∈Ω is the nearest fuzzy
number to a given A∈F(R) (with respect to d) which preserves Pk for k∈{1, . . . ,n},
i.e.

Pk (ω (A)) = Pk (A) , ∀k ∈ {1, . . . ,n} ,

then ω (A)+ z ∈ Ω is the nearest fuzzy number to A+ z (with respect to D) which
preserves Pk for k ∈ {1, . . . ,n}, i.e.

Pk (ω(A)+ z) = Pk (A+ z) , ∀k ∈ {1, . . . ,n} .

3.4. Let T : F(R)→ FT (R) be either the trapezoidal approximation operator pre-
serving the expected interval or the trapezoidal approximation operator preserving
the value and the ambiguity. Prove that T (A+ z) = T (A)+ z, for all A ∈ F(R) and
z ∈ R.

3.5. A distance d on F(R) is called homogeneous if d(λA,λB) = |λ |d(A,B), for
all A,B ∈ F(R) and λ ∈ R. Let Pk : F(R)→ R, where k = 1, . . . ,n, be parameters
associated with fuzzy numbers such that

Pk (λ ·A) = λPk (A) ,

for every A ∈ F(R) and λ ∈ R or

Pk (λ ·A) = |λ |Pk (A) ,

for every A ∈ F(R) and λ ∈ R. If Ω ⊂ F(R),λ ·Ω ⊂ Ω ,∀λ ∈ R and ω (A) ∈ Ω is
the nearest fuzzy number to a given A ∈ F(R) (with respect to D) which preserves
Pk for k ∈ {1, . . . ,n}, i.e.

Pk (ω (A)) = Pk (A) , ∀k ∈ {1, . . . ,n} ,

then λ ·ω (A) ∈ Ω is the nearest fuzzy number to λ ·A (with respect to D) which
preserves Pk for k ∈ {1, . . . ,n}, i.e.

Pk (ω (λ ·A)) = Pk (λ ·A) , ∀k ∈ {1, . . . ,n} .

3.6. Let T : F(R)→ FT (R) be either the trapezoidal approximation operator pre-
serving the expected interval or the trapezoidal approximation operator preserving
the value and the ambiguity. Prove that T (λA)= λT (A), for all A∈F(R) and λ ∈R.

3.7. We call a fuzzy number A symmetric if the function AL +AU is constant. Let
T : F(R)→ FT (R) be either the trapezoidal approximation operator preserving the
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expected interval or the trapezoidal approximation operator preserving the value and
the ambiguity. Prove that if A is symmetric then T (A) is symmetric too.

3.8. Let us consider the trapezoidal valued operator T : F(R)→ FT (R) which sat-
isfies the condition that if A ∈ F(R) satisfies Te(A) ∈ FT (R), then T (A) = Te(A).
Prove that T is non-additive. Here, Te(A) is the extended trapezoidal approximation
of A (see (3.179)-(3.182)).

3.9. Let T : F(R)→ FT (R) be either the trapezoidal approximation operator pre-
serving the expected interval or the trapezoidal approximation operator preserving
the value and the ambiguity. Prove that T is non-additive.



Chapter 4
Ranking fuzzy numbers

4.1 Introduction to the topic

In the last decades many papers were devoted to studies on fuzzy number ranking
procedures. We can distinguish two main approaches.

The first one is based on so called ranking indices. They are functions from fuzzy
numbers to real values and a ranking is generated by a procedure based on the
standard ordering of reals. It is the most often used idea (see, e.g., [3, 4, 6, 7, 11, 12,
56, 57, 67, 69, 84, 88, 135, 148, 154, 171, 184, 192]) and it was extended for other
classes of fuzzy sets which are not necessarily fuzzy numbers (see, e.g., [58, 141]).

The second one is based on fuzzy binary relations (see, e.g., [15, 80, 86, 157]).
This approach can be also extended to more general settings than fuzzy numbers
(see [9]).

As a conclusion, we see that there are numerous ways to rank fuzzy numbers.
Some comparative studies can be found in [47, 49] or [184].

The main results included in the present chapter are helpful for studying which
reasonable properties are satisfied by some ranking procedure. In addition, the re-
sults describe precisely the shape of a ranking index which generates an order that
satisfies a specific requirement. The impact of a good choice of the ranking of fuzzy
numbers is decisive in applications related with decision theory, optimization, artifi-
cial intelligence, approximate reasoning, socioeconomic systems and so on. In fact,
a key issue in operationalizing fuzzy set theory is how to compare fuzzy numbers
(see [151]).

In this chapter we discuss only ranking approaches obtained from ranking in-
dices. In the recent papers (see, e.g., [6, 11, 12, 88, 141, 171, 172, 187]) the authors
try to impose a certain ranking method by finding some examples in which their
approach gives better results comparing to others. As it is pointed out in [36] there
is a kind of subjectivity because from a few examples we cannot conclude which
approach is better. This is why our aim is to characterize ranking approaches rather
than to classify them, starting from the reasonable properties of Wang and Kerre
[184] presented in Section 4.2. Because the set of trapezoidal fuzzy numbers and

123
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the set of triangular fuzzy numbers are closed under addition and scalar multipli-
cation, we are mostly interested in such sets of fuzzy numbers. As an immediate
consequence of the fact that they are not closed under fuzzy multiplication we con-
sider a slight modification of the requirement “If A� B then A ·C � B ·C for every
C ≥ 0” in [184]. Actually, except the approach in [7], we are not aware of the ex-
istence of an ordering generated by a ranking index which would satisfy the above
property.

This chapter is organized as follows. In Section 4.2 we discuss on the basic re-
quirements for the case when the ordering on a set of fuzzy numbers is induced
by a binary relation. The main result in Section 4.2 asserts that, making abstraction
of equivalent orders, one needs to discuss only ranking indices with the property
that they belong to the support of fuzzy number. The study of the ranking indices
is drastically simplified, as we can see in Section 4.3. Actually, if a ranking index
is defined on a closed under additive and scalar multiplication set of fuzzy numbers
and it generates an order satisfying all the reasonable properties then there exists a
linear ranking index which generates an equivalent order. In Sections 4.4 and 4.5
we take advantage of the results obtained in the previous sections for the ranking of
triangular fuzzy numbers and trapezoidal fuzzy numbers, respectively. We conclude
that making abstraction of equivalent orders we can determine exactly the class of
ranking indices which generate orders satisfying all the basic requirements. In ad-
dition, we observe that we can characterize classes of ranking indices generating
orders which satisfy just a part of the reasonable properties. The benefits of these
results are obvious taking into account that in most applications the researchers use
triangular or trapezoidal fuzzy numbers (see, e.g., [23, 59, 150, 183]). In Section
4.6 we prove how the orders between trapezoidal fuzzy numbers can be extended to
orders between arbitrary fuzzy numbers such that some (or all) of the basic desirable
properties are preserved.

Even if the chapter is essentially based on the results in [35, 36] and [73], the
results are more complete and the approach more rigorous.

4.2 Reasonable properties for ranking fuzzy numbers

The quality of an ordering approach over a set S ⊆F(R) is decisive in applications.
It is commonly agreed that the list of reasonable properties proposed by Wang and
Kerre [184] is the most objective way in validating a certain ranking approach. We
write the axioms for the particular case when � is a binary relation over S . It is
worth mentioning that Wang and Kerre considered a more general approach starting
from so called ranking indices of the second kind. Moreover, we suppose that� is a
total order on S which means that for any (A,B)∈S 2 either A� B or B� A. Then
we can easily construct other binary relations derived from �. At first, we construct
on S the relation � which is the negation of �, that is A � B⇔ (A,B) /∈ S�,
where S� = {(A,B) ∈S 2 : A� B}. Next we construct the relation� on S , where
A � B⇔ B � A. Obviously this implies that from A � B it results that A � B. If
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not, then it easily results that A� B and B� A which contradicts the fact that � is a
total binary relation on S . Note that if � would not be a total binary relation then
the correct definition of � would be A � B⇔ A � B and B � A. Furthermore, we
construct the relation ∼ on S , where A ∼ B⇔ A � B and B � A. It is immediate
that ∼ is an equivalence relation over S . Also of note is that A � B⇔ A � B or
A∼ B for all A,B ∈S . Similarly, we can define on S the relations �, ≺, � and �
respectively. We do not go into details since their construction is obvious.

For the binary relations from above we consider the following basic require-
ments:

A1) A� A for any A ∈S .
A2) For any (A,B) ∈S 2, if A� B and B� A then A∼ B.
A3) For any (A,B,C) ∈S 3, if A� B and B�C then A�C.
A4) For any (A,B) ∈S 2, if infsupp(A)≥ supsupp(B) then A� B.
A′4) For any (A,B) ∈S 2, if infsupp(A)> supsupp(B) then A� B.
A5) Let A,B,A+C and B+C be elements of S . If A� B, then A+C � B+C.
A′5) Let A,B,A+C and B+C be elements of S . If A� B, then A+C � B+C.
A6) For any (A,B) ∈ S 2 and λ ∈ R such that λ ·A,λ ·B ∈ S , if A � B then

λ ·A� λ ·B for λ ≥ 0 and λ ·A� λ ·B for λ ≤ 0.

If A1 and A3 are satisfied then� is a total preorder on S which in Order Theory
stands as minimal requirement that a binary relation should satisfy (see also our
paper [36] for more details).

The above list of requirements is a little bit different to what we can find in the
paper of Wang and Kerre (for more details we refer again to paper [36]). We just
mention that the axiom denoted with A5 in [184] is eliminated from the above list
because it holds trivially in the case of binary relations. We also have to notice that
the axiom A6 from our list has in some sense a more restrictive form in paper [184]
but this stronger form has a limitation because it cannot be applied on sets which
are not closed under multiplication such as the set of trapezoidal or triangular fuzzy
numbers. Definitely A6 in the present form has its importance since for A � B it
results in −B � −A, a quite natural property considered important in many papers
(see, e.g., [4, 11, 88]).

Another important issue is how to generate an effective binary relation �. Most
often, so called ranking index (also known as utility function in economics), that
is a function P : S →R, is used. This function gives a binary relation �P, where
A�P B if and only if P(A)≥ P(B). This easily implies that

A�P B if and only if P(A)≤ P(B),

A�P B if and only if P(A)> P(B),

A≺P B if and only if P(A)< P(B),

A∼P B if and only if P(A) = P(B).

The ranking indices were often introduced without a clear justification and with-
out satisfying a minimal set of conditions and, therefore, shortcomings were found
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for most of them, as we already pointed out in [36]. We give here only two examples,
other discussions will be included later.

Example 4.1. ([36]) For a trapezoidal fuzzy number T =(t1, t2, t3, t4) the parametrized
ranking index Mr, r > 0, introduced in [89], becomes

Mr (T ) =

(
2
(
tr+2
1 − tr+2

2

)
(t3− t4)−2

(
tr+2
3 − tr+2

4

)
(t1− t2)

(r+2)(r+1)(t1− t2)(t3− t4)(t1 + t2− t3− t4)

) 1
r

.

It gives

M2((−10,−2,−1,0)) =
(

1247
66

) 1
2
>

(
20
3

) 1
2
= M2((1,2,3,4)),

and therefore (−10,−2,−1,0)�M2 (1,2,3,4), which is an obvious contradiction to
our intuition. �

Example 4.2. A method of ranking fuzzy numbers with integral value was proposed
in [148]. In the case of trapezoidal fuzzy numbers the ranking index reduces to

Iγ

L−W ((t1, t2, t3, t4)) =
1− γ

2
t1 +

1− γ

2
t2 +

γ

2
t3 +

γ

2
t4,

where γ ∈ [0,1] represents the degree of optimism of a decision maker. Let us con-
sider A = (0,1,1,2) and B =

(
− 4

5 ,
6
5 ,

6
5 ,

16
5

)
and the degree of optimism γ = 0.75.

Then we obtain
I0.75
L−W (A) =

5
4
<

17
10

= I0.75
L−W (B) ,

and therefore B �I0.75
L−W

A. On the other hand, because −A = (−2,−1,−1,0) and

−B =
(
− 16

5 ,− 6
5 ,−

6
5 ,

4
5

)
, our expectation is that −A�I0.75

L−W
−B. Nevertheless,

I0.75
L−W (−A) =−3

4
<− 7

10
= I0.75

L−W (−B) ,

that is −B�I0.75
L−W
−A. �

Of course, the consequences of using unsuitable rankings are not only theoretical.
A simple example in decision theory is given below.

Example 4.3. A decision maker is responsible for evaluating two alternatives Ω and
Θ under n criteria c1, . . . ,cn. We denote by Ai ∈ F(R) the performance of the al-
ternative Ω with respect to criterion ci, by Bi ∈ F(R) the performance of the alter-
native Θ with respect to criterion ci and by wi ∈ R the weight of the criterion ci,
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i∈ {1, . . . ,n}. We aggregate the performances of the alternatives using the weighted
arithmetic mean, i.e. A = ∑

n
i=1 wi ·Ai ∈ F(R) and B = ∑

n
i=1 wi ·Bi ∈ F(R) represent

the performance of Ω and Θ , respectively. Now, we introduce a new criterion cn+1.
The decision maker considers the performances An+1 and Bn+1 of Ω and Θ with re-
spect to cn+1 to be equal, i.e. An+1 = Bn+1. The performances of alternatives Ω and
Θ become A = A+wn+1 ·An+1 and B = B+wn+1 ·Bn+1, where wn+1 is the weight
of the criterion cn+1. If the ranking index R is used to decide which alternative is
better and�R does not satisfy A′5 and/or A6 then it is possible to obtain A�R B, that
is Ω is better than Θ and B �R A, i.e. Θ is better than Ω , which is a contradiction
with our intuition. �

Below we discuss about requirements when the order is generated by a ranking
index.

Remark 4.1. In all that follows we make two natural assumptions as they are ful-
filled by all (at least what we know from the existing literature) ranking approaches
derived from ranking indices. Firstly, we assume that R ⊂ S . Then, we suppose
that if P : S →R is a ranking index then P |R: R→ R is continuous. The first as-
sumption can be weakened. For example, when we are interested to rank a subclass
of an important family of fuzzy numbers, like the set of positive trapezoidal fuzzy
numbers. In this case it suffices to assume that R∩S is a closed interval in R.
But this generalization will be the subject of future research. In these circumstances
one can easily prove that A4 holds on S whenever A′4 holds on S . In other words
requirement A′4 is stronger than requirement A4.

Definition 4.1. ([36]) Two orderings �1 and �2 on the set S are said to be equiva-
lent if for any A,B ∈S A�1 B results in A�2 B and A�1 B results in A�2 B.

If �1 and �2 are total binary relations (in particular those generated by rank-
ing indices) the second requirement in the above definition is equivalent with the
requirement that A�1 B results in A�2 B.

Obviously, we can say that�1 and�2 generate the same ordering approach since
any reasonable property A from the above list holds for�1 if and only if it holds for
�2 too.

A particular type of ranking index is the so called defuzzifier (see, e.g., [4, 12,
171]) which is a ranking index P : S →R that satisfies the following requirement:

A′′4) P(A) ∈ supp(A) for any A ∈S .

One can easily prove that the expected value (1.72) or the value (1.78) are de-
fuzzifiers when applied on any arbitrary subset S ⊆ F(R) while, in general, the
ambiguity (1.79) is not a defuzzifier.

The advantage of working with defuzzifiers is obvious since they have a simple
form and natural interpretation. On the other hand, we can say that it suffices to
use only defuzzifiers in applications. This is so because even if A′′4 implies A′4 (and
implicitly A4), we can say that actually A′′4 are A′4 are equivalent.
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Theorem 4.1. (see [36]) If P : S →R is a ranking index on S such that �P sat-
isfies A′4 then there exists a ranking index R : S →R which satisfies A′′4 and �R is
equivalent to �P. Moreover R = P−1

R ◦P, where P−1
R : P(R)→ R, is the inverse of

the function PR :R→P(R) and PR(x) = P |R (x) = P(x) (basically PR and P |R rep-
resent the same function if we disregard their domains). In addition, P−1

R is strictly
increasing and continuous.

Proof. Let us choose arbitrarily A ∈S and suppose that supp(A) = [a,b]. Since�P
satisfies A′4 (and implicitly A4) it results in P(a)≤ P(A)≤ P(b). The continuity of
P |R (see Remark 4.1) implies that there exists xA ∈ [a,b] such that P(xA) = P(A).
In addition, xA is unique with this property. Indeed, for any x ∈ [a,b], x 6= xA, either
P(xA)< P(x) or P(xA)> P(x) because otherwise requirement A′4 is violated. There-
fore, we can define the ranking index R : S →R,R(A) = xA which satisfies require-
ment A′′4 . The equivalence between �P and �R is immediate by the construction of
R.

For the rest of the proof let us note at first that since �P satisfies A′4 it is im-
mediate that PR is strictly increasing and hence bijective. Therefore, since PR is
also continuous then P−1

R is strictly increasing and continuous. Let us note that the
function P−1

R ◦P is correctly defined since by the first part of this proof we also get
P(R) =P(F(R)). Finally, for any A ∈S we have

R(A) = xA = P−1
R (P(xA)) = P−1

R (P(A)).

and the proof is complete. �

Remark 4.2. Requirements A4 and A′4 are natural for any ordering between fuzzy
numbers. Their absence lead to shortcomings and any subsequent discussion could
be stopped. Therefore (taking into account Remark 4.1 and Theorem 4.1) we can
focus on ranking indices which satisfy A′′4 .

Below we apply Theorem 4.1 for two known ranking indices.

Example 4.4. (see [36]) A ranking index based on centroids of fuzzy numbers was
introduced in [69]. It reduces to

PCh−T (A) =
(a+b+ c)(a+4b+ c)

9(a+2b+ c)
,

for every A=(a,b,c)∈F∆ (R) and satisfiesA′4 on S =F∆ (R). Moreover, PCh−T |R:
R→ R is continuous. From PCh−T (xA) = PCh−T (A) we obtain xA = 2PCh−T (A).
according to Theorem 4.1 the ranking�PCh−T is equivalent to�RCh−T , where RCh−T :
F∆ (R)→ R is given by

RCh−T (A) = 2PCh−T (A)

and satisfies A′′4 . �
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Example 4.5. (see [36]) The ranking index introduced in [67] was intensely cited
([4, 12, 88, 90, 91, 184], etc.). It was introduced in a more general framework, but
it becomes

PCho−Li (A) =
1

2(M−m)

(∫ 1

0
AL(α)dα +

∫ 1

0
AU (α)dα−2m

)
,

for every A ∈ F(R), where m,M ∈R, M 6= m, reflect decision maker’s inclination or
aversion to risk. It is immediate that �PCho−Li satisfies A′4 and PCho−Li |R is continu-
ous. By Theorem 4.1 and its proof we get

RCho−Li (A) =
1
2

∫ 1

0
AL(α)dα +

1
2

∫ 1

0
AU (α)dα,

which satisfiesA′′4 . Moreover,�RCho−Li is equivalent to�PCho−Li . But since RCho−Li =
EV therefore, at least for fuzzy numbers in the sense of the present paper, we obtain
the same ranking as the one generated by the expected value (1.72), often used in
applications (see, e.g., [23, 68]). �

It is worth noting that Table 1 in [184] offers a list of other ranking indices for
which Theorem 4.1 is applicable.

4.3 Characterization of effective ranking indices

In this section we characterize a family of valuable ranking indices on a set S ⊆
F(R) satisfying suitable properties with respect to requirementsA1, A2, A3, A4, A′4,
A5, A′5, A6 and A′′4 .

Theorem 4.2. ([36]) Consider S ⊆ F(R) such that S +S ⊆ S and a ranking
index R : S → R which satisfies A′′4 . If �R satisfies A5 on S then R is additive on
S . Moreover, �R satisfies A′5 on S .

Proof. The requirementsA2 andA3 are satisfied on S because�R is generated by a
ranking index. Since R satisfiesA′′4 on S it results in R(R(A))=R(A), for all A∈S ,
which implies that A∼R R(A) for all A∈S . Let us now choose arbitrarily A,B∈S .
We have A∼R R(A) which implies, byA2 andA5, that A−R(A)∼R 0 and then again,
by A2 and A5, we get that A+B−R(A)−R(B)∼R B−R(B). Since B−R(B)∼R 0,
by A2 and A3, we get A+B−R(A)−R(B)∼R 0 and applying again A2 and A5 we
obtain A+B∼R R(A)+R(B). This implies R(A+B) = R(R(A)+R(B)). By A′′4 we
obtain R(R(A)+R(B)) = R(A)+R(B) which results in R(A+B) = R(A)+R(B).
Now, since R is additive on S it is immediate that A′5 is satisfied by �R on S . �

The above result help us to obtain some negative examples with respect to A5
from the non-additivity of the restrictions of the ranking indices to suitable families
of fuzzy numbers. We exemplify it by the following ranking index.
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Example 4.6. (see [36]) The restriction of the ranking index introduced in [144]
(see also [179]) to trapezoidal fuzzy numbers becomes RLee−Li : FT (R)→ R given
as follows

RLee−Li (A) =
−a2−b2 + c2 +d2−ab+ cd

3(−a−b+ c+d)
,

for every A = (a,b,c,d) ∈ FT (R). One can verify that the property A′′4 holds. Be-
cause

RLee−Li((1,2,3,4))+RLee−Li((2,3,4,6)) =
5
2
+

19
5

6= 170
27

= RLee−Li((3,5,7,10)) = RLee−Li ((1,2,3,4)+(2,3,4,6)) ,

by Theorem 4.2 we obtain that�RLee−Li does not satisfy A5 on FT (R) and implicitly
on F(R). �

Analyzing carefully the proof of Theorem 4.2 we obtain an equivalence between
A5 and A′5 as follows.

Corollary 4.1. ([36]) Consider S ⊆ F(R) such that S +S ⊆S and a ranking
index R : S → R which satisfies A′′4 . The order �R on S satisfies A5 on S if and
only if it satisfies A′5 on S .

Proof. Let us observe that the reasoning in the proof of Theorem 4.2 is not influ-
enced at all if instead of A5 we use everywhere A′5. For example, looking on the
proof of Theorem 4.2 we conclude that A2 and A5 lead to A− R(A) ∼R 0. But
this also holds if instead of A5 we use A′5. Suppose, contrary to our claim, that
A− R(A) ∼R 0 does not hold. Then either A− R(A) ≺R 0 or A− R(A) �R 0. In
the first case, by A′5 we obtain A ≺R R(A) and this obviously is a contradiction.
Similarly, we obtain a contradiction in the second case too. Thus, we must have
A−R(A) ∼R 0. Similarly, everywhere in the proof of Theorem 4.2 we can replace
the assumption that�R satisfies A5 on S by the assumption that�R satisfies A′5 on
S . �

Corollary 4.2. ([36]) Consider S ⊆ F(R) such that S +S ⊆S . If R : S → R
is a ranking index such that A′4 and A5 are satisfied by �R on S , then A′5 is also
satisfied by �R on S . Moreover, there exists an additive ranking index R∗ : S →R
which satisfies A′′4 on S and �R∗ is equivalent to �R.

Proof. Since R satisfiesA′4, by Theorem 4.1, there exists R∗ : S →Rwhich satisfies
A′′4 and such that the order �R∗ is equivalent to �R. Consequently, A5 is satisfied by
�R∗ on S . Substituting R by R∗ in Theorem 4.2 we conclude that R∗ is additive and
that �R∗ satisfies A′5 on S . Since �R is equivalent to �R∗ it yields that �R satisfies
A′5 on S and hence the proof is complete. �
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Example 4.7. By Corollary 4.2, if we take R = PCho−Li considered in Example 4.5
then R∗ = EV . �

Passing to scalar multiplication we obtain a result corresponding to that given in
Theorem 4.2.

Theorem 4.3. ([36]) Consider S ⊆F(R) such that λ ·S ⊆S for all λ ∈ R and
suppose that R : S →R is a ranking index which satisfies A′′4 . If �R satisfies A6 on
S then R is scale invariant, i.e. R(λ ·A) = λR(A), for any λ ∈ R and A ∈S .

Proof. Again, we begin the proof by noticing that A1,A2 and A3 are satisfied by
�R on S . Now, let us choose arbitrarily A ∈ S and λ ∈ R. We have A ∼R R(A)
which by A2 and A6 implies that λ ·A ∼R λR(A). Therefore, we obtain R(λ ·A) =
R(λR(A)) and since obviously R(λR(A)) = λR(A) we get R(λ ·A) = λR(A). �

Theorem 4.3 indicates a method to prove that A6 is not satisfied. Actually, by
choosing a suitable family of fuzzy numbers on which the ranking index is not scale
invariant we immediately obtain that the generated order does not satisfy A6. Let us
consider the following example.

Example 4.8. We restrict the ranking index introduced in [148] to triangular fuzzy
numbers. It becomes Rθ

L−W : F∆ (R)→ R given by

Rγ

L−W (A) =
1− γ

2
a+

1
2

b+
γ

2
c,

for every A = (a,b,c) ∈ F∆ (R), where γ ∈ [0,1] reflects the degree of optimism of
a decision maker. Since

−Rθ
L−W (0,1,2) =−θ − 1

2

6= θ − 3
2
= Rθ

L−W (−2,−1,0) = Rθ
L−W (−(0,1,2))

for every θ 6= 1
2 , by Theorem 4.3, we obtain that �Rθ

L−W
does not satisfy A6 on

F∆ (R) and implicitly on F(R). �

Combining Theorems 4.1 and 4.3 we obtain the following conclusion.

Corollary 4.3. ([36]) Consider S ⊆ F(R) such that λ ·S ⊆S for all λ ∈ R and
suppose that R : S → R is a ranking index. If �R satisfies A′4 and A6 on S , then
there exists a scale invariant ranking index R∗ : S → R which satisfies A′′4 on S
and which generates on S an equivalent order with �R.
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Any reasonable ranking between fuzzy numbers from a set S should satisfy the
requirements discussed in Section 4.2. Therefore, let us adopt the following notation

M(S ) =
{

P : S → R | �P satisfies A1,A2,A3,A4,A′4,A5,A′5,A6
}
.

Taking into account Theorem 4.1 we also consider (see also ([36]))

M∗(S ) =
{

P : S → R | P satisfies A′′4
and �P satisfies A1,A2,A3,A5,A′5,A6

}
.

It is clear that in general M∗(S ) ⊂ M(S ). From Theorem 4.1 we also know that
if P ∈ M(S ) then there exists P∗ ∈ M∗(S ) such that �P∗ is equivalent to �P on
S . Therefore, to find effective orders over S it suffices to study the elements of
M∗(S ). This observation simplifies the whole procedure since A′′4 may reduce the
calculations part - see Sections 4.4 and 4.5 for the cases S = F∆ (R) and S =
FT (R), respectively. We conclude this section with some characterizations of the
elements belonging to the classes M(S ) and M∗(S ).

Theorem 4.4. ([36]) Consider S ⊆ F(R) such that S +S ⊆S and λ ·S ⊆S
for all λ ∈ R and a ranking index P : S → R. Then we have:

(i) P ∈M∗(S ) if and only if P satisfies A′′4 on S and P is linear on S ;
(ii) P ∈ M(S ) if and only if there exists P∗ ∈ M∗(S ) such that �P and �P∗ are

equivalent on S .

Proof. (i) We prove only the direct implication since the inverse implications are
immediate. Since P ∈M∗(S ) then A′′4 obviously holds. This, together with the sim-
ple observation that A5 and A6 hold, lead to the conclusion that the assumptions of
Theorems 4.2 and 4.3 are fulfilled and hence we get the linearity of P.

(ii) The existence of P∗ is guaranteed by Theorem 4.1 . Since �P and �P∗ are
equivalent on S and since P ∈ M(S ), we get P∗ ∈ M∗(S ). To prove the inverse
implication it suffices to notice that obviously by P∗ ∈M∗(S ) we get P∗ ∈M(S )
and the desired conclusion follows easily by taking into account that �P and �P∗
are equivalent on S . �

4.4 Characterization of valuable ranking indices on triangular
fuzzy numbers

Since triangular fuzzy numbers and trapezoidal fuzzy numbers have a simple rep-
resentation and they are so often used in applications, when discussing on ranking
fuzzy numbers we should investigate as much as possible these families of fuzzy
numbers. In addition, almost all numerical examples in the literature dedicated to
the study of ranking of fuzzy numbers are performed just on triangular or trape-
zoidal fuzzy numbers. There are also such papers that discuss only the ranking of
triangular or trapezoidal fuzzy numbers (see, e.g., [4, 90]). That is why below we
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study the ranking indices on F∆ (R) and the next section is dedicated to ranking
indices on FT (R).

We consider the α-cut of a triangular fuzzy number ∆ in the form (see [4])

∆α = [x0−σ +σα,x0 +β −βα] ,

where x0,σ ,β ∈ R,σ ≥ 0,β ≥ 0. Let us denote by ∆ = [x0,σ ,β ] a such fuzzy
number. By (1.12) we have

t1 = x0−σ (4.1)
t2 = x0 (4.2)
t3 = x0 +β . (4.3)

After some simple calculations, by (1.72), (1.79) and (1.78) we get

EV (∆) = x0−
1
4

σ +
1
4

β , (4.4)

Amb(∆) =
1
6

σ +
1
6

β , (4.5)

Val(∆) = x0−
1
6

σ +
1
6

β . (4.6)

The expected value, value and linear combinations of ambiguity and value are con-
sidered as ranking indices (see [80, 191]), therefore in [35] the following set of
ranking indices is explored

Ω
∆ = {R : F∆ (R)→ R | R([x0,σ ,β ]) = ax0 +bσ + cβ}.

It is proved that there are no ranking indices in M∗(F∆ (R)) and M(F∆ (R))
which do not belong to Ω4. Since the order �R, where R ∈ Ω ∆ , is generated by
a ranking index then conditions A1, A2 and A3 hold. One can easily prove that
R(∆ +∆ ′) = R(∆)+R(∆ ′) for all R ∈ Ω ∆ and ∆ ,∆ ′ ∈ F∆ (R). Hence A5 and A′5
hold too. Therefore, the necessary and sufficient conditions for the constants a, b
and c such that R ∈Ω ∆ satisfies A4, A′4, A′′4 or A6 are determined.

Theorem 4.5. ([35]) Let R ∈Ω4, where R([x0,σ ,β ]) = ax0 +bσ + cβ . The order
�R satisfies A4 on F∆ (R) if and only if

a≥ c≥ 0 (4.7)

and
a≥−b≥ 0. (4.8)

Proof. (⇒) We consider particular cases of ∆ = [x0,σ ,β ] and ∆ ′ = [x′0,σ
′,β ′] such

that infsupp(∆)≥ supsupp(∆ ′) is satisfied, until we obtain that (4.7) and (4.8) hold.
Note that assuming A4 we have ∆ �R ∆ ′⇔ R(∆)≥ R(∆ ′).
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Firstly, let us consider a particular case when x0 > x′0 > 0 and σ = β = σ ′ = β ′ =
0. Since R(∆)≥ R(∆ ′) implies ax0 ≥ ax′0 and since x0 > x′0 > 0, it is immediate that
a≥ 0.

Suppose x0 = σ = β = x′0 = β ′ = 0. Then R(∆) ≥ R(∆ ′) implies bσ ′ ≤ 0 and
hence we obtain b≤ 0. Consider now the case when x0 = σ = x′0 = σ ′ = β ′ = 0 and
β > 0. Since R(∆)≥ R(∆ ′) then cβ ≥ 0, so we get c≥ 0.

Now, let us assume that x0 = β ′ = 1 and σ = x′0 = σ ′ = β = 0. By R(∆)≥ R(∆ ′)
it is immediate that we get a−c≥ 0. Finally, we consider the case when x0 = σ = 1
and x′0 = σ ′ = β ′ = β = 0. By R(∆)≥ R(∆ ′) we get a+b≥ 0.

Collecting the inequalities obtained in the particular cases considered above we
obtain that (4.7) and (4.8) hold.

(⇐) Let a,b,c be real numbers satisfying (4.7) and (4.8). Moreover, let ∆ =
[x0,σ ,β ] and ∆ ′ = [x′0,σ

′,β ′] denote two arbitrary triangular fuzzy numbers such
that infsupp(∆)≥ supsupp(∆ ′). This immediately implies x0−x′0 ≥ σ +β ′ ≥ 0. By
our assumption −bσ ′ ≥ 0 and cβ ≥ 0, hence by direct calculations we get

R(∆)−R(∆ ′) = a(x0− x′0)+b(σ −σ
′)+ c(β −β

′)

≥ a(σ +β
′)+bσ − cβ

′

= σ(a+b)+β
′(a− c)≥ 0.

This implies ∆ �R ∆ ′ and the theorem is proved. �

Theorem 4.6. ([35]) Let R∈Ω4 such that R([x0,σ ,β ]) = ax0+bσ +cβ . The order
�R satisfies A′4 if and only if

a≥ c≥ 0 (4.9)
a≥−b≥ 0 (4.10)

and
a > 0. (4.11)

Proof. (⇒) By Remark 4.1 we know that if A′4 is satisfied by �R then A4 is sat-
isfied by �R. Since A4 holds, by the previous theorem it suffices to prove that
a > 0. For this purpose let us consider a particular case of ∆ = [x0,σ ,β ] and
∆ ′ = [x′0,σ

′,β ′] when x0 = 1 and σ = β = x′0 = σ ′ = β ′ = 0. Clearly, we have
infsupp(∆)> supsupp(∆ ′), and therefore R(∆)> R(∆ ′), i.e. a > 0.

(⇐) Let a,b,c be real numbers such that (4.9)-(4.11) are satisfied. Let ∆ =
[x0,σ ,β ] and ∆ ′ = [x′0,σ

′,β ′] denote two arbitrary triangular fuzzy numbers such
that infsupp(∆)> supsupp(∆ ′). It is easy to check that x0−x′0 > σ +β ′ ≥ 0. Then,
since a > 0, we obtain

a(x0− x′0)> a(σ +β
′)

which implies that
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R(∆)−R(∆ ′) = a(x0− x′0)+b(σ −σ
′)+ c(β −β

′)

> a(σ +β
′)+b(σ −σ

′)+ c(β −β
′)

≥ a(σ +β
′)+bσ − cβ

′

= σ(a+b)+β
′(a− c)≥ 0.

We obtain R(∆)> R(∆ ′) and therefore ∆ �R ∆ ′, which completes the proof. �

Theorem 4.7. ([35]) The ranking index R ∈ Ω4 of the form R([x0,σ ,β ]) = ax0 +
bσ + cβ satisfies A′′4 if and only if

a = 1 (4.12)
b ∈ [−1,0] (4.13)
c ∈ [0,1] . (4.14)

Proof. (⇒) Let us notice that if A′′4 holds then it is immediate that A′4 holds too.
Therefore, comparing conditions (4.9)-(4.11) and (4.12)-(4.14), it follows that for
the direct implication of the present theorem it suffices to prove a= 1. Since we have
supposed thatA′′4 holds, it results that for any triangular fuzzy number ∆ = [x0,σ ,β ]
we have

x0−σ ≤ ax0 +bσ + cβ ≤ x0 +β . (4.15)

Substitution x0 = 1 and σ = β = 0 in (4.15) we get 1 ≤ a ≤ 1 and thus we obtain
(4.12).

(⇐) Let a,b,c be real numbers such that (4.12)-(4.14) are satisfied and let ∆ =
[x0,σ ,β ] denote a triangular fuzzy number. Conditions (4.12)-(4.14) imply

R(∆) = x0 +bσ + cβ ≤ x0 + cβ ≤ x0 +β

and
R(∆) = x0 +bσ + cβ ≥ x0 +bσ ≥ x0−σ .

From these two inequalities we get R(∆) ∈ supp∆ and the theorem is proved. �

Theorem 4.8. ([35]) Let R ∈ Ω4 be such that R([x0,σ ,β ]) = ax0 + bσ + cβ . The
order �R satisfies A6 if and only if

b+ c = 0. (4.16)

Proof. (⇒) Let us consider ∆ = [0,1,1] and O = [0,0,0]. If R(∆) ≥ R(O) then
R(−∆)≤ R(O). Since R(O) = 0 and−∆ = ∆ it follows immediately that R(∆) = 0,
so b+ c = 0. If R(∆)≤ R(O) then the reasoning is similar and we omit the details.

(⇐) Let us consider the reals a,b,c such that b+ c = 0. If ∆ = [x0,σ ,β ] then
R(∆) = ax0− cσ + cβ . To prove that A6 holds it suffices to show that the operator
R is scale invariant. If λ ≥ 0 then one can easily prove that R(λ ·∆) = λR(∆). Since
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R(−∆) =−ax0− cβ + cσ =−(ax0− cσ + cβ ) =−R(∆) ,

we immediately obtain R(λ ·∆) = λR(∆) for any ∆ ∈ F∆ (R) and λ ∈ R. �

Example 4.9. Delgado, Vila and Voxman [80] proposed a ranking index given by

ri(λ ,δ )(A) = λVal (A)+δAmb(A) ,

where λ ∈ [0,1] and δ ∈ [−1,1] are such that |δ | � λ . Coefficient δ represents
the decision-maker’s attitude to uncertainty. If ∆ = [x0,σ ,β ] is a triangular fuzzy
number then

ri(λ ,δ )(∆) = λx0 +
δ −λ

6
σ +

λ +δ

6
β .

It is easily seen that ri(λ ,δ ) ∈ Ω4 for all λ and δ . By Theorems 4.5 and 4.6 we
conclude that �ri(λ ,δ ) satisfies A4 and A′4 for every λ and δ . On the other hand by
Theorems 4.7 and 4.8 we conclude that�ri(λ ,δ ) satisfies A′′4 if and only if λ = 1 and
A6 if and only if δ = 0. �

The following two theorems are immediate consequences of the above results.
Characterizations of the elements of Ω4 which are in M∗(F4(R)) and M(F4(R))
are presented.

Corollary 4.4. ([35]) Let R ∈Ω4 be such that R([x0,σ ,β ]) = ax0 +bσ +cβ . Then
R ∈M∗(F4(R)) if and only if

a = 1 (4.17)
b+ c = 0 (4.18)

and
c ∈ [0,1] . (4.19)

Corollary 4.5. ([35]) Let R ∈Ω4 be such that R([x0,σ ,β ]) = ax0 +bσ +cβ . Then
R ∈M(F4(R)) if and only if a > 0, b =−c and a≥ c≥ 0.

Example 4.10. With respect to the ranking index considered in Example 4.9 we
deduce that ri(λ ,δ ) ∈ M(F4(R)) and hence �ri(λ ,δ ) satisfies A1, A2, A3, A4,
A′4, A5, A′5 and A6 if and only if δ = 0. Moreover, if λ < 1 then ri(λ ,δ ) ∈
M(F4(R))\M∗(F4(R)) and if λ = 1 then ri(1,0) =Val ∈M∗(F4(R)). �

According to Corollary 4.4 it is easy to deduce that some already introduced
ranking indices are elements of M∗(F4(R)), i.e. they satisfy A1, A2, A3, A4, A′4,
A5, A′5 and A6. The following examples are given in [35].
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Example 4.11. Let us consider a function EV : F∆ (R)→ R which for any triangu-
lar fuzzy number ∆ = [x0,σ ,β ] associates its expected value (1.72), i.e. EV (T ) =
x0− 1

4 σ + 1
4 β . It is immediate that EV ∈M∗(F4(R)). �

Example 4.12. In [84] a ranking procedure is proposed via the so called valua-
tion functions. The authors consider a strictly monotonous function (valuation)
f : [0,1]→ [0,∞) and a ranking index R : F∆ (R)→ R which on triangular fuzzy
numbers becomes

R([x0,σ ,β ]) = (2−ω)x0−
1−ω

2
σ +

1−ω

2
β ,

where

ω =

∫ 1
0 α f (α)dα∫ 1
0 f (α)dα

.

Since 0<ω < 1 for any valuation f , by Theorems 4.5, 4.6 and 4.8, we easily see that
R generates an order which satisfiesA4,A′4 andA6 and hence R∈M(F4(R)) for any
valuation f . On the other hand, by Theorem 4.7 we observe that R /∈M∗(F4(R)).
It is easily seen that R∗ ∈M∗(F4(R)), where R∗ = 1

2−ω
R and �R∗ is equivalent to

�R. Moreover, for f (α) = α , α ∈ [0,1] we obtain the ranking index considered in
Example 4.9, i.e. R∗ = ri(1,0) =Val. �

It would be important to know whether there exists any other ranking index
R ∈M∗(F4(R)) which does not belong to Ω4. The answer to this question is neg-
ative as the following theorem proves.

Theorem 4.9. ([35]) Let us consider a ranking index R : F∆ (R)→ R. Then R ∈
M∗(F4(R)) if and only if there exists c ∈ [0,1] such that for some ∆ ∈ F∆ (R),
where ∆ = [x0,σ ,β ], we have

R(∆) = x0− cσ + cβ . (4.20)

Proof. Taking into account Corollary 4.4 it is easily seen that we can obtain the
desired conclusion by proving that R ∈M∗(F4(R)) implies R ∈ Ω4. Firstly, let us
observe that by Theorem 22 in [36] R is linear on F∆ (R). Let ∆ ∈ F∆ (R) such that
∆ = (t1, t2, t3). Here we use (1.12) representation of fuzzy numbers because it is
more suitable for this proof. Now, let us consider the triangular fuzzy numbers

v1 = (0,0,1),
v2 = (0,1,1),
v3 = (1,1,1).

Having in mind the addition and the scalar multiplication of fuzzy numbers we
get that ∆ = t1v3 + (t2 − t1)v2 + (t3 − t2)v1. The linearity of R implies R(∆) =
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t1R(v3) + (t2 − t1)R(v2) + (t3 − t2)R(v1). Returning now to other parametric rep-
resentation of ∆ , i.e. ∆ = [x0,σ ,β ] and taking into account (4.1)-(4.3), we obtain
R(∆) = x0R(v3) + σ(R(v2)− R(v3)) + βR(v1). Clearly, this last relation implies
R ∈Ω4 and the proof is complete. �

4.5 Characterization of valuable ranking indices on trapezoidal
fuzzy numbers

In this section we follow the idea discussed in Section 4.4 on the trapezoidal case.
We determine M∗(FT (R)) and abstracting of the equivalent orders over FT (R), we
find all ranking indices P : FT (R)→ R with the property that �P satisfies the rea-
sonable properties A1, A2, A3, A4, A′4, A5, A′5 and A6 on FT (R). Then, as it is
shown in Section 4.6, we can extend orders defined on FT (R) to orders defined on
F(R), so that the basic requirements are preserved. A different idea to rank fuzzy
numbers through trapezoidal fuzzy numbers can be found in [25], where fuzzy num-
bers are ranked using their trapezoidal approximations preserving the ambiguity and
value. Actually, the topic of the approximation of fuzzy numbers by fuzzy numbers
with simpler form and the topic of the ranking of fuzzy numbers with simpler form
are quite related. The aim of both is to simplify as much as possible the way of the
information processing that appears as fuzzy numbers.

In this section we use a trapezoidal fuzzy number representation which seems
more suitable for obtaining the main results. Namely, we consider the α-cut of a
trapezoidal fuzzy number T in the following form (see, e.g., [4])

Tα = [x0−σ +σα,y0 +β −βα] , α ∈ [0,1] , (4.21)

where x0,y0,σ ,β ∈ R, σ ≥ 0, β ≥ 0 and x0 ≤ y0 and we denote T = [x0,y0,σ ,β ].
Comparing to the classical representation of T (see Section 1.3.4), i.e. T = (t1, t2, t3,
t4), it is immediate that

t1 = x0−σ ,

t2 = x0,

t3 = y0,

t4 = y0 +β .

According to (1.72), (1.79) and (1.78), after some simple calculations, we get the
expected value, ambiguity and value of a trapezoidal fuzzy number T = [x0,y0,σ ,β ]
as
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EV (T ) =
1
2

x0 +
1
2

y0−
1
4

σ +
1
4

β ,

Amb(T ) = −1
2

x0 +
1
2

y0 +
1
6

σ +
1
6

β ,

Val(T ) =
1
2

x0 +
1
2

y0−
1
6

σ +
1
6

β .

These main characteristics of a trapezoidal fuzzy number T = [x0,y0,σ ,β ] sug-
gest to consider the following quantity

R(T ) = ax0 +by0 + cσ +dβ (4.22)

where a,b,c,d ∈ R are fixed. The function R : FT (R)→ R is additive and positive
homogenous. Let us introduce the following set

Ω
T =

{
R : FT (R)→ R | ∃a,b,c,d ∈ R such that

R([x0,y0,σ ,β ]) = ax0 +by0 + cσ +dβ} .

It can be shown that M∗(FT (R)) ⊆ Ω T . Because of the relationship between
M∗(FT (R)) and M(FT (R)) it justifies a detailed study of the set Ω T . For this
purpose one may find necessary and sufficient conditions for a,b,c,d such that
R ∈ Ω T could be used to rank effectively trapezoidal fuzzy numbers. We have al-
ready mentioned in the previous sections that requirements A1, A2 and A3 hold for
the ordering �R on FT (R) since �R is generated by a ranking index. Then, since
R(T +S) = R(T )+R(S) for all R ∈Ω T and T,S ∈ FT (R), it results that properties
A5 and A′5 hold. Therefore, it remains to find necessary and sufficient conditions
such that properties A4, A′4, A′′4 and A6 are satisfied. The proof of the following
theorem is similar to that considered for the triangular fuzzy numbers (see Section
4.4 or [36]).

Theorem 4.10. ([36]) Consider R ∈ Ω T such that R([x0,y0,σ ,β ]) = ax0 + by0 +
cσ +dβ .

(i) The order�R satisfies A4 if and only if a≥ 0, b≥ 0, c≤ 0, d ≥ 0, a+b+c≥ 0
and a+b−d ≥ 0.

(ii) The order �R satisfies A′4 if and only if a ≥ 0, b ≥ 0, a+b > 0, c ≤ 0, d ≥ 0,
a+b+ c≥ 0 and a+b−d ≥ 0.

(iii) The ranking index R satisfiesA′′4 if and only if a≥ 0, b≥ 0, a+b= 1, c∈ [−1,0]
and d ∈ [0,1].

(iv) The order �R satisfies A6 if and only if a = b and c+d = 0.
(v) R ∈M∗(FT (R)) if and only if a = b = 1

2 , c ∈ [−1,0] and c+d = 0.

According to Theorem 4.10 it is easy to deduce that some already introduced
ranking indices satisfy one or more propertiesA4,A′4,A′′4 ,A5,A′5,A6 or they belong
to M∗(FT (R)). Consider the following two examples (see [36]).
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Example 4.13. Let us consider an index discussed in Example 4.9. If T = [x0,y0,σ ,β ]
is a trapezoidal fuzzy number then by simple calculations (see (4.22) and (4.22)) we
get

ri(λ ,δ )(T ) =
λ −δ

2
x0 +

λ +δ

2
y0 +

δ −λ

6
σ +

λ +δ

6
β

and it is immediate that ri∈Ω T for any λ and δ . By Theorem 4.10 (ii) we conclude
that �ri(λ ,δ ) satisfies A′4 for any λ and δ . By Theorem 4.10 (iii) we deduce that
ri(λ ,δ ) satisfies A′′4 if and only if λ = 1. Moreover, by Theorem 4.10 (iv) we get
that �ri(λ ,δ ) satisfies A6 if and only if δ = 0. Therefore ri(λ ,δ ) ∈M(FT (R)) and
hence �ri(λ ,δ ) satisfies A1,A2, A3, A4, A′4, A5, A′5 and A6 if and only if δ = 0.
If λ < 1 then ri(λ ,δ ) ∈ M(FT (R)) \M∗(FT (R)). Moreover, if λ = 1 then we get
ri(λ ,δ ) = ri(1,0) =Val ∈M∗(FT (R)) which is the ranking index proposed for the
first time in [97]. �

Example 4.14. In [4] the authors have considered the magnitude of a trapezoidal
fuzzy number, namely a function Mag f : FT (R)→ R defined by

Mag f (T ) =
1
2

(∫ 1

0
(TL(α)+TU (α)+ x0 + y0) f (α)dα

)
,

where T = [x0,y0,σ ,β ] is an arbitrary trapezoidal fuzzy number and f is a non-
negative and nondecreasing function on [0,1] such that f (0) = 0, f (1) = 1 and
1∫
0

f (α)dα = 1/2. By simple calculations we get

Mag f (T ) =
1
2

x0 +
1
2

y0 +
σ

2

∫ 1

0
f (α)(α−1)dα +

β

2

∫ 1

0
f (α)(1−α)dα, (4.23)

and hence one can easily conclude (see Theorem 4.10, (v)) that Mag f ∈M∗(FT (R)).
Note that in [4] the authors dealt with the particular case f (α) = α for which

Mag(T ) =
1
2

x0 +
1
2

y0−
1

12
σ +

1
12

β .

�

As in the case of triangular fuzzy numbers it is interesting whether there exists
any other ranking index R ∈M∗(FT (R)) which does not belong to Ω T . The answer
to this question is negative. Hence now we can present the main result of this section.

Theorem 4.11. ([36]) Let us consider a ranking index R : FT (R)→ R. Then R ∈
M∗(FT (R)) if and only if there exists c ∈ [−1,0] such that for some T ∈ FT (R) of
the form T = [x0,y0,σ ,β ] we have

R(T ) =
1
2

x0 +
1
2

y0 + cσ − cβ . (4.24)
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Proof. The proof is based on the same idea as in Theorem 4.9. By Theorem 4.10
(v) it is easily seen that we can obtain the desired conclusion by proving that R ∈
M∗(FT (R)) implies R ∈ Ω T . Firstly, by Theorem 4.4 (i) we know that R is linear
on FT (R). We continue with a constructive proof although we could use the Riesz
representation theorem for linear functionals.

Let T ∈ FT (R), T = (t1, t2, t3, t4), denote a trapezoidal fuzzy number in its usual
representation. Moreover, let us consider the following trapezoidal fuzzy numbers

v1 = (0,0,0,1),
v2 = (0,0,1,1),
v3 = (0,1,1,1),
v4 = (1,1,1,1).

Having in mind the addition and the scalar multiplication of fuzzy numbers we
get that T = t1v4 +(t2− t1)v3 +(t3− t2)v2 +(t4− t3)v1. The linearity of R implies
R(T ) = t1R(v4)+(t2− t1)R(v3)+(t3− t2)R(v2)+(t4− t3)R(v1). Returning now to
the other parametric representation of T , i.e. T = [x0,y0,σ ,β ] and taking into ac-
count (4.22)-(4.22), we obtain R(T ) = x0(R(v4)− R(v2)) + y0R(v2) + σ(R(v3)−
R(v4)) + βR(v1). Clearly, this last relation implies that R ∈ Ω T and the proof is
complete. �

Now we may characterize some classes of ranking indices over FT (R) which
generate orders satisfying all or just some of the desired properties. Here Theorem
4.1 might be helpful for searching equivalent orders that satisfy requirement A′′4 on
FT (R).

Corollary 4.6. ([36])

(i) If R ∈M(FT (R)) then there exists R∗ ∈M∗(FT (R)) such that �R and �R∗ are
equivalent. Moreover, there exists c ∈ [−1,0] such that R∗(T ) = 1

2 x0 +
1
2 y0 +

cσ − cβ for some T = [x0,y0,σ ,β ] ∈ FT (R).
(ii) If R : FT (R)→ R is a ranking index such that �R satisfies A′4 and A5 then
�R satisfies also A′5. Moreover, there exists an additive ranking index R+ :
FT (R)→ R satisfyingA′′4 on FT (R) which generates on FT (R) an order equiv-
alent to �R.

(iii) If R :FT (R)→ R is a ranking index such that�R satisfiesA′4 andA6 then there
exists a scale invariant ranking index R× : FT (R)→ R which satisfies A′′4 on
FT (R) and generates on FT (R) an order equivalent to �R.

Proof. (i) By the proof of Theorem 4.1 we obtain the existence of R∗ : FT (R)→ R
which satisfies A′′4 and such that the order �R∗ on FT (R) is equivalent to �R. This
implies that R∗ ∈ M∗(FT (R)). Next steps of the proof follow immediately from
Theorem 4.11.

(ii) and (iii) The proofs are immediate by substituting S = FT (R) into Corol-
laries 4.2 and 4.3 respectively. �
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To illustrate the result given in Corollary 4.6 (i) let us consider the following
example (see [36]).

Example 4.15. In the very recent paper [172] a new ranking index was proposed.
For any trapezoidal fuzzy number T = [x0,y0,σ ,β ] it becomes

Qγ

S−D ([x0,y0,σ ,β ]) = (1− γ)x0 +(1− γ)y0−
(1− γ)2

2
σ +

(1− γ)2

2
β ,

where γ ∈ [0,1] is interpreted as a decision level. By Theorem 4.10, (v) we know
that Qγ

S−D ∈ M∗(FT (R)) if and only if γ = 1
2 . It is interesting to note that Qγ

S−D ∈
M(FT (R)) for any γ < 1. Therefore, by Theorem 4.1), there exists a ranking index(
Qγ

S−D

)
∗ defined by

(
Qγ

S−D

)
∗ ([x0,y0,σ ,β ]) =

1
2

x0 +
1
2

y0−
1− γ

4
σ +

1− γ

4
β ,

such that
(
Qγ

S−D

)
∗ ∈ M∗(FT (R)) and such that the orders generated by

(
Qγ

S−D

)
∗

and Qγ

S−D are equivalent. �

4.6 Ranking fuzzy numbers through trapezoidal fuzzy numbers

By Theorem 4.11 we found the class M∗(FT (R)) consisting of all ranking in-
dices that generate orders over the space of trapezoidal fuzzy numbers satisfying
requirements A1, A2, A3, A′′4 , A5, A′5 and A6. Below we point out that for any
R ∈ M∗(FT (R)) there exists R ∈ M∗(F(R)) such that R(T ) = R(T ) for any trape-
zoidal fuzzy number T . It means that R is an extension of R on F(R) so that all
desirable properties A1, A2, A3, A′′4 , A5, A′5 and A6 hold on F(R).

Theorem 4.12. ([36]) Let us consider an operator T : F(R)→ FT (R) and R ∈
M∗(FT (R)). If T is linear and supp(T (A)) ⊆ supp(A) for any A ∈ F(R) then
R : F(R)→ R given by R(A) = R(T (A)) is linear and R ∈M∗(F(R)).

Proof. By Theorem 4.4 or Theorem 4.11 we conclude that R is linear on FT (R).
Thus R is linear on F(R), since R is the composition of the linear operators R
and T . It remains to prove that requirements A1, A2, A3, A′′4 , A5, A′5 and A6
hold on F(R) for R and �R. Properties A1, A2 and A3 are obviously satisfied.
Moreover, since R is linear, we easily obtain that A5, A′5 and A6 are satisfied too.
Now, considering an arbitrary fuzzy number A, since R ∈M∗

(
FT (R)

)
, we get that

R(T (A)) ∈ supp(T (A)). Since supp(T (A))⊆ supp(A) and R(T (A)) = R(A) we
conclude that R(A) ∈ supp(A) which proves that A′′4 holds for R on F(R) and the
theorem is proved. �
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The expected value (1.72) generates an order over F(R) which satisfies all basic
requirements. Nevertheless, if

∫ 1
0 AL(α)dα+

∫ 1
0 AU (α)dα is difficult to compute for

a given fuzzy number A, the ranking based on the expected value is not practical.
So it is natural to ask if it is possible to provide orders over F(R) which are easy
to use from computational point of view and which satisfy the basic requirements
discussed in Section 4.2. In the following example we propose a method to extend
an order from FT (R) to F(R).

Example 4.16. ([36]) If T = (t1, t2, t3, t4) is a trapezoidal fuzzy number then
EV (T ) = 1

4 (t1 + t2 + t3 + t4) = 1
4 (TL(0)+TL(1)+TU (1)+TU (0)). Let us define an

operator T : F(R)→ FT (R) given by

T (A) = (AL(0),AL(1),AU (1),AU (0)) .

T (A) is the unique trapezoidal fuzzy number which preserves the support and the
core of A ∈ F(R). Let us consider R : F(R)→ R given by

R(A) =
1
4
(AL(0)+AL(1)+AU (0)+AU (1))

and R which is the restriction of R on the subset FT (R), i.e. R(T ) = R(T ) = EV (T )
for all T ∈ FT (R). It is easy to check that all assumptions in Theorem 4.12 are
satisfied for R, R and T , and therefore R ∈M∗(F(R)). �

The above discussed operator R is very convenient from the computational point
of view and it can be used to compare two fuzzy numbers expressed either in the
explicit or parametric way.

It is worth noting that we can extend each order given by the operator R ∈
M∗(FT (R)) to an order over F(R) which is easy to handle from the computational
point of view and satisfies basic requirements considered in Section 4.2.

Theorem 4.13. ([36]) If R ∈M∗(FT (R)) then there exists R : F(R)→ R such that
R ∈M∗(F(R)). Moreover, R(T ) = R(T ) for all T ∈ FT (R).

Proof. If R ∈M∗(FT (R)) then there exists c ∈ [−1,0] such that

R(T ) =
1
2

x0 +
1
2

y0 + cσ − cβ

for T = [x0,y0,σ ,β ] (see Theorem 4.11). Since x0 = TL(1),σ = TL(1)−TL(0),y0 =
TU (1),β = TU (0)−TU (1), we get

R(T ) = (
1
2
+ c)(TL(1)+TU (1))− c(TL(0)+TU (0)).

Define R : F(R)→ R by
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R(A) = (
1
2
+ c)(AL(1)+AU (1))− c(AL(0)+AU (0))

and T : F(R)→ FT (R) such that

T (A) = [AL(1),AU (1),AL(1)−AL(0),AU (0)−AU (1)] .

It is obvious that R, R and T satisfy the assumptions in Theorem 4.12 and hence
the conclusion is immediate. �

In the end of this section we give an explicit form of such operator R : F(R)→R
that R ∈ M∗(F(R)) and such that for any fuzzy numbers A and B with identical
support and core we have A∼R B.

Theorem 4.14. ([36]) Suppose R ∈M∗(F(R)) is such that for any fuzzy numbers A
and B with identical support and core we have A∼R B. Then there exists c ∈ [−1,0]
such that

R(A) = (
1
2
+ c)(AL(1)+AU (1))− c(AL(0)+AU (0)).

Proof. By Theorem 4.11 there exist such c ∈ [−1,0] that R(T ) = ( 1
2 + c)(TL(1)+

TU (1))− c(TL(0)+TU (0)) for all T ∈ FT (R). Now, for an arbitrary fuzzy number
A we consider the following trapezoidal fuzzy number

TA = [AL(1),AU (1),AL(1)−AL(0),AU (0)−AU (1)] ,

i.e. A and TA have the same support and core. By the assumptions R(A) = R(TA) and
hence

R(TA) = (
1
2
+ c)((TA)L(1)+(TA)U (1))− c((TA)L(0)+(TA)U (0))

= (
1
2
+ c)(AL(1)+AU (1))− c(AL(0)+AU (0)),

we obtain the desired conclusion. �

Problems

4.1. Prove that the ranking index P : F∆ (R)→ R given by

P((a,b,c)) =
(a+b+ c)(a+4b+ c)

9(a+2b+ c)
,

(see [69]) satisfies A′4, while R : F∆ (R)→ R such that

R((a,b,c)) = 2P((a,b,c))
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satisfies A′′4 .

4.2. Prove that the ranking index P : F(R)→ R defined as (see [67])

P(A) =
1

2(M−m)

(∫ 1

0
AL(α)dα +

∫ 1

0
AU (α)dα−2m

)
,

where m,M ∈ R and M 6= m satisfies A′4.

4.3. Consider a set S ⊆ F(R) and suppose that there exists a function f : S →
FT (R) such that supp( f (A))⊆ supp(A) for all A∈S . If R :FT (R)→ R is a ranking
index such that �R satisfies A4 (or A′4) on FT (R) then R : S → R defined as R =
R◦ f is a ranking index such that �R satisfies A4 (or A′4) on S .

4.4. Consider a set S ⊆ F(R) such that S +S ⊆S and suppose that there exists
an additive function f : S → FT (R) such that supp( f (A))⊆ supp(A) for all A∈S .
If R : FT (R)→ R is a defuzzifier such that �R satisfies A5 and A′5 on FT (R) then
R : S →R defined as R = R◦ f is a defuzzifier such that �R satisfies A5 and A′5 on
S .

4.5. Consider a set S ⊆ F(R) such that λ ·S ⊆S for all λ ∈ R and suppose that
there exists a homogenous function f : S →FT (R) such that supp( f (A))⊆ supp(A)
for all A ∈S . If R : FT (R)→ R is a defuzzifier such that �R satisfies A6 on FT (R)
then R : S → R defined as R = R ◦ f is a defuzzifier such that �R satisfies A6 on
S .

4.6. Consider an arbitrary set of all L−L fuzzy numbers for some given L (see Def-
inition 1.10). Consider a ranking index R : FL,L(R)→R such that R ∈M (FL,L(R)).
Prove that there exists R∗ ∈ M∗ (FL,L(R)) such that �R and �R∗ are equivalent.
Moreover, prove that there exists c ∈ [−1,0] such that for some A = [x,y,σ ,β ]L,L ∈
FL,L(R), where Aα = [x− σ + σL−1(α),y + β − βR−1(α)], α ∈ [0,1], we have
R∗(A) = 1

2 x+ 1
2 y+ cσ − cβ . (Here we use the same type of the left-spread right-

spread representation as we did in Section 4.5 for the case of the trapezoidal fuzzy
numbers. We also observe that this result extends Corollary 4.6 to the more general
case of L−L fuzzy numbers.)

4.7. Let P : F(R)→ R be a ranking index given by P(A) = (AL(0))
3. Prove that P

does not satisfy A′′4 and find a ranking index R : F(R)→ R which satisfies A′′4 such
that �R and �P are equivalent.

4.8. Prove that operator EV : FT (R)→R which attributes for any trapezoidal fuzzy
number T = [x0,y0,σ ,β ] its expected value, i.e. EV (T ) = 1

2 x0 +
1
2 y0− 1

4 σ + 1
4 β , is

an element of M∗(FT (R)).

4.9. Let R : FT (R)→ R by defined as (see [148])

R([x0,y0,σ ,β ]) = (1− γ)x0 + γy0 +
γ−1

2
σ +

γ

2
β ,

where γ ∈ [0,1] represents the degree of optimism of a decision maker. Find a nec-
essary and sufficient condition so that R satisfies A6.
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4.10. Let EV : F(R)→R denote the operator which attributes to a fuzzy number its
expected value (1.72). Applying Theorem 4.12 prove that EV ∈M∗(F(R)).

4.11. Let M f , f : FT (R)→ R be defined by (see [171])

M f , f ([x0,y0,σ ,β ]) =
1
2

x0 +
1
2

y0 +
σ

2

∫ 1

0
f (α)(α−1)dα +

β

2

∫ 1

0
f (α)(1−α)dα,

where the weighting functions f , f : [0,1]→ R are non-negative, increasing and
such that

∫ 1
0 f (α)dα =

∫ 1
0 f (α)dα = 1. Prove that M f , f ∈M∗(FT (R)).

4.12. Let f : [0,1]→ [0,∞) be a strictly monotone function and suppose the ranking
index R : FT (R)→ R is defined by (see [84])

R([x0,y0,σ ,β ]) =
2−ω

2
x0 +

2−ω

2
y0−

1−ω

2
σ +

1−ω

2
β ,

where

ω =

∫ 1
0 α f (α)dα∫ 1
0 f (α)dα

.

(i) Prove that R ∈M(FT (R)) and R /∈M∗(FT (R)).
(ii) Prove that R∗ ∈M∗(FT (R)) and �R∗ is equivalent to �R, where R∗ = 1

2−ω
R.

4.13. Find all possible defuzzifiers in the set M∗
(
FT (R)

)
which generate orders

that satisfy the following property of an order �: If A = (t1, t2, t3, t4) and B =
(s1,s2,s3,s4) such that ti ≥ si for every i ∈ 1,2,3,4, then A� B.

4.14. Suppose S ⊆ F(R) is such that R⊆S and let R : S →R be continuous on
the restriction of S on R. Then we know that if �R satisfies A′4 on S then �R
satisfies A4 on S . Find a set S ⊆ F(R) and an order � on S (generated or not by
a ranking index) such that � satisfies A′4 on S but it does not satisfy (in general)
A4 on S .

4.15. Prove that the conclusion of Theorem 4.1 also holds if instead of R⊆S we
assume that S ∩R is a closed interval in R.

4.16. Prove that all the conclusion in Theorem 4.2 also hold if instead of R⊆S we
assume that S ∩R= [0,∞).

4.17. In [3] the authors propose to rank fuzzy numbers by using Lp-type dis-
tances. In [6] the same approach is proposed with a small modification. Namely,
let us fix a real p ≥ 1 and consider an arbitrary fuzzy number A. If

∫ 1
0 AL(α)dα +∫ 1

0 AU (α)dα > 0 then we take

δp(A) =
(∫ 1

0
|AL(α)|p dα +

∫ 1

0
|AU (α)|p dα

)1/p

.
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If
∫ 1

0 AL(α)dα +
∫ 1

0 AU (α)dα < 0 then

δp(A) =−
(∫ 1

0
|AL(α)|p dα +

∫ 1

0
|AU (α)|p dα

)1/p

,

and finally, if
∫ 1

0 AL(α)dα +
∫ 1

0 AU (α)dα = 0 then δp(A) = 0. Now, considering δp
as a ranking index on FT (R), we obtain on FT (R) the order �δp generated by δp.
Prove that for this order neither A4 nor A′4 hold in general on FT (R).

4.18. Denote by I(R) the set of all compact intervals in R. Find all the ranking in-
dices (up to equivalent orders) on I(R) which generate orders satisfying reasonable
properties A1, A2, A3, A4, A′4, A5, A′5 and A6 on I(R).

4.19. Denote by I+(R) the set of all positive compact intervals in R. Find all the
ranking indices (up to equivalent orders) on I(R) which generate orders satisfying
reasonable properties A1, A2, A3, A4, A′4, A5, A′5 and A6 on I+(R).

4.20. Suppose R ∈M∗(FT (R)) and let T be a symmetric trapezoidal fuzzy number
with respect to the origin, i.e. T = [−x0,x0,σ ,σ ]. Prove that R(T ) = 0.

4.21. Suppose R ∈ M∗(FT (R)) and let T1 and T2 denote the following trapezoidal
fuzzy numbers: T1 = [x0,y0,σ ,σ ] and T2 = [x0,y0,β ,β ]. Prove that R(T1) = R(T2).





Chapter 5
Applications

5.1 Approximation of fuzzy numbers and aggregation

In decision making, science and all other activities where data are processed and
utilized for making conclusions, the problem of data aggregation turns out impor-
tant immediately. To make a decision or to draw a final conclusion one often needs a
kind of synthesis of all essential information delivered in available data. It is usually
achieved by using an appropriate aggregation operator which, roughly speaking,
combines several values (numerical or non-numerical) into a single one. Although
it can be done in many ways, the desired final result of aggregation should be some-
how representative to the initial data set. Thus, an adequate aggregation operator
should possess some properties that can be requested for aggregation. These prop-
erties can be divided into “formal”, which guarantee sound mathematical structures
and “behavioral”, connected with usefulness in particular practical problems. As the
latter are strictly related to specific applications, the former are intensively studied
within the framework of the theory of aggregation operators (or aggregation func-
tions) which is nowadays a rapidly developing mathematical domain. For the recent
state of art monograph we refer the reader to [99], while for the book more oriented
towards practitioners we refer to [44].

However, this section is addressed neither to “formal” nor to “behavioral” prop-
erties of aggregation operators but to problems related to data representation that
appear in the context of aggregation of fuzzy data. As we have discussed it in Chap-
ter 3 such data may cause serious difficulties in all aspects of fuzzy data processing,
including calculus and interpretation, especially if membership functions are too
complicated. That is also the reason why practitioners are so interested in various
simplification methods applicable to fuzzy inputs and realized through defuzzifica-
tion or different kinds of approximations, described broadly in Chapter 3.

Whatever approximation method is preferred, one fundamental question related
to aggregation remains: When the approximation should be performed: before or
after aggregation? In other words, one has to decide whether it is better to simplify

149
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initial data before using an aggregation operator or conversely, to aggregate original
fuzzy values and then to simplify the output.

Obviously, that there is no unique answer for given question since the diversity
of possible situations is too broad to find out a solution that always holds. Anyway,
in some cases we may obtain quite interesting solutions and two of such cases are
discussed below. The main idea can be found in [37] too.

Suppose now we have a sequence A1, . . . ,An of fuzzy numbers that should be
aggregated efficiently. By the word efficiently we mean that the output is both rep-
resentative to the whole set of inputs and its form is simple. Having in mind all the
discussions related to trapezoidal approximation and its benefits, given in Section
3.5, let us try to find such trapezoidal fuzzy number TA1,...,An which is the nearest
one to all members of the initial data set A1, . . . ,An with respect to the Euclidean
distance (1.40). In other words, we are looking for such trapezoidal fuzzy number
TA1,...,An which minimizes the distance D((A1, . . . ,An),TA1,...,An), where

D2 ((A1, . . . ,An) ,TA1,...,An) =
n

∑
i=1

d2 (Ai,TA1,...,An) . (5.1)

Now let us consider the arithmetic mean of given fuzzy numbers A1, . . . ,An, de-
noted by A, i.e.

A =
1
n
· (A1 + . . .+An) , (5.2)

where the average is computed according to the Minkowski rules, i.e. (1.21) and
(1.29). As it is known the average is a very popular aggregation operator having
many interesting properties (see, e.g., [44]). This is the main reason that the average
is so often used in practise. Suppose now we want to find the nearest trapezoidal
fuzzy number T (A) of fuzzy number A with respect to the distance (1.40) by mini-
mizing d2(A,T (A)).

It appears that the following theorem holds.

Theorem 5.1. The trapezoidal fuzzy number nearest to fuzzy numbers A1, . . . ,An is
the trapezoidal fuzzy number nearest to fuzzy number A, i.e.

TA1,...,An = T (A).

For the proof we refer the reader to [37] (actually, Theorem 5.1 is a direct con-
clusion of Theorem 6 proved in [37] for the weighted distance (1.42)).

Thus, turning back to the question posed at the beginning of this section: Is it
better to simplify initial data before using an aggregation operator or conversely,
to aggregate original fuzzy values and then to simplify the output? we conclude by
Theorem 5.1 that the problem disappears if the average is chosen as the aggregation
operator. Actually, Theorem 5.1 shows that the trapezoidal fuzzy number nearest to
given family of fuzzy numbers is equivalent to the trapezoidal fuzzy number nearest
to their average (provided any solution exists). In other words, there is no difference
whether the approximation is performed before or after aggregation.

The following corollary could be also useful for practical calculations.
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Corollary 5.1. The trapezoidal fuzzy number nearest to trapezoidal fuzzy numbers
A1, . . . ,An, where Ai = (ai

1,a
i
2,a

i
3,a

i
4), i = 1, . . .n, is

TA1,...,An = A =

(
1
n

n

∑
i=1

ai
1,

1
n

n

∑
i=1

ai
2,

1
n

n

∑
i=1

ai
3,

1
n

n

∑
i=1

ai
4

)
. (5.3)

Moreover, appreciating the role of the expected interval invariance during ap-
proximation, considered broadly in Section 3.5.1, let us assume that the desired
fuzzy number T ∗A1,...,An

which is the nearest one to all members of the initial data
set A1, . . . ,An with respect to the Euclidean distance (1.40), should also preserve
somehow the expected interval. However, before undertaking any optimization task
the last requirement has to be specified more formally. Hence let us assume that the
expected interval of a set of fuzzy numbers A1, . . . ,An would be in a natural way
defined by aggregating them using average, i.e.

ẼI (A1, . . . ,An) =
1
n
(EI (A1)+ . . .+EI (An)) , (5.4)

where addition and scalar multiplication are computed according to the Minkowski
rules (see (1.21) and (1.29)).

Therefore, our goal now is to find such trapezoidal fuzzy number T ∗A1,...,An
which

minimizes the distance D((A1, . . . ,An),T ∗A1,...,An
), defined by (5.1), and such that

EI(T ∗A1,...,An) = ẼI (A1, . . . ,An) . (5.5)

It could be shown that the following theorem, similar to Theorem 5.1, holds.

Theorem 5.2. The trapezoidal fuzzy number nearest to fuzzy numbers A1, . . . ,An
which preserves the expected interval of A1, . . . ,An is the trapezoidal fuzzy number
nearest to fuzzy number A which preserves the weighted expected interval of A, i.e.

T ∗A1,...,An = T ∗(A).

For the proof we refer the reader again to [37], because Theorem 5.2 is a direct
conclusion of Theorem 10 proved in [37] for the weighted distance (1.42) and the
invariance of the weighted expected interval (1.84).

Theorem 5.2 shows that there is no difference whether the approximation pre-
serving the weighted expected interval is performed before or after aggregation with
respect to average. Thus a general conclusion from Theorem 5.2 is similar to that
obtained for the approximation without condition concerning the expected interval
invariance. This remark, of course, does not mean that in both cases we obtain the
same outputs. Let us consider the following example.

Example 5.1. Suppose A1, A2 and A3 are fuzzy numbers given by their α-cuts
(A1)α = [−1+α2,4− 2α2], (A2)α = [1+α2,3−α2] and (A3)α = [45

√
α,46−√

α], respectively, where α ∈ [0,1]. Then
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1
3
(A1 +A2 +A3)

)
α

=

[
2
3

α
2 +15

√
α,

53
3
−α

2− 1
3
√

α

]
, α ∈ [0,1].

According to Algorithm 1, Step 1 in [195], the trapezoidal fuzzy number nearest
to 1

3 (A1 +A2 +A3) is

T
(

1
3
(A1 +A2 +A3)

)
=

(
469
120

,
991
60

,
991
60

,
709
40

)
,

and by Theorem 5.1 we get that
( 469

120 ,
991
60 , 991

60 , 709
40

)
is also the trapezoidal fuzzy

number nearest to A1, A2 and A3.
By Theorem 3.8 one can also find that the trapezoidal fuzzy number nearest to

1
3 (A1 +A2 +A3) preserving the expected interval of 1

3 (A1 +A2 +A3) is

T ∗
(

1
3
(A1 +A2 +A3)

)
=

(
707
180

,
991
60

,
991
60

,
3187
180

)
.

By Theorem 5.2 we conclude immediately that
( 707

180 ,
991
60 , 991

60 , 3187
180

)
is the trape-

zoidal fuzzy number nearest to A1, A2 and A3 which preserves the expected interval
of the set of fuzzy numbers A1, A2 and A3. �

Although in general TA1,...,An and T ∗A1,...,An
may differ, one may indicate some

situation where they coincide.

Corollary 5.2. The trapezoidal fuzzy number nearest to trapezoidal fuzzy numbers
A1, . . . ,An, where Ai = (ai

1,a
i
2,a

i
3,a

i
4), i = 1, . . .n, which preserves the expected in-

terval of A1, . . . ,An is

T ∗A1,...,An = A =

(
1
n

n

∑
i=1

ai
1,

1
n

n

∑
i=1

ai
2,

1
n

n

∑
i=1

ai
3,

1
n

n

∑
i=1

ai
4

)
= TA1,...,An . (5.6)

Proof. Since the expected interval (1.71) is linear and then taking into account (5.4)
we obtain

ẼI (A1, ...,An) =
1
n
(EI (A1)+ . . .+EI (An)) = EI

(
1
n
(A1 + . . .+An)

)
= EI

(
A
)
.

Moreover, having in mind that the trapezoidal approximation operator satisfies the
identity criterion (see Definition 3.5), so that the trapezoidal approximation of a
trapezoidal fuzzy number is equivalent to that number, the proof is complete. �

It is worth noting that our results might be also applied to calculate the trape-
zoidal approximations of the interval-valued fuzzy numbers (intuitionistic fuzzy
numbers), discussed in Section 2.1. In the simplest case we may consider a single
interval-valued fuzzy number described by the upper and lower membership func-
tions A+ and A−, respectively. Thus, according to Theorem 5.1 applied for n = 2,
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we obtain the same trapezoidal approximation whatever we do first: approximate
separately A+ and A− and then aggregate the solutions or conversely, aggregate A+

and A− and then find the desired approximation.

5.2 Fuzzy median of a fuzzy sample

5.2.1 Fuzzy sample median

In descriptive statistics we can distinguish three groups of the so-called summary
statistics to characterize briefly a data set under study: measures of location, mea-
sures of dispersion and measures of shape. The central tendency measures, as a
subset of location measures, seem to be the most important because they character-
ize values typical for a sample. The most popular central tendency measure is the
arithmetic mean. As an estimator of the population mean it possesses many desired
properties but also a strong drawback: it is sensitive to outliers. A sample median
or a median in brief, is a central tendency measure which avoids this unpleasant be-
havior. The median is usually defined as a middle element in the ordered sequence
of observations (if a sample size is odd) or as the average of the two middle obser-
vations (if a sample size is even). Therefore, just by its definition the median is not
influenced by the extreme values and hence is robust to outliers.

More precisely, if X1, . . . ,Xn denote a usual crisp sample of real numbers then the
median Med = Med(X1, . . . ,Xn) is defined as

Med =

{
X( n+1

2 ) if n is odd
1
2

(
X( n

2 )
+X( n

2+1)

)
if n is even,

where X(1) ≤ . . .≤ X(n) denote order statistics from the sample X1, . . . ,Xn.
Having a fuzzy sample that describes imprecise observations we are also inter-

ested in characterizing the most important properties of the data set in a concise way.
It appears that a fuzzy counterpart of the arithmetic mean is also sensitive to outliers.
Thus it seems naturally to expect that a fuzzy median might be a good candidate for
a central tendency measure which is robust to outliers in a fuzzy environment. How-
ever, when we move to fuzzy data and want to generalize the concept of the median
to a fuzzy context, we see immediately that it is not possible to make it straightfor-
wardly since fuzzy numbers do not form a linear order and so we cannot find the
“middle” one. Although there are many methods of ranking fuzzy numbers, there is
too much subjectivity in them and hence no ranking method is generally accepted
and broadly applied. Nevertheless, the idea of a median in a fuzzy environment was
not abandoned. A fuzzy generalization of the median may be defined in several
ways (see, e.g., [38, 73, 79, 102, 173, 174, 175]) and hence neither its existence nor
properties are obvious.
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Now let A1, . . . ,An denote a fuzzy sample of imprecise observations, where
each Ai is a fuzzy number. A fuzzy sample median M̃ed = M̃ed(A1, . . . ,An) of
the fuzzy sample A1, . . . ,An was defined in [102] as a fuzzy number with α-cuts

M̃edα(A1, . . . ,An) = [M̃ed
L
α ,M̃ed

U
α ] given by

M̃ed
L
α =

 (AL
α)( n+1

2 ) if n is odd(
(AL

α )( n
2 )+(AL

α )( n
2 +1)

)
2 if n is even,

(5.7)

M̃ed
U
α =

 (AU
α )( n+1

2 ) if is odd(
(AU

α )( n
2 )+(AU

α )( n
2 +1)

)
2 if n is even,

(5.8)

where (AL
α)(k) denotes the k-th order statistic of a sample (A1)L(α), . . . ,(An)L(α)

while (AU
α )(k) is the k-th order statistic of a sample (A1)U (α), . . . ,(An)U (α). It can

be shown that the fuzzy sample median M̃ed becomes a traditional crisp sample
median if the observations are not vague but crisp.

It was shown in [102] that the fuzzy sample median defined by (5.7) and (5.8) is
a consistent estimator of a fuzzy population median. Moreover, some applications
of so defined fuzzy sample median were given there.

Unfortunately, the fuzzy sample median defined by (5.7) and (5.8) is difficult to
handle and the resulting output because of its complicated shape may not have a
straightforward interpretation. Although the family of fuzzy numbers F(R) consists
of objects with diverse membership functions, fuzzy numbers with simpler mem-
bership functions are often preferred in practice. This is why another construction
of a fuzzy median, inspired by its interpretation in classical probability theory, was
proposed in [38]. We describe this idea in the next section.

5.2.2 A fixed-shape fuzzy median

It is clear that the expected value or the median of a sample can be obtained by mini-
mizing certain functions. For example, a probabilistic median of a sample X1, . . . ,Xn
is actually a real value m which minimizes ∑

n
i=1 |Xi− y|, i.e.

m = argmin
y∈R

n

∑
i=1
|Xi− y| . (5.9)

We will adapt the above formula to construct a median of a fuzzy sample.
Suppose that A1, . . . ,An is a sample of fuzzy numbers and let d denote a dis-

tance between fuzzy numbers. Inspired by (5.9) let as define a fuzzy median as such
fuzzy number M which minimizes the distance d between this fuzzy number and
the sample under study, i.e.
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M = arg min
B∈F(R)

n

∑
i=1

d(B,Ai). (5.10)

As an important remark let us notice that in the classical case the median of a sample
can be formulated using the natural ordering between observations. Unfortunately,
we do not have the same interpretation using an ordering between fuzzy numbers.
This is why further on we will stick to the distance minimization problem.

It may happen that as a solution of the minimization problem (5.10) we obtain a
fuzzy number having too complex membership function and hence making it useless
in applications. Therefore, we need to relax the above minimization problem by
imposing regularity properties to the solution. Here we find a similar motivation as
in the case of the approximation of fuzzy numbers broadly discussed in Chapter 3.
All these facts make us believe that we should look for a useful fuzzy median among
fuzzy numbers with simple membership functions such as trapezoidal, triangular
and so on. This is also a motivation for considering the following four definitions
(see [38]).

Definition 5.1. A trapezoidal median of a fuzzy sample A1, . . . ,An is such a trape-
zoidal fuzzy number MT ∈ FT (R) which is closest to the fuzzy sample A1, . . . ,An
with respect to distance d, i.e.

MT = arg min
B∈FT (R)

n

∑
i=1

d(B,Ai). (5.11)

Definition 5.2. A triangular median of a fuzzy sample A1, . . . ,An is such a triangu-
lar fuzzy number M4 ∈ F∆ (R) which is closest to the fuzzy sample A1, . . . ,An with
respect to distance d, i.e.

M4 = arg min
B∈F∆ (R)

n

∑
i=1

d(B,Ai). (5.12)

Definition 5.3. An interval median of a fuzzy sample A1, . . . ,An is such an interval
MI ∈ I which is closest to the fuzzy sample A1, . . . ,An with respect to distance d,
i.e.

MI = argmin
B∈I

n

∑
i=1

d(B,Ai). (5.13)

Definition 5.4. A crisp median of a fuzzy sample A1, . . . ,An is such a real number
MC ∈ R which is closest to the fuzzy sample A1, . . . ,An with respect to distance d,
i.e.

MC = argmin
B∈R

n

∑
i=1

d(B,Ai). (5.14)

Of course, we have here a kind of hierarchy, since each triangular fuzzy number
is a trapezoidal fuzzy number and so on, but it seems that all four medians suggested
above may be interesting in practice.
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Depending on a certain application one can use any of the metrics listed by us in
Section 1.5. As it will be revealed in the next section, existence results for the fuzzy
medians proposed in Definition 5.1-5.4 will be provided for broad classes of metrics
including those from Section 1.5.

Note, that a similar idea of a median but restricted to particular distances and
interval data was discussed in [173, 175], while for fuzzy numbers and L1-type
distance in [174]. On the other hand, a completely different idea of a median in the
setting of imprecise probabilities was discussed in [79].

5.2.3 Existence of the fuzzy median

A main result relating to the concepts introduced in the previous section can be
obtained using the following well-known embedding theorem of Rådström.

Theorem 5.3. ([166], Theorem 1) Let us consider a triplet (X,+, ·) where + : X×
X→ X and · : [0,∞)×X→ X satisfy the following properties:

(i) (a+b)+ c = a+(b+ c) for all a,b,c ∈ X;
(ii) a+b = b+a for all a,b ∈ X;
(iii) a+ c = b+ c implies a = b for all a,b,c ∈ X;
(iv) λ (a+b) = λa+λb for all λ ∈ [0,∞) and a,b ∈ X;
(v) (λ1 +λ2)a = λ1a+λ2a for all λ1,λ2 ∈ [0,∞) and a ∈ X;
(vi) λ1(λ2a) = λ1λ2a for all λ1,λ2 ∈ [0,∞) and a ∈ X;
(vii) 1a = a for all a ∈ X.

Then there exist a vector space (X̃,⊕,�) and an injective application (inclusion)
i :X→ X̃ and, regardingX as a subset of X̃ (that is adopting the convention i(x) = x
for all x ∈ X) we have

a⊕b = a+b;
λ �a = λ ·a

for all a,b ∈ X and λ ∈ [0,∞).
If, in addition, there exits a metric d defined on X satisfying

(viii) d(a+ c,b+ c) = d(a,b) for all a,b,c ∈ X;
(ix) d(λa,λb) = λd(a,b) for all λ ∈ [0,∞) and a,b ∈ X;
(x) + : X×X→ X and · : [0,∞)×X→ X are continuous on the topology gener-

ated by d on X,

then there exists a norm ‖·‖ : X̃→ [0,∞) such that the metric d̃ on X̃ generated by
‖·‖ satisfies

d(a,b) = d̃(a,b) for all a,b ∈ X.

Spaces like X satisfying requirements (i)− (vii) in the above theorem are called
semilinear spaces.
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It is easily seen that the above hypotheses hold for all the metrics proposed in
Section 1.5.

Corollary 5.3. There exists a vector space
(
F̃(R),⊕,�

)
so that

A+B = A⊕B for all A,B ∈ F(R)

and
λA = λ �A for all λ ∈ [0,∞) and A ∈ F(R).

Moreover, if D is a metric on F(R), like those in Section 1.5, then there exists a

metric D̃ which makes
(
F̃(R),⊕,�, D̃

)
a normed space and such that

D(A,B) = D̃(A,B) for all A,B ∈ F(R).

Next two lemmas concerning the existence of the best approximation will be also
useful.

Lemma 5.1. ([176], Theorem 4.1.1) Let (X,d) be a metric space and let B be a
compact subset of X. Then for any x ∈ X there exists x∗ ∈ B such that

d(x,x∗) = inf
y∈B

d(x,y).

Lemma 5.2. Let (X,d) be a normed space and let Ω be a nonempty closed subset
of a linear subspace X1 of X. Then, for any x ∈ X there exists x∗ ∈Ω such that

d(x,x∗) = inf
y∈Ω

d(x,y). (5.15)

The proof can be found in [73], Theorem 3.2.3. Let us continue with several
auxiliary results useful for our purposes.

Theorem 5.4. (see [73], Theorem 3.2.5) Let d be a metric defined on the space of
fuzzy numbers F(R) which satisfies requirements (viii)-(x) of Theorem 5.3 and let(
F̃(R), d̃,⊕,�

)
be the normed space which realizes the embedding of (F(R),d,+, ·)

according to Theorem 5.3. Let us consider a subset A ⊆ F(R) for which there exist
{v2,v3, ...,vm} ⊆A such that:

(i) The system {1,v2, . . . ,vn} is linear independent in the vector space
(
F̃(R),⊕,�

)
.

(ii) A = {λ1 ·1+
n
∑

i=2
λivi : λ1 ∈ R,λi ∈ [0,∞), i = 2, . . . ,n}.

Then A is a closed subset of F(R) in the topology generated by the metric d.

Proof. Let (An)n≥1 be a convergent sequence of fuzzy numbers with respect to met-
ric d and such that An ∈A for all n ∈N, n≥ 1. Then let A0 = (d) lim

n→∞
An. We prove

that A0 ∈A and this will end the proof.
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We start by rewriting the set A in a more suitable way. Let us choose arbitrary
A ∈A and let λ1 ∈ R and λi ∈ [0,∞), i = 2, . . . ,m, be such that

A = λ1 ·1+
m

∑
k=2

λivi.

By Theorem 5.3 it is immediate that ∑
m
k=2 λivi = ∑

m
k=2 λi⊗ vi. Next, we prove that

λ1 · 1 = λ1⊗ 1. We may suppose that λ1 < 0 because we already know that in the
remaining case the property holds. Let 0 be the null element of F(R) and let 0̃ be the
null element of F̃(R). By elementary reasonings we observe that 0⊕0 = 0+0 = 0
and 0⊕ 0̃ = 0. Clearly, we obtain 0 = 0̃. This implies that 1⊕ (−1) = 1+(−1) =
0 = 0̃, i.e. −1 is the opposite to 1 with respect to ⊕ too. Hence

λ1 ·1 = (−λ1) · (−1) = (−λ1)⊗ (−1) = λ1⊗1.

Consequently, we obtain

A =

{
λ1⊗1+

m

∑
k=2

λi⊗ vi : λ1 ∈ R and λi ∈ [0,∞), i = 2, . . . ,m

}
. (5.16)

This implies that A ⊆ L where L = span{1,v2, . . . ,vm}. Now, since A0 =

(d) lim
n→∞

An implies that A0 = (d̃) lim
n→∞

An where An ∈L , n ≥ 1, and since it is well
known that any finite dimensional linear subspace of a vector space is a closed set
with respect to any norm generated topology, it easily follows that A0 ∈L . There-
fore, let λi(A0) ∈ R, i = 1, . . . ,m, be such that

A0 = λ1(A0)⊗1+
m

∑
k=2

λi(A0)⊗ vi.

For each n ∈ N, n≥ 1, let λi(An), i = 1, . . . ,m, be such that

An = λ1(An)⊗1+
m

∑
k=2

λi(An)⊗ vi.

Further on it will serve to define an Euclidean type metric on L . Let A,B ∈L be
arbitrarily chosen and let λi(A),λi(B), i = 1, . . . ,m, be such that

A = λ1(A)⊗1+
m

∑
k=2

λi(A)⊗ vi,

B = λ1(B)⊗1+
m

∑
k=2

λi(B)⊗ vi.

We set

D2(A,B) =
m

∑
k=1

(λi(A)−λi(B))2.
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It is immediate that D defines a metric on L . One can easily prove that (L ,D) is a
normed space. It is well-known in topology that all the norm generated topological
spaces defined on a finite dimensional vector space are equivalent. Therefore, d̃ and
D generate the same topology on L . This means that since (d̃) lim

n→∞
An = A0, we

also have (D) lim
n→∞

An = A0. This implies

lim
n→∞

m

∑
k=1

(λi(An)−λi(A0))
2 = 0

and then we easily obtain that lim
n→∞

λi(An) = λi(A0) for all i = 1, . . . ,m. On the other

hand, since {An : n∈N,n≥ 1}⊆A , we have λi(An)≥ 0 for all n∈N, n≥ 1 and for
all i= 2,3, . . . ,m. Consequently lim

n→∞
λi(An)≥ 0 for all i= 2,3, . . . ,m, i.e. λi(A0)≥ 0

for all i = 2,3, . . . ,m. Summing up, we have

A0 = λ1(A0)⊗1+
m

∑
k=2

λi(A0)⊗ vi,

where λ1(A0) ∈ R and λi(A0) ∈ [0,∞) for all i = 2,3, . . . ,m. Thus we can write

A0 = λ1(A0) ·1+
m

∑
k=2

λi(A0) · vi.

Hence it easily follows that A0 ∈A and the theorem is proved. �

Corollary 5.4. ([73], Corollary 3.2.6) Let d be a metric defined on the space of
fuzzy numbers F(R) which satisfies requirements (viii)− (x) of Theorem 5.3. Let
us consider a subset A ⊆ F(R) which satisfies requirements (i)− (ii) of Theorem

5.4. If
(
F̃(R), d̃

)
is a normed space, where d̃ is the extension of the metric d on

F̃(R) according to Theorem 5.3, then A is a closed subset of F̃(R) in the topology
generated by d̃ on F̃(R).

Proof. The desired conclusion easily follows from the last lines of the proof of
Theorem 5.4 which are just below relation (5.16). Indeed, the only difference in the
reasoning is that now A0 is supposed to be in F̃(R). But since L is closed in F̃(R)
with respect to the topology generated by d̃, we conclude that A0 ∈L and hence
A0 ∈A . �

Note that in general if (X,δ ) is a topological space, X1 ⊆ X and if A is a closed
subset of X1 in the topology induced by δ on X1, then A is not necessarily a closed
subset of X in the topology δ . Therefore, the form of the set A in Theorem 5.4 is
important in order to obtain the conclusion of the above corollary.

Now, combining Lemma 5.2 and Corollary 5.4, we easily obtain the following
corollary.
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Corollary 5.5. ([73], Corollary 3.2.8) Let d be a metric defined on F(R) which
satisfies requirements (viii)− (x) of Theorem 5.3 and let A be a subset of F(R)
like those from the assumptions of Theorem 5.4. Then for any A ∈ F(R) there exists
A∗ ∈A such that

d(A,A∗) = inf
B∈A

d(A,B).

Proof. By Corollary 5.4
(
F̃(R), d̃

)
is a normed space, where d̃ is the extension of

the metric d on F̃(R) according to Theorem 5.3. y Corollary 5.4 it also results that
A is a closed subset of L (in the topology generated by d̃ on F̃(R)), where L

denotes the same finite dimensional linear subspace of F̃(R), like in the proof of
Theorem 5.4. By Theorem 5.2 it is immediate that for any A ∈ F̃(R) there exists
A∗ ∈A such that d̃(A,A∗) = infB∈A d̃(A,B). In particular, if A ∈ F(R) then noting
that d̃(A,B) = d(A,B) for all B ∈A we easily obtain the desired conclusion. �

Keeping in mind the fuzzy medians defined in Definitions 5.1-5.4 we apply
Corollary 5.5 for some classes of fuzzy numbers most interesting for us.

Theorem 5.5. ([73], Theorem 3.2.9) Let Ω be one of the following subsets of F(R),
FT (R), F∆ (R), I or R. If d is a metric on F(R) which satisfies requirements (viii)−
(x) of Theorem 5.3 then Ω is a closed subset of F(R) in the topology generated

by d. In addition, if
(
F̃(R), d̃

)
is a normed space, where d̃ is the extension of the

metric d on F̃(R) according to Theorem 5.3, then Ω is a closed subset of F̃(R) in
the topology generated by d̃ on F̃(R).

Proof. The proof of the first statement is immediate since Ω has the properties
of the set A described in Theorem 5.4. Suppose, e.g. that Ω = FT . Since any
T = (t1, t2, t3, t4) ∈ FT (R) can be written as

T = t1 ·1+(t2− t1)v1 +(t3− t2)v3 +(t4− t3)v4,

where v2 = (0,1,1,1), v3 = (0,0,1,1), v4 = (0,0,0,1), we can take A = FT (R) in
Theorem 5.4. Similarly, we get the same conclusion for the other cases.

The proof of the second statement is immediate since by the similar reasoning
we can show that Ω satisfies assumptions of Corollary 5.4. �

The following result will be very useful in proving the existence of the fixed-
shape fuzzy median.

Theorem 5.6. ([73], Theorem 3.2.12) Let Ω be one of the following subsets of F(R),
FT (R), F∆ (R), I or R. If d is a metric on F(R) satisfying requirements (viii)− (x)
of Theorem 5.3 then for any A ∈Ω there exits A∗ ∈Ω such that

d(A,A∗) = inf
B∈Ω

d(A,B).
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Proof. By the proof of Theorem 5.5 one can see that Ω can be represented as a
set A considered in Theorem 5.4. Therefore, the desired conclusion easily follows
from Corollary 5.5. �

Just before the main theorem we still need some further constructions. Let us
consider a metric d defined on the space F(R) which satisfies requirements (viii)−
(x) of Theorem 5.3 and let

(
F̃(R), d̃,⊕,�

)
be the normed space which realizes

the embedding of (F(R),d,+, ·). We construct now the power spaces of F(R) and
F̃(R) denoted by F(R)n and F̃(R)

n
, respectively, where n ∈ N, n ≥ 2 is fixed. By

A ∈ F(R)n we agree that A = (A1, . . . ,Am), where Ai ∈ F(R) for all i = 1, . . . ,n. We
adopt the same convention in the case of F̃(R). Further on, we construct on F̃(R)

n

a vector space structure by extending the vector space structure of F̃(R) using the
well-known standard procedure. Then we notice that since F(R)⊆F̃(R), we also
have F(R)n ⊆ F̃(R)

n
. We define metrics δ on F(R)n and δ̃ on F̃(R)

n
, where

δ (A,B) =
n

∑
i=1

d(Ai,Bi)

and

δ̃ (A,B) =
n

∑
i=1

d̃(Ai,Bi).

Then for any A,B ∈ F(R)n we have δ̃ (A,B) = δ (A,B). We are interested in a
particular kind of set which will help us later to prove the existence of the fuzzy
median. Suppose that A is a subset of F(R) like those assumed in Theorem 5.4. We
introduce the diagonal set of A in F(R)n given by

Dn(A ) = {(A, . . . ,A) : A ∈A }.

Since A is closed in F(R) it easily follows that Dn(A ) is closed in F(R)n. In-
deed, to prove this fact let us consider a sequence (Ak)k≥1 in Dn(A ) such that
(δ ) lim

k→∞
Ak = A0. Let us adopt the following notation:

Ak = (Ak, . . . ,Ak), k ∈ N, k ≥ 1

and
A0 = (A1

0,A
2
0, . . . ,A

n
0).

By the convergence property and the definition of the metric δ we get (d) lim
k→∞

An =

Ai
0, i = 1, . . . ,n. Then, since A is closed in F(R), we conclude that Ai

0 ∈A for all
i = 1, . . . ,n. The uniqueness of the limit implies A1

0 = . . . = An
0 and thus we obtain

A0 ∈ Dn(A ). Clearly, this implies that Dn(A ) is closed in F(R)n. Analogously, if
A is a closed subset of F̃(R) then Dn(A ) is a closed subset of F̃(R)

n
.
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We are now in position to give the sufficient conditions for the existence of the
fuzzy median.

Theorem 5.7. ([38], Theorem 14) Let d be a metric defined on F(R) which satisfies
requirements (viii)− (x) of Theorem 5.3. Let us consider an arbitrary sample of
fuzzy numbers A1, . . . ,An and let Ω be one of the following subsets of F(R), FT (R),
F∆ (R), I or R. Then there exits a fuzzy median of the sample with respect to Ω and
the metric d.

Proof. By the proof of Theorem 5.5 it results that Ω satisfies assumptions of Theo-
rem 5.4 and Corollary 5.4 by taking A = Ω . Analyzing the form of A (and hence
Ω ) in Theorem 5.4 it is easily seen that Ω is a closed subset of a finite dimensional
linear subspace L ⊆ F̃(R). Now, since d satisfies requirements (viii)− (x) of The-
orem 5.3, let

(
F̃(R), d̃,⊕,�

)
be a normed space which realizes the embedding of

(F(R),d,+, ·). Thus the power space
(
F̃(R)

n
, δ̃ ,⊕,�

)
is a normed space. Taking

into account the properties of Ω we conclude that Dn(Ω) is a closed convex subset
of the linear subspace L n ⊆ F̃(R)

n
. For A = (A1, . . . ,An) Lemma 5.2 guarantees the

existence of A0 ∈ Dn(Ω), A0 = (A0, . . . ,A0), such that

δ̃ (A,A0)≤ δ̃ (A,B) (5.17)

for all B ∈Dn(Ω). Now, let us choose arbitrary B ∈Ω . We observe that B ∈Dn(Ω),
where B = (B, . . . ,B). Taking into account the properties of δ̃ and d̃ we get

n

∑
i=0

d(Ai,A0) = δ̃ (A,A0)

and
n

∑
i=0

d(Ai,B) = δ̃ (A,B),

which by relation (5.17) implies

n

∑
i=0

d(Ai,A0)≤
n

∑
i=0

d(Ai,B).

This means that A0 is a fuzzy median of the sample A1, . . . ,An with respect to Ω and
metric d. �

Note that in the above theorem the convexity of Ω is not needed for the existence
result because in Lemma 5.2 the convexity is not required. It is worth stressing
that all the distances or families of distances between fuzzy numbers discussed in
Section 1.5 satisfy the assumptions of Theorem 5.7. Hence the fixed-shape fuzzy
median always exists with respect to those distances. Finally, we have to notice that
even if we proved the existence of the fuzzy median, in applications one requires
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its location or at least its good approximation. We have an ongoing research in this
respect and the results are very promising.

5.3 Fuzzy numbers in FMDM

5.3.1 Introduction to FMDM

A standard multicriteria decision making (MDM) problem assumes the evaluation
and ranking of m alternatives A1, . . . ,Am under n criteria C1, . . . ,Cn by a committee
of k decision makers D1, . . . ,Dk. We assume C1, . . . ,Ch denote subjective criteria,
Ch+1, . . . ,Cp objective criteria like benefit (i.e. the larger the better) and Cp+1, . . . ,Cn
are objective criteria like costs (i.e. the smaller the better). We denote by ri jt , where
i = 1, . . . ,m, j = 1, . . . ,h and t = 1, . . . ,k, the performance of alternative Ai versus
subjective criterion C j in the opinion of the decision maker Dt and by xi j, where
i = 1, . . . ,m, j = h + 1, . . . ,n, the performance of alternative Ai versus objective
criterion C j. The weights of the criteria are often imposed by the decision makers.
By w jt , where j = 1, . . . ,n and t = 1, . . . ,k, we denote the weight of the criterion C j
in the opinion of the decision maker Dt .

Standard MDM methods cannot often be applied due to uncertain or incomplete
information. Fuzzy numbers have been already accepted as an useful tool for mod-
eling such information. Therefore, if for some reasons the evaluations ri jt , perfor-
mances xi j and/or weights w jt are expressed by fuzzy sets, particularly by fuzzy
numbers , then we have a fuzzy multicriteria decision making (FMDM) problem
which needs a specific attitude and solution. Hundreds of methods related to FMDM
were proposed in the literature, e.g., [8, 23, 60, 68, 92, 133, 140, 197, 200].

Let us start by considering the following example (see [68, 23]).

Example 5.2. A company must select a distribution center from the following three
centers A1,A2,A3 to serve better its customers. Four decision-makers D1,D2,D3,D4,
four subjective criteria (C1 - transportation availability, C2 - human resource, C3 -
market potential and C4 - climate condition) and one objective criterion (C5 - cost in
million US$) are considered. The decision-makers use fuzzy terms (modeled by tri-
angular fuzzy numbers) from the following linguistic rating set S = {V P,P,F,G,V G},
where

V P = Very Poor = (0,0,0.2) ,
P = Poor = (0,0.2,0.4) ,
F = Fair = (0.3,0.5,0.7) ,
G = Good = (0.6,0.8,1) ,

V G = Very Good = (0.8,1,1)
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to evaluate the subjective criteria C1,C2,C3,C4 and a linguistic weighting set W =
{V L,L,M,H,V H}, where

V L = Very Low = (0,0,0.3) ,
L = Low = (0,0.3,0.5) ,

M = Medium = (0.2,0.5,0.8) ,
H = High = (0.5,0.7,1) ,

V H = Very High = (0.7,1,1)

to assess the importance of criteria C1,C2,C3,C4,C5. The ratings of alternatives ver-
sus criteria under the opinion of decision-makers are presented in Table 5.1 and the
importance weights of the five criteria from the four decision-makers are displayed
in Table 5.2. �

Table 5.1 Ratings of alternatives versus criteria (see Example 5.2).

Criteria/ Decision-makers ri j
Alternatives D1 D2 D3 D4

C1/A1 G G V G G (0.650,0.850,1.000)
C1/A2 G V G F F (0.500,0.700,0.850)
C1/A3 V G G G G (0.650,0.850,1.000)
C2/A1 G F V G G (0.575,0.775,0.925)
C2/A2 F G V G V G (0.625,0.825,0.925)
C2/A3 F F G F (0.375,0.575,0.775)
C3/A1 V G G G G (0.650,0.850,1.000)
C3/A2 G F V G G (0.575,0.775,0.925)
C3/A3 F F G G (0.450,0.650,0.850)
C4/A1 F P F F (0.225,0.425,0.625)
C4/A2 F F G G (0.450,0.650,0.850)
C4/A3 G F G F (0.450,0.650,0.850)
C5/A1 (6.0,7.0,7.5) (0.480,0.514,0.600)
C5/A2 (3.6,4.0,4.8) (0.750,0.900,1.000)
C5/A3 (4.7,5.0,5.6) (0.643,0.720,0.766)

Table 5.2 The importance weights of the criteria and the aggregated weights (see Example 5.2).

Criteria Decision-makers w j
D1 D2 D3 D4

C1 V H V H H V H (0.650,0.925,1.000)
C2 L M M M (0.150,0.450,0.725)
C3 L L M M (0.100,0.400,0.650)
C4 M H V H V H (0.525,0.800,0.950)
C5 H V H V H H (0.600,0.850,1.000)
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The expected value (1.72) has many interesting properties that make it useful in
many areas, like aggregation and decision support. It is also a very good ranking
index, as it was proved in [36]. The method of ranking fuzzy numbers used in the
present section was introduced in [12] (see also Section 4.2) as follows

A� B if and only if EV (A)> EV (B) , (5.18)
A≺ B if and only if EV (A)< EV (B) , (5.19)
A∼ B if and only if EV (A) = EV (B) (5.20)
A� B if and only if EV (A)≥ EV (B) . (5.21)

Because of its properties and easiness in calculations the expected value seems
to have suitable properties to be applied in fuzzy multicriteria decision making.

5.3.2 Algorithms useful in FMDM

FMDM methods known from the literature are often elaborated for the particular
case of trapezoidal or triangular fuzzy numbers. Nevertheless, as it was pointed out
in [23], the general case is completely justified if we have more exact information
about the performance of alternatives versus criteria and/or we have some difficul-
ties to select the best alternative (alternatives) because the ratings are too close.
For example, it may be suitable to replace the trapezoidal fuzzy number (a,b,c,d)
which describes the criteria of investment cost with the semi-trapezoidal fuzzy num-
ber (a,b,c,d)r,s with r,s > 1 (see (1.15), (1.16)), if the cost lies almost sure between
b and c (more we are sure that the investment cost is between b and c, both r and s
may be higher) or with (a,b,c,d)r,s with 0< r,s< 1, if there is a relatively great pos-
sibility that the cost would be somewhere in [a,b]∪ [c,d] (if there are some doubts
that the investment cost is between b and c both r and s may be lower). The basic
rating of an alternative with respect to a subjective criterion given by the trapezoidal
fuzzy number (a,b,c,d) can be refined too in the same way. The rating (a,b,c,d)r,s
with r,s > 1 means that the decision-maker is almost sure that the crisp rating is
in [b,c] but he gives a little possibility as the rating is in [a,b]∪ [c,d]. The rating
(a,b,c,d)r,s with r,s < 1 means that in the opinion of the decision-maker there is
a relatively great possibility that the crisp rating is out of [b,c], in [a,b] or [c,d].
The rating (a,b,c,d)r,s with r > 1,s < 1 means that the possibility as the rating is in
[a,b] is low and the possibility as the rating is in [c,d] is relatively great. The rating
(a,b,c,d)r,s with r < 1,s > 1 means that the possibility as the rating is in [a,b] is
great and the possibility as the rating is in [c,d] is relatively low.

Having in mind the notation introduced above, a fuzzy number w jt , where j =
1, . . . ,n and t = 1, . . . ,k, given by α-cuts

(w jt)α
=
[
(w jt)L (α) ,(w jt)U (α)

]
, α ∈ [0,1] ,
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denotes the importance weight of the criterion C j in the opinion of the decision-
maker Dt . A fuzzy number ri jt , where i = 1, . . . ,m, j = 1, . . . ,h, t = 1, . . . ,k, such
that

(ri jt)α
=
[
(ri jt)L (α) ,(ri jt)U (α)

]
, α ∈ [0,1] ,

denotes the performance of the alternative Ai versus subjective criterion C j in the
opinion of the decision-maker Dt . A fuzzy number xi j, where i = 1, . . . ,m, j = h+
1, . . . ,n, given by

(xi j)α
=
[
(xi j)L (α) ,(xi j)U (α)

]
, α ∈ [0,1] ,

describes the performance of the alternative Ai versus objective criterion C j.
We suggest to compute the normalized value ri j of a fuzzy number xi j by

ri j =
1

∆ j
·
(

xi j	 min
i=1,...,m

(xi j)L (0)
)
, (5.22)

if j = h+1, . . . , p, i.e. C j is a objective criterion of benefit kind or

ri j =
1

∆ j
·
(

max
i=1,...,m

(xi j)U (0)	 xi j

)
, (5.23)

if j = p+1, . . . ,n, i.e. C j is a objective criterion of cost kind, where

∆ j = max
i=1,...,m

(xi j)U (0)− min
i=1,...,m

(xi j)L (0) , j = h+1, . . . ,n

and (see (1.24))

(A	 z)
α
= [AL (α)− z,AU (α)− z] ,

(z	A)
α
= [z−AU (α) ,z−AL (α)] ,

for every A ∈ F(R), z ∈ R and α ∈ [0,1].
The averaged weight of C j assessed by decision-makers D1, . . . ,Dk is given by

w j =
1
k
·
(
w j1 + . . .+w jk

)
, j = 1, . . . ,n,

i.e. (see (1.21) and (1.29))

(w j)L (α) =
1
k

((
w j1
)

L (α)+ . . .+
(
w jk
)

L (α)
)
,

(w j)U (α) =
1
k

((
w j1
)

U (α)+ . . .+
(
w jk
)

U (α)
)
.

The final fuzzy number evaluation Gi of the alternative Ai is the aggregation of the
weighted ratings given by
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Gi =
1
n
· ((ri1 ·w1)+ . . .+(rin ·wn)) , i = 1, . . . ,m.

Taking into account the above considerations and (5.18)-(5.20) the following pro-
cedure can be used to rank the alternatives A1, . . . ,Am.

Algorithm 4 (see [23])

Step 1. Compute (ri j)α
=
[
(ri j)L (α) ,(ri j)U (α)

]
for i= 1, . . . ,m and j = 1, . . . ,h;

α ∈ [0,1], where

(ri j)L (α) =
1
k

k
∑

t=1
(ri jt)L (α)

(ri j)U (α) =
1
k

k
∑

t=1
(ri jt)U (α) .

Step 2. Compute (ri j)α
=
[
(ri j)L (α) ,(ri j)U (α)

]
for i = 1, . . . ,m and j = h +

1, . . . ,n; α ∈ [0,1], where

(ri j)L (α) =

(xi j)L (α)− min
i=1,...,m

(xi j)L (0)

∆ j
,

(ri j)U (α) =

(xi j)U (α)− min
i=1,...,m

(xi j)L (0)

∆ j

if j = h+1, . . . , p, or

(ri j)L (α) =

max
i=1,...,m

(xi j)U (0)− (xi j)U (α)

∆ j
,

(ri j)U (α) =

max
i=1,...,m

(xi j)U (0)− (xi j)L (α)

∆ j

if j = p+1, . . . ,n, where for any j = h+1, . . . ,n

∆ j = max
i=1,...,m

(xi j)U (0)− min
i=1,...,m

(xi j)L (0) .

Step 3. Compute (w j)α
=
[
(w j)L (α) ,(w j)U (α)

]
for j = 1, . . . ,n; α ∈ [0,1],

where

(w j)L (α) =
1
k

k
∑

t=1
(w jt)L (α) ,

(w j)U (α) =
1
k

k
∑

t=1
(w jt)U (α) .



168 5 Applications

Step 4. Compute for every j = 1, . . . ,n

EV (ri j ·w j) =
1
2

 1∫
0

(ri j)L (α)(w j)L (α)dα +

1∫
0

(ri j)U (α)(w j)U (α)dα

 .

Step 5. Calculate for every i = 1, . . . ,m

EV (Gi) =
1
n

n

∑
j=1

EV (ri j ·w j) .

Step 6. If EV (Gi1)>EV (Gi2)> .. . >EV (Gim) then alternatives Ai1 ,Ai2 , . . . ,Aim
form a descending order, i.e. Ai1 is better than Ai2 and so on till Aim which is the
worst alternative.

Because the effective calculus are complicate enough we prefer a simplified case
of the problem considered in Example 5.2 to illustrate Algorithm 4.

Example 5.3. (see [23]) Keeping in mind the notations introduced in Example 5.2
we consider only three criteria C1,C2,C5 and two decision-makers D1 and D2. The
ratings of alternatives versus criteria and the importance weights are given in Table
5.3 and Table 5.4, respectively. To obtain the fuzzy numbers ri j and w j for i = 1,2,3
and j = 1,2,5 Step 1-Step 3 in Algorithm 4 are applied. It is important to remember
here that (see Lemma 1.4)

(a1,b1,c1,d1)2,2 +(a2,b2,c2,d2)2,2 = (a1 +a2,b1 +b2,c1 + c2,d1 +d2)2,2

λ · (a,b,c,d)2,2 = (λa,λb,λc,λd)2,2 ,

for any semi-trapezoidal fuzzy numbers (a1,b1,c1,d1)2,2 and (a2,b2,c2,d2)2,2 of
type (2,2) and λ > 0. The results are also given in Table 5.3 and Table 5.4. To
complete Step 4 we need the following property (see [23], Proposition 1)

EV
(
(a1,b1,c1,d1)2,2 · (a2,b2,c2,d2)2,2

)
=

1
12

(a1a2 +3b1b2 +3c1c2 +d1d2)

+
1

12
(a1b2 +a2b1 + c1d2 + c2d1)

valid for every semi-trapezoidal fuzzy numbers (a1,b1,c1,d1)2,2 and (a2,b2,c2,d2)2,2.
Finally we obtain

EV (G2) = 0.57799 > EV (G3) = 0.49826 > EV (G1) = 0.36816,

which means that A2 is the best alternative while A1 is the worst one. �
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Table 5.3 Ratings of alternatives versus criteria (see Example 5.3).

Criteria Decision-makers
/Alternatives D1 D2 ri j

C1/A1 (0.3,0.5,0.8,1)2,2 (0.6,0.8,0.8,1)2,2 (0.450,0.650,0.800,1.000)2,2
C1/A2 (0.6,0.8,0.8,1)2,2 (0.8,1,1,1)2,2 (0.700,0.900,0.900,1.000)2,2
C1/A3 (0.8,1,1,1)2,2 (0.6,0.8,0.8,1)2,2 (0.700,0.900,0.900,1.000)2,2
C2/A1 (0.6,0.8,0.8,1)2,2 (0.3,0.5,0.5,0.7)2,2 (0.450,0.650,0.650,0.850)2,2
C2/A2 (0.3,0.5,0.5,0.7)2,2 (0.6,0.8,0.8,1)2,2 (0.450,0.650,0.650,0.850)2,2
C2/A3 (0.3,0.5,0.5,0.7)2,2 (0.3,0.5,0.5,0.7)2,2 (0.300,0.500,0.500,0.700)2,2
C5/A1 (6.0,6.5,7.0,7.6)2,2 (0,0.150,0.275,0.400)2,2
C5/A2 (3.6,4.0,4.8,5.0)2,2 (0.650,0.700,0.900,1.000)2,2
C5/A3 (4.7,5.0,5.5,5.6)2,2 (0.500,0.525,0.650,0.725)2,2

Table 5.4 The importance weights of the criteria and the aggregated weights (see Example 5.3).

Criteria Decision-makers w j
D1 D2

C1 (0.7,1,1,1)2,2 (0.5,0.7,1,1)2,2 (0.600,0.850,1.000,1.000)2,2
C2 (0,0.3,0.3,0.5)2,2 (0.2,0.5,0.5,0.8)2,2 (0.100,0.400,0.400,0.650)2,2
C5 (0.5,0.7,0.7,1)2,2 (0.7,1,1,1)2,2 (0.600,0.850,0.850,1.000)2,2

In the sequel we discuss two particular cases, when the importance weights of
criteria and the ratings of alternatives versus all criteria are real numbers.

Taking into account the properties of linearity of the expected interval, i.e.

EV (A+B) = EV (A)+EV (B)

and
EV (λ ·A) = λEV (A) ,

for every A,B ∈ F(R) and λ ∈ R, we can simplify Algorithm 4. In the particular
case of importance weights of the criteria given be real numbers, w jt ∈ R for all
j = 1, . . . ,n and t = 1, . . . ,k, the following algorithm can be considered.

Algorithm 5 (see [23])

Step 1. Compute ri j for i = 1, . . . ,m and j = h + 1, . . . ,n according to (5.22)-
(5.23).

Step 2. Compute EV (ri j) for j = h+1, . . . ,n and then EV (ri j) for j = 1, . . . ,h as

EV (ri j) =
1
k

(
EV
(
ri j1
)
+ . . .+EV

(
ri jk
))

.

Step 3. Compute
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EV (Gi) =
1
n

n

∑
j=1

(
1
k

k

∑
t=1

w jt

)
EV (ri j) . (5.24)

Step 4. If EV (Gi1)>EV (Gi2)> .. . >EV (Gim) then alternatives Ai1 ,Ai2 , . . . ,Aim
form a descending order, i.e. Ai1 is the best alternative and Aim is the worst one.

Let us remark that if (a,b,c,d)r,s is a semi-trapezoidal fuzzy numbers of (r,s)
type then

EV
(
(a,b,c,d)r,s

)
=

a+ rb
2(1+ r)

+
d + sc

2(1+ s)

and Algorithm 5 can be easily applied.

If the ratings of alternatives versus all criteria are real numbers, i.e. ri jt ∈R for all
i = 1, . . . ,m, j = 1, . . . ,h, t = 1, . . . ,k and xi j ∈R for all i = 1, . . . ,m, j = h+1, . . . ,n,
then Algorithm 4 can be substantially simplified too. The following algorithm can
be considered.

Algorithm 6 (see [23])

Step 1. Compute for i = 1, . . . ,m, j = 1, . . . ,h

ri j =
1
k

k

∑
t=1

ri jt .

Step 2. Normalize xi j for i = 1, . . . ,m, j = h+1, . . . ,n by

ri j =

{ xi j−m j
M j−m j

if j = h+1, . . . , p
M j−xi j
M j−m j

if j = p+1, . . . ,n,

where m j = min
i=1,...,m

xi j,M j = max
i=1,...,m

xi j.

Step 3. Compute

EV (Gi) =
1
n

n

∑
j=1

ri j

(
1
k

k

∑
t=1

EV (w jt)

)
. (5.25)

Step 4. If EV (Gi1)>EV (Gi2)> .. . >EV (Gim) then alternatives Ai1 ,Ai2 , . . . ,Aim
form a descending order.
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5.3.3 Trapezoidal fuzzy numbers in FMDM

To simplify calculations in Algorithm 4 we can approximate the input fuzzy data
by the trapezoidal, triangular or other fuzzy numbers with shapes acceptable from
the fuzzy calculus point of view (see Chapter 3). Nevertheless, there exists a risk
that the undertaken approximation may change the ordering generated by the ex-
pected value. Thus a good approximation T (A) of a fuzzy number A must satisfy
the following requirement

EV (A ·B)≤ EV (C ·D)⇒ EV (T (A) ·T (B))≤ EV (T (C) ·T (D)) ,

for any fuzzy numbers A,B,C,D.
In this section we describe the method considered in the previous section in the

case of trapezoidal fuzzy numbers. The idea of using trapezoidal fuzzy numbers is
quite justified because many authors consider the linguistic variables as represented
by the trapezoidal fuzzy numbers (see, e.g., [10, 82]).

Let us assume that ri jt = (ei jt , fi jt ,gi jt ,hi jt) for i = 1, . . . ,m, j = 1, . . . ,h, t =
1, . . . ,k, describe the performance of alternative Ai versus subjective criterion C j in
the opinion of the decision-maker Dt . Moreover, let xi j = (ai j,bi j,ci j,di j), where i=
1, . . . ,m, j = h+1, . . . , p, denote the performance of alternative Ai versus objective
criterion of benefit kind C j, while xi j = (ai j,bi j,ci j,di j) for i = 1, . . . ,m, j = p+
1, . . . ,n, the performance of alternative Ai versus objective criterion of cost kind C j
and let w jt = (o jt , p jt ,q jt ,s jt) for j = 1, . . . ,n, t = 1, . . . ,k, be the importance weight
of the criterion C j in opinion of the decision-maker Dt .

One can show that

EV ((t1, t2, t3, t4)) =
1
4
(t1 + t2 + t3 + t4)

and

EV
(
(t1, t2, t3, t4) ·

(
t ′1, t
′
2, t
′
3, t
′
4
))

=
1

12
(
2t1t ′1 + t ′1t2 + t1t ′2 +2t2t ′2

)
(5.26)

+
1
12
(
2t3t ′3 + t ′3t4 + t3t ′4 +2t4t ′4

)
,

for every (t1, t2, t3, t4) ,(t ′1, t
′
2, t
′
3, t
′
4) ∈ FT (R) such that t1 ≥ 0, t ′1 ≥ 0. Taking into ac-

count (5.18)-(5.21) and (5.26), the following algorithm for ordering the alternatives
Ai, i = 1, . . . ,m, can be elaborated.

Algorithm 7 (see [23])

Step 1. Compute

ri j = (ei j, fi j,gi j,hi j) =

(
k

∑
t=1

ei jt

k
,

k

∑
t=1

fi jt

k
,

k

∑
t=1

gi jt

k
,

k

∑
t=1

hi jt

k

)
, (5.27)
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for i = 1, . . . ,m and j = 1, . . . ,h.
Step 2. Compute

ri j = (ei j, fi j,gi j,hi j) =

(
ai j−a∗j

m∗j
,

bi j−a∗j
m∗j

,
ci j−a∗j

m∗j
,

di j−a∗j
m∗j

)
, (5.28)

for i = 1, . . . ,m and j = h+1, . . . , p or

ri j = (ei j, fi j,gi j,hi j) =

(
d∗j −di j

m∗j
,

d∗j − ci j

m∗j
,

d∗j −bi j

m∗j
,

d∗j −ai j

m∗j

)
, (5.29)

for i = 1, . . . ,m and j = p+ 1, . . . ,n, where a∗j = min
i=1,...,m

ai j, d∗j = max
i=1,...,m

di j and

m∗j = d∗j −a∗j , j = h+1, . . . ,n.
Step 3. Compute

w j = (o j, p j,q j,s j) =

(
k

∑
t=1

o jt

k
,

k

∑
t=1

p jt

k
,

k

∑
t=1

q jt

k
,

k

∑
t=1

s jt

k

)
(5.30)

for j = 1, . . . ,n.
Step 4. Compute

EV (Gi) =
1

6n

n

∑
j=1

(ei jo j + fi j p j +gi jq j +hi js j) (5.31)

+
1

12n

n

∑
j=1

(ei j p j + fi jo j +gi js j +hi jq j) .

Step 5. If EV (Gi1)>EV (Gi2)> .. . >EV (Gim) then alternatives Ai1 ,Ai2 , . . . ,Aim
form a descending order, i.e. Ai1 is better than Ai2 and so on till Aim which is the
worst alternative.

Example 5.4. Let us assume that we accept the ambiguity with respect to ratings
of the alternatives and importance weights of criteria described in Example 5.2. To
avoid complications in the presentation we consider the trapezoidal fuzzy number
obtained as conjunction of two triangular fuzzy numbers given by

(t1, t2, t3)∨ (s1,s2,s3) = (min(t1,s1) ,min(t2,s2) ,max(t2,s2) ,max(t3,s3))

and its extension, by associativity, to more than two triangular fuzzy numbers. Then
M∨H is represented by the trapezoidal fuzzy number (0.2,0.5,0.7,1), P∨F ∨G is
given as the trapezoidal fuzzy number (0,0.2,0.8,1) and so on. We resume Example
5.2 with the new data in Table 5.5 and Table 5.6. The preliminary calculations based
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on (5.27)-(5.30) in Step 1-Step 3 of Algorithm 7) are illustrated in Table 5.5 and
Table 5.6. Then, applying (5.31) we get

EV (G1) = 0.40308 < EV (G3) = 0.46527 < EV (G2) = 0.4966,

i.e. the best selection is alternative A2 and the worst selection is A1. �

Table 5.5 Ratings of alternatives versus criteria (see Example 5.4).

Criteria/ Decision-makers
Alternatives D1 D2 D3 D4 ri j = (ei j, fi j,gi j,hi j)

C1/A1 F ∨G G V G G (0.575,0.825,0.850,1.000)
C1/A2 G∨V G V G F F (0.500,0.700,0.750,0.850)
C1/A3 V G G G G (0.650,0.850,0.850,1.000)
C2/A1 G F V G G (0.575,0.775,0.775,0.925)
C2/A2 F G V G G∨V G (0.575,0.775,0.825,0.925)
C2/A3 F F G P∨F ∨G (0.300,0.500,0.650,0.850)
C3/A1 V G G G G (0.650,0.850,0.850,1.000)
C3/A2 G F V G G (0.575,0.775,0.775,0.925)
C3/A3 F F ∨G G G (0.450,0.650,0.725,0.925)
C4/A1 F ∨G∨V G P∨F F F (0.225,0.425,0.625,0.775)
C4/A2 F F G G (0.450,0.650,0.650,0.850)
C4/A3 G F G F (0.450,0.650,0.650,0.850)
C5/A1 (6.0,6.5,7.0,7.6) (0,0.150,0.275,0.400)
C5/A2 (3.6,4.0,4.8,5.0) (0.650,0.700,0.900,1.000)
C5/A3 (4.7,5.0,5.5,5.6) (0.500,0.525,0.650,0.725)

Table 5.6 The importance weights of the criteria and the aggregated weights (see Example 5.4).

Criteria Decision-makers
D1 D2 D3 D4 w j = (o j, p j,q j,s j)

C1 V H H ∨V H H V H (0.600,0.850,0.925,1.000)
C2 L M M M (0.150,0.450,0.450,0.725)
C3 L L L∨M∨H M (0.050,0.350,0.450,0.700)
C4 M H ∨V H V H V H (0.525,0.800,0.875,0.950)
C5 H V H V H M∨H (0.525,0.800,0.850,1.000)

At the end of this section let us remark that the fuzzy numbers are already ac-
cepted as a suitable tool in the evaluation of services quality and touristic services
quality especially (see, e.g., [10, 23, 39, 40, 41, 45, 65, 66, 134, 142, 181, 186]). The
method presented in Sections 5.3.2 and 5.3.3 can help us to order a set of touristic
destinations according with a set of criteria. More details can be found in [23].
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5.4 Approximation of intuitionistic fuzzy numbers

5.4.1 General discussion

Besides classical fuzzy sets some of their generalizations are also applied for mod-
eling uncertain or incomplete information. One of the most popular construction
considered recently are intuitionistic fuzzy sets and - in particular - intuitionistic
fuzzy numbers. In this case the approximation of the membership and nonmember-
ship function by functions with simpler and more regular shapes are also of interest
(see [16, 18, 19]).

In this section we show that under some non-restrictive conditions the approxi-
mation of an intuitionistic fuzzy number is reduced to the approximation of a fuzzy
number. An important benefit is that several results are obtained as immediate con-
sequences of the methods discussed in Chapter 3. For the notation related to intu-
itionistic fuzzy sets we refer the reader to Section 2.1. The main ideas in the present
section were developed in [26] and [28].

Theorem 5.8. Let us consider a function M : F〈〉 (R)→ 2F(R) satisfying the follow-
ing properties:

i) For any intuitionistic fuzzy number A〈〉 = 〈µA,νA〉 we have M(A〈〉) =M( 1
2 ·µA+

1
2 · (1−νA)).

ii) For any fuzzy number A ∈ F(R) there exists a unique element s(A) ∈M(A) such
that

d(A,s(A)) = min
B∈M(A)

d(A,B).

Then, for any intuitionistic fuzzy number A〈〉= 〈µA,νA〉 there exists a unique element
S(A〈〉) ∈M(A〈〉) such that

d̃(A〈〉,S(A〈〉)) = min
B∈M(A〈〉)

d̃(A〈〉,B).

Moreover, we have S(A〈〉) = s( 1
2 ·µA +

1
2 · (1−νA)).

Proof. Let us choose arbitrary A〈〉 = 〈µA,νA〉 ∈ F〈〉 (R) and B ∈ M(A〈〉). We have
(see (1.40) and (2.3))

d̃2(A〈〉,B)

=
1
2

d2(µA,B)+
1
2

d2(1−νA,B)

=
1
2

∫ 1

0
((µA)L (α)−BL(α))2 dα +

1
2

∫ 1

0
((µA)U (α)−BU (α))2 dα
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+
1
2

∫ 1

0
((1−νA)L(α)−BL(α))2 dα +

1
2

∫ 1

0
((1−νA)U (α)−BU (α))2 dα

= d2(
1
2
·µA +

1
2
· (1−νA),B)+

1
4

∫ 1

0
((µA)L (α)− (1−νA)L(α))2 dα

+
1
4

∫ 1

0
((µA)U (α)− (1−νA)U (α))2 dα.

Since the expression

1
4

∫ 1

0
((µA)L (α)− (1−νA)L(α))2 dα +

1
4

∫ 1

0
((µA)U (α)− (1−νA)U (α))2 dα

is constant, it follows that d̃2(A〈〉,B) is minimal if and only if d2( 1
2 · µA +

1
2 · (1−

νA),B) minimizes. Taking into account the assumptions of the theorem we easily
obtain the desired conclusion. �

Below we show how to utilize Theorem 5.8 to obtain some particular approxi-
mations of intuitionistic fuzzy numbers. Before to give the results, we introduce the
following notations for an intuitionistic fuzzy number A〈〉 = 〈µA,vA〉

mL =
∫ 1

0
(µA)L (α)dα,mU =

∫ 1

0
(µA)U (α)dα,

nL =
∫ 1

0
(vA)L (α)dα,nU =

∫ 1

0
(vA)U (α)dα,

ML =
∫ 1

0
α (µA)L (α)dα,MU =

∫ 1

0
α (µA)U (α)dα,

NL =
∫ 1

0
α (vA)L (α)dα,NU =

∫ 1

0
α (vA)U (α)dα.

5.4.2 Fuzzy number nearest to intuitionistic fuzzy number

Let us consider a function M : F〈〉 (R)→ 2F(R) such that M(A〈〉) = F(R) for all
A ∈ F〈〉 (R). It is immediate that the assumptions in Theorem 5.8 are satisfied and
since in this case s(A) = A for all A ∈ F(R) we obtain the following theorem.

Theorem 5.9. If A〈〉 = 〈µA,νA〉 is an intuitionistic fuzzy number then

S(A〈〉) =
1
2
·µA +

1
2
· (1−νA)

is the nearest fuzzy number to A〈〉 with respect to the distance d̃ and S(A〈〉) is unique
with this property.
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We easily conclude that if A〈〉 = 〈µA,νA〉 is a trapezoidal intuitionistic fuzzy
number, i.e. µA = (t1, t2, t3, t4) and 1−νA = (s1,s2,s3,s4), then

S
(
A〈〉
)
=

(
t1 + s1

2
,
t2 + s2

2
,
t3 + s3

2
,
t4 + s4

2

)
is the nearest trapezoidal fuzzy number to A〈〉.

Now let us consider a trapezoidal approximation of an intuitionistic fuzzy num-
ber. Suppose M : F〈〉 (R)→ 2F(R) is a function such that M(A〈〉) = FT (R), for all
A〈〉 ∈ F〈〉 (R). For A ∈ F(R) let us consider s(A) = t(A), where t is the trapezoidal
approximation of A with respect to the distance d. By Theorem 5.8 we get the fol-
lowing result.

Theorem 5.10. If A〈〉 = 〈µA,νA〉 is an intuitionistic fuzzy number then

S(A〈〉) = t
(

1
2
·µA +

1
2
· (1−νA)

)
is the nearest trapezoidal fuzzy number to A〈〉 with respect to the distance d̃ and it
is unique with this property.

The nearest trapezoidal fuzzy number to an intuitionistic fuzzy number was cal-
culated in [26] by applying the Karush-Kuhn-Tucker theorem. It can be obtained
directly by Theorem 5.10 and taking into account Theorem 4.4 in [195]. We get the
following result

Theorem 5.11. Let A〈〉 = 〈µA,vA〉 be an intuitionistic fuzzy number and

T
(
A〈〉
)
=
(
t1
(
A〈〉
)
, t2
(
A〈〉
)
, t3
(
A〈〉
)
, t4
(
A〈〉
))

= (t1, t2, t3, t4)

the nearest (with respect to the metric d̃) trapezoidal fuzzy number to A〈〉.
(i) If

−mL +mU +2nL−2nU +3ML−3NL−3MU +3NU ≤ 0

then

t1 = 2mL−nL−3ML +3NL, (5.32)
t2 =−mL +2nL +3ML−3NL, (5.33)
t3 =−mU +2nU +3MU −3NU , (5.34)
t4 = 2mU −nU −3MU +3NU . (5.35)

(ii) If

−mL−3mU +2nL +2nU +3ML +5MU −3NL−5NU > 0

then
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t1 =
8
5

mL−
1
5

mU −
9
5

ML−
1
5

nL−
1
5

nU +
9
5

NL, (5.36)

t2 = t3 = t4 =−
1
5

mL +
2
5

mU +
3
5

ML +
2
5

nL +
2
5

nU −
3
5

NL. (5.37)

(iii) If

−3mL−mU +2nL +2nU +5ML +3MU −5NL−3NU < 0

then

t1 = t2 = t3 =
2
5

mL−
1
5

mU +
3
5

MU +
2
5

nL +
2
5

nU −
3
5

NU , (5.38)

t4 =−
1
5

mL +
8
5

mU −
9
5

MU −
1
5

nL−
1
5

nU +
9
5

NU . (5.39)

(iv) If

−mL +mU +2nL−2nU +3ML−3NL−3MU +3NU > 0,
−mL−3mU +2nL +2nU +3ML +5MU −3NL−5NU ≤ 0,

and
−3mL−mU +2nL +2nU +5ML +3MU −5NL−3NU ≥ 0

then

t1 =
7
4

mL +
1
4

mU −
9
4

ML−
3
4

MU −
1
2

nL−
1
2

nU +
9
4

NL +
3
4

NU , (5.40)

t2 = t3 =−
1
2

mL−
1
2

mU +nL +nU (5.41)

+
3
2

ML +
3
2

MU −
3
2

NL−
3
2

NU ,

t4 =
1
4

mL +
7
4

mU −
3
4

ML−
9
4

MU −
1
2

nL−
1
2

nU +
3
4

NL +
9
4

NU . (5.42)

Another approach is connected with the trapezoidal approximation of an intu-
itionistic fuzzy number preserving the expected interval (see [18]). Let us consider
the function M : F〈〉 (R)→ 2F(R) such that M(A〈〉) = {A∈ F(R) : EI(A〈〉) = EI(A)}.
The equality M(A〈〉) = M( 1

2 ·µA+
1
2 ·(1−νA)) is immediate due to (2.4). Given any

A ∈ F(R) let us denote by tei(A) the nearest trapezoidal fuzzy number to A (with
respect to the metric d) preserving the expected interval of A. As a conclusion of
Theorem 5.8 we get the following theorem.

Theorem 5.12. If A〈〉 = 〈µA,νA〉 is an intuitionistic fuzzy number then

S(A〈〉) = tei(
1
2
·µA +

1
2
· (1−νA))
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is the nearest trapezoidal fuzzy number to A〈〉 (with respect to the distance d̃), pre-
serving the expected interval of A〈〉 and it is unique with this property.

The approach in [18] is based on Karush-Kuhn-Tucker theorem (see Section
3.5.1) and it is complicated. We obtain the same result from Theorem 7 in [17]
as follows

Theorem 5.13. Let A〈〉 = 〈µA,vA〉 be an intuitionistic fuzzy number and

Tei
(
A〈〉
)
=
(
t1
(
A〈〉
)
, t2
(
A〈〉
)
, t3
(
A〈〉
)
, t4
(
A〈〉
))

= (t1, t2, t3, t4)

the nearest (with respect to the metric d̃) trapezoidal fuzzy number to A〈〉 which
preserves its expected interval.

(i) If
−mL +mU +2nL−2nU +3ML−3NL−3MU +3NU ≤ 0

then

t1 = 2mL−nL−3ML +3NL, (5.43)
t2 =−mL +2nL +3ML−3NL, (5.44)
t3 =−mU +2nU +3MU −3NU , (5.45)
t4 = 2mU −nU −3MU +3NU . (5.46)

(ii) If

−mL−2mU +2nL +nU +3ML +3MU −3NL−3NU > 0

then

t1 = mL−
1
2

mU +nL−
1
2

nU , (5.47)

t2 = t3 = t4 =
1
2

mU +
1
2

nU . (5.48)

(iii) If

−2mL−mU +nL +2nU +3ML +3MU −3NL−3NU < 0

then

t1 = t2 = t3 =
1
2

mL +
1
2

nL, (5.49)

t4 =−
1
2

mL +mU −
1
2

nL +nU . (5.50)
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(iv) If

−mL +mU +2nL−2nU +3ML−3NL−3MU +3NU > 0,
−mL−2mU +2nL +nU +3ML +3MU −3NL−3NU ≤ 0

and
−2mL−mU +nL +2nU +3ML +3MU −3NL−3NU ≥ 0

then

t1 =
3
2

mL +
1
2

mU −
3
2

ML−
3
2

MU −nU +
3
2

NL +
3
2

NU , (5.51)

t2 = t3 =−
1
2

mL−
1
2

mU +nL +nU (5.52)

+
3
2

ML +
3
2

MU −
3
2

NL−
3
2

NU ,

t4 =
1
2

mL +
3
2

mU −
3
2

ML−
3
2

MU −nL +
3
2

NL +
3
2

NU . (5.53)

We may also consider a trapezoidal approximation of an intuitionistic fuzzy num-
ber preserving value and ambiguity. It is immediate that (see (2.7) and (2.8))

Amb(A〈〉) = Amb(
1
2
·µA +

1
2
· (1−νA)) (5.54)

and
Val(A〈〉) =Val(

1
2
·µA +

1
2
· (1−νA)), (5.55)

for every A〈〉 = 〈µA,νA〉 ∈ F〈〉 (R). Now let us consider a function M : F〈〉 (R)→
2F(R) such that M(A〈〉) = {A∈ F(R) : Val(A〈〉) =Val(A) and Amb(A〈〉) = Amb(A)}.
We have M(A〈〉) = M( 1

2 · µA + 1
2 · (1− νA)). If we denote by ta,v(A) the nearest

trapezoidal approximation of A ∈ F(R) (with respect to d) preserving the value and
ambiguity of A then by Theorem 5.8 we may prove the following theorem.

Theorem 5.14. If A〈〉 = 〈µA,νA〉 is an intuitionistic fuzzy number then

S(A〈〉) = ta,v(
1
2
·µA +

1
2
· (1−νA))

is the nearest trapezoidal fuzzy number to A〈〉 (with respect to the distance d̃) pre-
serving the value and ambiguity of A〈〉 and it is unique with this property.

The nearest trapezoidal fuzzy number to a given fuzzy number (with respect to
the distance d) preserving the value and ambiguity was discussed firstly in [25].
Taking into account Theorem 5.14 we immediately obtain

Theorem 5.15. Let A〈〉 = 〈µA,νA〉 be an intuitionistic fuzzy number and let

Ta,v
(
A〈〉
)
=
(
t1
(
A〈〉
)
, t2
(
A〈〉
)
, t3
(
A〈〉
)
, t4
(
A〈〉
))

= (t1, t2, t3, t4)
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denote the trapezoidal fuzzy number nearest to A〈〉 (with respect to the metric d̃)
which preserves its value and ambiguity.

(i) If
−mL +mU +2nL−2nU +3ML−3NL−3MU +3NU ≤ 0

then

t1 = 2mL−nL−3ML +3NL,

t2 =−mL +2nL +3ML−3NL,

t3 =−mU +2nU +3MU −3NU ,

t4 = 2mU −nU −3MU +3NU .

(ii) If
−mL−mU +2nL +3ML +MU −3NL−NU > 0

then

t1 = 3nL−2nU +3ML−2MU −3NL +2NU ,

t2 = t3 = t4 = nU +MU −NU .

(iii) If
−mL−mU +2nU +ML +3MU −NL−3NU < 0

then

t1 = t2 = t3 = nL +ML−NL,

t4 =−2nL +3nU −2ML +3MU +2NL−3NU .

(iv) If

−mL +mU +2nL−2nU +3ML−3MU −3NL +3NU > 0,
−mL−mU +2nL +3ML +MU −3NL−NU ≤ 0

and
−mL−mU +2nU +ML +3MU −NL−3NU ≥ 0

then

t1 = mL +mU +nL−2nU −3MU +3NU ,

t2 = t3 =−
1
2

mL−
1
2

mU +nL +nU

+
3
2

ML +
3
2

MU −
3
2

NL−
3
2

NU ,

t4 = mL +mU −2nL +nU −3ML +3NL.
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Sometimes one may be interested in trapezoidal approximation of an intuitionis-
tic fuzzy number preserving core. It is immediate that (see (2.11))

core
(
A〈〉
)
= core(

1
2
·µA +

1
2
· (1−νA))

for every A〈〉 = 〈µA,νA〉 ∈ F〈〉 (R). Let us consider a function M : F〈〉 (R)→ 2F(R)

such that M(A〈〉) = {A ∈ F(R) : core(A〈〉) = core(A)}. Thus we have M(A〈〉) =
M( 1

2 ·µA +
1
2 · (1−νA)). If we denote by tc(A) the nearest trapezoidal fuzzy number

to A ∈ F(R) (with respect to the metric d) preserving the core of A then by Theorem
5.8 we obtain the following theorem.

Theorem 5.16. If A〈〉 = 〈µA,νA〉 is an intuitionistic fuzzy number then

S(A〈〉) = tc(
1
2
·µA +

1
2
· (1−νA))

is the nearest trapezoidal fuzzy number to A〈〉 (with respect to the distance d̃) pre-
serving the core of A〈〉 and it is unique with this property.

The nearest trapezoidal fuzzy number to a given fuzzy number preserving the
core was computed in [5]. Taking into account Theorem 5.16 we immediately obtain
the following approximation.

Theorem 5.17. The nearest trapezoidal fuzzy number to an intuitionistic fuzzy num-
ber A〈〉 = 〈µA,νA〉 (with respect to the metric d̃) which preserves the core of A〈〉,
denoted by Tc(A〈〉) =

(
t1
(
A〈〉
)
, t2
(
A〈〉
)
, t3
(
A〈〉
)
, t4
(
A〈〉
))

= (t1, t2, t3, t4), is given by

t1 =
3
2

∫ 1

0
(µA)L (α)dα− 3

2

∫ 1

0
α (µA)L (α)dα

+
3
2

∫ 1

0
α (νA)L (α)dα− 1

4
((µA)L (1)+(νA)L (0)) ,

t2 =
1
2
((µA)L (1)+(νA)L (0)) ,

t3 =
1
2
((µA)U (1)+(νA)U (0)) ,

t4 =−
3
2

∫ 1

0
α (µA)U (α)dα +

3
2

∫ 1

0
α (νA)U (α)dα

+
3
2

∫ 1

0
(µA)U (α)dα− 1

4
((µA)U (1)+(νA)U (0)) .

5.4.3 Transfer of properties

With respect to the properties of the mappings s : F(R)→ F(R) and S : F〈〉 (R)→
F(R) in Theorem 5.8 we can formulate the following result.
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Theorem 5.18.

(i) If s is additive then S is also additive.
(ii) If s is invariant to translations then S is also invariant to translations.

(iii) If s is scale invariant then S is also scale invariant.
(iv) If s has the Lipschitz constant c then S has the same Lipschitz constant c.
(v) If s is continuous then S is also continuous.

Proof. (i) Let A,B ∈ F〈〉 (R), A〈〉 = 〈µA,νA〉 and B〈〉 = 〈µB,νB〉. According to the
definition of addition (see Section 2.1) we have A〈〉+B〈〉=(A+B)〈〉= 〈µA+B,νA+B〉,
where µA+B = µA +µB,1−νA+B = (1−νA)+(1−νB). Taking into account Theo-
rem 5.8 and the assumption we get

S(A〈〉+B〈〉) = s
(

1
2
· (µA +µB)+

1
2
· ((1−νA)+(1−νB))

)
= s
(

1
2
·µA +

1
2
· (1−νA)

)
+ s
(

1
2
·µB +

1
2
· (1−νB)

)
= S(A〈〉)+S(B〈〉).

(ii) It is immediate from (i).
(iii) Let A〈〉 = 〈µA,νA〉 ∈ F〈〉 (R) and λ ∈ R. The definition of the scalar multi-

plication of intuitionistic fuzzy numbers (see Section 2.1) and Theorem 5.8 imply

S(λ ·A〈〉) = S(〈λ ·µA,1−λ · (1−νA)〉)

= s
(

1
2

λ ·µA +
1
2

λ · (1−νA)

)
= s
(

λ · (1
2
·µA +

1
2
· (1−νA))

)
= λ · s

(
1
2
·µA +

1
2
· (1−νA)

)
= λ ·S(A〈〉).

(iv) Let A〈〉,B〈〉 ∈ F〈〉 (R), A〈〉 = 〈µA,νA〉 and B〈〉 = 〈µB,νB〉. By Theorem 5.8 we
get

S(A〈〉) = s
(

1
2
·µA +

1
2
· (1−νA)

)
and

S(B〈〉) = s
(

1
2
·µB +

1
2
· (1−νB)

)
.

If s is Lipschitz with the constant c then
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d
(

s
(

1
2
·µA +

1
2
· (1−νA)

)
,s
(

1
2
·µB +

1
2
· (1−νB)

))
≤ cd

(
1
2
·µA +

1
2
· (1−νA),

1
2
·µB +

1
2
· (1−νB)

)
.

On the other hand

d2
(

1
2
·µA +

1
2
· (1−νA),

1
2
·µB +

1
2
· (1−νB)

)
=
∫ 1

0

((
1
2
·µA +

1
2
· (1−νA)

)
L
(α)−

(
1
2
·µB +

1
2
· (1−νB)

)
L
(α)

)2

dα

+
∫ 1

0

((
1
2
·µA +

1
2
· (1−νA)

)
U
(α)−

(
1
2
·µB +

1
2
· (1−νB)

)
U
(α)

)2

dα

=
∫ 1

0

(
1
2
(µA)L (α)+

1
2
(1−νA)L(α)− 1

2
(µB)L (α)− 1

2
(1−νB)L(α)

)2

dα

+
∫ 1

0

(
1
2
(µA)U (α)+

1
2
(1−νA)U (α)− 1

2
(µB)U (α)− 1

2
(1−νB)U (α)

)2

dα

=
1
4

∫ 1

0
((µA)L (α)− (µB)L (α)+(1−νA)L(α)− (1−νB)L(α))2 dα

+
1
4

∫ 1

0
((µA)U (α)− (µB)U (α)+(1−νA)U (α)− (1−νB)U (α))2 dα

≤ 1
2

∫ 1

0
((µA)L (α)− (µB)L (α))2 dα +

1
2

∫ 1

0
((1−νA)L(α)− (1−νB)L(α))2 dα

+
1
2

∫ 1

0
(((µA)U (α)− (µB)U (α))2 dα +

1
2

∫ 1

0
((1−νA)U (α)− (1−νB)U (α))2 dα

=
1
2

d2(µA,µB)+
1
2

d2(1−νA,1−νB)

= d̃2(A〈〉,B〈〉).

Hence we get d̃
(
S(A〈〉),S(B〈〉)

)
≤ cd̃(A〈〉,B〈〉).

(v) We have S = s ◦ f , where f : F〈〉 (R) → F(R) is defined by f (A〈〉) =
f (〈µA,νA〉) = 1

2 · µA + 1
2 · (1− νA). Since s and f are continuous we obtain the

continuity of S. �

Lists of criteria which a crisp approximation (or defuzzification) and a trape-
zoidal approximation operator on fuzzy numbers should possess or just possesses
were proposed in [145] and [118] (see also Section 3.2). They include additivity,
invariance to translations, scale invariance and continuity. The following results are
immediate by Theorem 5.18.

Corollary 5.6. (i) The operator T : F〈〉(R)→ FT (R) in Theorem 5.11 is invariant
to translations, scale invariant and continuous.
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(ii) The operator Tei :F〈〉(R)→FT (R) in Theorem 5.13 is invariant to translations,
scale invariant and continuous.

(iii) The operator Ta,v : F〈〉(R)→ FT (R) in Theorem 5.14 is invariant to transla-
tions, scale invariant and continuous.

(iv) The operator Tc : F〈〉(R)→ FT (R) in Theorem 5.17 is invariant to translations
and scale invariant.

Proof. (i) It is immediate from Theorem 5.18 taking into account that the operator t :
F(R)→FT (R), where t (A) is the nearest (with respect to the distance d) trapezoidal
fuzzy number to fuzzy number A is invariant to translations, scale invariant and
continuous (see [195]).

(ii) It is immediate from Theorem 5.18 taking into account that the operator
te : F(R)→ FT (R), where te (A) is the nearest (with respect to the distance d) trape-
zoidal fuzzy number to fuzzy number A, preserving the expected interval of A, is
invariant to translations, scale invariant and continuous (see [17], [27]).

(iii) It is immediate from Theorem 5.18 taking into account that the operator
ta,v : F(R)→ FT (R), where ta,v (A) is the nearest (with respect to the distance d)
trapezoidal fuzzy number to fuzzy number A, preserving the value and ambiguity of
A, is invariant to translations, scale invariant and continuous (see [25]).

(iv) It is immediate from Theorem 5.18 taking into account that the operator
tc : F(R)→ FT (R), where tc (A) is the nearest (with respect to the distance d) trape-
zoidal fuzzy number to fuzzy number A preserving the core of A, is invariant to
translations and scale invariant (see [5]). �

Problems

5.1. Let A1,A2 be fuzzy numbers given by their α-cuts, (A1)α
=
[√

α,3−
√

α
]
,

(A2)α
=
[
2+
√

α,5−2
√

α
]
,α ∈ [0,1]. Find a trapezoidal fuzzy number nearest to

A and B. Find also a trapezoidal fuzzy number nearest to A and B which preserves
the expected interval of the set {A,B} and verify their equality.

5.2. Find a trapezoidal fuzzy number nearest to trapezoidal fuzzy numbers A1 =
(−2,0,1,3), A2 = (0,2,4,6) and A3 = (1,3,4,5) and the trapezoidal fuzzy number
nearest to A1,A2 and A3 which preserves the expected interval.

5.3. Let d be a metric on F(R) which satisfies the assumptions of Theorem 5.3.
Consider a sample of fuzzy numbers A= (A1, . . . ,An). Let us denote by M(A,T ) a
set of all trapezoidal medians of the sample A with respect to d. Prove that M(A,T )
is a compact subset of F(R) in the topology generated by d.

5.4. Consider the L1-type metric d1 on F(R), where

d1(A,B) =
∫ 1

0
|AL(α)−BL(α)|dα +

∫ 1

0
|AU (α)−BU (α)|dα.
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Find an example where the crisp fuzzy median of a sample is not unique with respect
to d1.

5.5. Prove that the best alternative is A2 and the worst alternative is A1 by consid-
ering the ratings of alternatives A1,A2,A3 versus criteria C1,C2,C5 given in Table
5.3 and the importance weights of criteria C1,C2,C5 are 0.9,0.4,0.7 with respect to
decision maker D1 and 0.8,0.5,0.9 with respect to decision maker D2.

5.6. We consider the ratings of alternatives versus criteria as in Table 5.7 and the
importance weights of the criteria in Table 5.4. Prove that the best alternative is A2
and the worst alternative is A1.

Table 5.7 Ratings of alternatives versus criteria (see Problem 5.6).

Decision-makers
Criteria/Alternatives D1 D2 ri j

C1/A1 0.7 0.8 0.75
C1/A2 0.8 0.9 0.85
C1/A3 0.9 0.8 0.85
C2/A1 0.8 0.5 0.65
C2/A2 0.5 0.8 0.65
C2/A3 0.5 0.5 0.5
C5/A1 7.0 0
C5/A2 4.0 1
C5/A3 5.0 0.667
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[52] Carlsson, C., Fullér, R., Heikkilä, M., Majlender, P.: A fuzzy approach to
R&D project portfolio selection. International Journal of Approximate Rea-
soning 44, 93-105 (2007)

[53] Carlsson, C., Fullér, R., Majlender, P.: Additions of completely correlated
fuzzy numbers. Proceedings of the IEEE Conference on Fuzzy Systems, pp.
535-539. Budapest, Hungary (2004)

[54] Carlsson, C., Fullér, R., Majlender, P.: On possibilistic correlation. Fuzzy Sets
and Systems 155, 425-445 (2005)

[55] Chanas, S.: On the interval approximation of a fuzzy number. Fuzzy Sets and
Systems 122, 353-356 (2001)

[56] Chen, S.: Ranking fuzzy numbers with maximizing set and minimizing
set.Fuzzy Sets and Systems 17, 113-129 (1985)

[57] Chen, L.H., Lu, H.W.: An approximate approach for ranking fuzzy numbers
based on left and right dominance. Computers and Mathematics with Appli-
cations 41, 1589-1602 (2001)

[58] Chen, C.-C., Tung, H.-C.: Ranking nonnormal p-norm trapezoidal fuzzy
numbers with integral value. Computers and Mathematics with Applications
56, 2340-2346 (2008)



REFERENCES 191

[59] Chen, S.-J., Chen, S.-M.: Fuzzy risk analysis based on similarity measures of
generalized fuzzy numbers. IEEE Transactions on Fuzzy Systems 11, 45-56
(2003)

[60] Chen, S.-M., Niou, S.-H.: Fuzzy multiple attributes group decision-making
based on fuzzy induced OWA operators. Expert Systems with Applications
38, 4097-4108 (2011)

[61] Chen, S.J., Chen, S.M.: Fuzzy risk analysis based on similarity mea- sures
between interval-valued fuzzy numbers. Computers and Mathematics with
Applications 55, 1670-1685 (2008)

[62] Chen S.M., Chen, J.H.: Fuzzy risk analysis based on similarity measures be-
tween interval-valued fuzzy numbers and interval-valued fuzzy number arith-
metic operators. Expert Systems with Applications 36, 6309-6317 (2009)

[63] Chen, S.J.: Measure of similarity between interval-valued fuzzy num- bers
for fuzzy recommendation process based on quadratic-mean operator. Expert
Systems with Applications 38, 2386-2394 (2011)

[64] Chen S.J., Chen, S.M.: Fuzzy risk analysis based on the ranking of general-
ized trapezoidal fuzzy numbers. Applied Intelligence 26, 1-11 (2007)

[65] Chien, C.-I., Tsai, H.-H.: Using fuzzy numbers to evaluate perceived service
quality. Fuzzy Sets and Systems 116, 289-300 (2000)

[66] Chon, T.-Y., Hsu, C.-L., Chen, M.-C.: A fuzzy multicriteria decision model
for international tourist hotels location selection. International Journal of
Hospitality Management 27, 293-301 (2008)

[67] Choobineh, F., Li, H.: An index for ordering fuzzy numbers. Fuzzy Sets and
Systems 54, 287-294 (1993)

[68] Chu, T.-C., Liu, Y.: An extension to fuzzy MCDM. Computers and Mathe-
matics with Applications 57, 445-454 (2009)

[69] Chu, T.-C., Tsao, C.-T.: Ranking fuzzy numbers with an area between the
centroid point and original point. Computers and Mathematics with Applica-
tions 43, 111-117 (2002)

[70] Civanlar M.-R., Trussell H.-J.: Constructing membership functions using sta-
tistical data. Fuzzy Sets and Systems 18, 1-13 (1986)

[71] Coroianu, L.: Best Lipschitz constant of the trapezoidal approximation op-
erator preserving the expected interval. Fuzzy Sets and Systems 165, 81-97
(2011)

[72] Coroianu, L.: Necessary and sufficient conditions for the equality of the in-
teractive and non-interactive sums of two fuzzy numbers. Fuzzy Sets and
Systems (2014) doi: 10.1016/j.fss.2014.10.026

[73] Coroianu, L.: Fuzzy Approximation Operators. Ph. D. Thesis. Cluj-Napoca,
Romania (2013)

[74] Coroianu, L., Fullér, R.: On intercative multiplication of fuzzy numbers. 11th
IEEE International Symposium on Intelligent Systems and Informatics, pp.
181-185. Subotica, Serbia (2013)

[75] Coroianu, L., Fullér, R.: On additivity of the weighted possibilistic mean op-
erator. 14th IEEE International Symposium on Computational Intelligence
and Informatics, pp. 303-308. Budapest, Hungary (2013)



192 REFERENCES

[76] Coroianu, L., Ga̧golewski, M., Grzegorzewski, P.: Nearest piecewise linear
approximation of fuzzy numbers. Fuzzy Sets and Systems 233, 26-51 (2013)

[77] Coroianu, L., Ga̧golewski, M., Grzegorzewski, P., Firozja, M.A., Houlari, T.:
Piecewise linear approximation of fuzzy numbers preserving the support and
core. Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (Eds.): In-
formation Processing and Management of Uncertainty in Knowledge-Based
Systems, 15th International Conference, IPMU 2014, Proceedings, Part II,
CCIS 443, pp. 244-253, Montpellier, France (2014)

[78] Coroianu, L., Gal, S.G., Bede, B.: Approximation of fuzzy numbers by Bern-
stein operators of max-product kind. In: Galichet, S., Montero, J., Mauris, G.
(eds.) Proceedings of the 7th Conference of the European Society for Fuzzy
Logic and Technology and Les Recontres Francophones sur la Logique Floue
et ses Applicatons, pp. 734-741. Aix-Les-Bains, France (2011)

[79] Couso, I., Sánchez, L.: The behavioral meaning of the median. In: Borgelt,
C., Rodrguez, G.G., Trutschnig, W., Lubiano, M.A., Angeles Gil, M., Grze-
gorzewski, P., Hryniewicz, O. (eds.) Combining Soft Computing and Statis-
tical Methods in Data Analysis, pp. 115-123. Springer, Heidelberg (2010)

[80] Delgado, M., Verdegay, J.L., Villa, M.A.: A procedure for ranking fuzzy
numbers using fuzzy relations. Fuzzy Sets and Systems 26, 49-62 (1988)

[81] Delgado, M., Vila, M.A., Voxman, W.: On a canonical representation of a
fuzzy number. Fuzzy Sets and Systems 93, 125-135 (1998)

[82] Deng, Y., Chan, F.T.S., Wu, Y., Wang, D.: A new linguistic MCDM method
based on multiple-criterion data fusion. Expert Systems with Applications
38, 6985-6993 (2011)

[83] Deschrijver, G., Kerre, E. E.: On the relationship between some extensions
of fuzzy set theory. Fuzzy Sets and Systems 133, 227-235 (2003)

[84] Detynicki, M., Yagger, R. R.: Ranking fuzzy numbers using α−weighted
valuations. International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems, 8, 573-592 (2001)

[85] Dubois, D., Prade, H.: Operations on fuzzy numbers. International Journal of
Systems Science 9, 613-626 (1978)

[86] Dubois, D., Prade, H.: Ranking of fuzzy numbers in the setting of possibility
theory. Information Sciences 30, 183-224 (1983)

[87] Dubois, D., Prade, H.: The mean value of a fuzzy number. Fuzzy Sets and
Systems 24, 279-300 (1987)

[88] Ezzati, R., Allahviranloo, T., Khezerloo, S., Khezerloo, M.: An approach for
ranking of fuzzy numbers. Expert Systems with Applications 39, 690-695
(2012)

[89] Ezzati, R., Saneifard, R.: A new approach for ranking of fuzzy numbers with
continuous weighted quasi-arithmetic means. Mathematical Sciences 4, 143-
158 (2010)

[90] Facchinetti, G., Ricci, R. G.: A characterization of a general class of ranking
functions on triangular fuzzy numbers. Fuzzy Sets and Systems 146, 297-312
(2004)



REFERENCES 193

[91] Fortemps, P., Roubens, M.: Ranking and defuzzification methods based on
area compensation. Fuzzy Sets and Systems 82, 319-330 (1996)

[92] Fu, G.: A fuzzy optimization method for multicriteria decision making: An
application to reservoir flood control operation. Expert Systems with Appli-
cations 34, 147-149 (2008)

[93] Fullér, R., Keresztfalvi, T.: On generalization of Nguyens theorem. Fuzzy
Sets and Systems 41, 371-374 (1990)

[94] Fullér, R., Keresztfalvi, T.: t-Normed based addition of fuzzy intervals. Fuzzy
Sets and Systems 51, 155-159 (1992)

[95] Fullér, R., Majlender, P.: On interactive fuzzy numbers. Fuzzy Sets and Sys-
tems 143, 355-369 (2004)

[96] Ga̧golewski, M.: Fuzzy Numbers Package: Tools to deal with fuzzy numbers
in R, urlhttp://FuzzyNumbers.rexamine.com/ (2014)

[97] Goetschel, R., Voxman, W.: Elementary fuzzy calculus. Fuzzy Sets and Sys-
tems 18, 31-43 (1986)

[98] Gong, Z.-T., Hai, S.-X.: The interval-valued trapezoidal approximation of
interval-valued fuzzy numbers and its application in fuzzy risk analysis. Jour-
nal of Applied Mathematics, article 254853 (2014)

[99] Grabisch, M., Marichal, J.L., Pap, E., Mesiar, R.: Aggregation Functions.
Cambridge University Press, New York (2009)

[100] Grattan-Guiness I.: Fuzzy membership mapped onto interval and many-
valued quantities. Z. Math. Logik. Grundladen Math. 22, 149-160 (1975)

[101] Grzegorzewski, P.: Metrics and orders in space of fuzzy numbers. Fuzzy Sets
and Systems 97, 83-94 (1998)

[102] Grzegorzewski, P.: Statistical inference about the median from vague data.
Control and Cybernetics 27, 447-464 (1998)

[103] Grzegorzewski, P.: Nearest interval approximation of a fuzzy number. Fuzzy
Sets and Systems 130, 321-330 (2002)

[104] Grzegorzewski, P.: Interval approximation of a fuzzy number and the prin-
ciple of information invariance. In: Proceedings of the 9th International
Conference on Information Processing and Management of Uncertainty
IPMU’2002, pp. 347-354. Annecy, France (2002)

[105] Grzegorzewski, P.: Approximation of a fuzzy number preserving entropy-like
nonspecifity. Operations Research and Decisions 4, 49–59 (2003)

[106] Grzegorzewski, P.: Distances and orderings in a family of intuitionistic fuzzy
numbers. In: Proceedings of the Third International Conference in Fuzzy
Logic and Technology - Eusflat 2003, pp. 223-227 (2003)

[107] Grzegorzewski, P.: Intuitionistic fuzzy numbers-principles, metrics and rank-
ing. In: Atanassov, K.T., Hryniewicz, O., Kacprzyk, J. (eds.) Soft Computing
Foundations and Theoretical Aspects, pp. 235-249. Academic House Exit,
Warszawa (2004)

[108] Grzegorzewski, P.: Improved trapezoidal approximations of fuzzy numbers.
Research Report of Systems Research Institute, Polish Academy of Sciences,
RB/20/2007 (2007)



194 REFERENCES

[109] Grzegorzewski, P.: New algorithms for trapezoidal approximation of fuzzy
numbers preserving the expected interval. In: Magdalena, L., Ojeda-Aciego,
M., Verdegay, J.L. (eds.) Proceedings of the 12th International Conference
on Information Processing and Management of Uncertainty in Knowledge-
Based Systems, pp. 117-123. Malaga, Spain (2008)

[110] Grzegorzewski, P.: Trapezoidal approximations of fuzzy numbers preserving
the expected interval-Algorithms and properties. Fuzzy Sets and Systems 47,
1354-1364 (2008)

[111] Grzegorzewski, P.: Algorithms for trapezoidal approximations of fuzzy num-
bers preserving the expected interval. In: Bouchon-Meunier, B., Magdalena,
L., Ojeda-Aciego, M., Verdegay, J.-L., Yager, R.R. (eds.) Foundations of Rea-
soning under Uncertainty, pp. 85-98. Springer, Berlin (2010)

[112] Grzegorzewski, P.: Trapezoidal approximation of fuzzy numbers based on
sample data. Communications in Computer and Information Science 81, 402-
411, (2010)

[113] Grzegorzewski, P.: On the interval approximation of fuzzy numbers. Commu-
nications in Computer and Information Science 299, 58-68, Springer (2012)

[114] Grzegorzewski, P.: Fuzzy number approximation via shadowed sets. Infor-
mation Sciences 225, 35-46 (2013)

[115] Grzegorzewski, P., Mrówka, E.: Trapezoidal Approximation of a Fuzzy Num-
ber - a Practical Approach. In: Liu, Y., Chen, G., Ying, M., Cai, K.Y.
(eds.) Proceedings of International Conference on Fuzzy Information Pro-
cessing, Theories and Applications, pp. 31-35. Tsinghua University Press and
Springer, Beijing, China (2003)

[116] Grzegorzewski, P., Mrówka, E.: Approximation of Fuzzy Numbers - Revis-
ited. In: Liu, Y., Chen, G., Ying, M., Cai, K.Y. (eds.) Proceedings of Interna-
tional Conference on Fuzzy Information Processing, Theories and Applica-
tions, pp. 117-121. Tsinghua University Press and Springer, Beijing, China
(2003)

[117] Grzegorzewski, P., Mrówka, E.: Trapezoidal approximations of fuzzy num-
bers. Lecture Notes in Artificial Intelligence 2715, 237-244 (2003)

[118] Grzegorzewski, P., Mrówka, E.: Trapezoidal approximations of fuzzy num-
bers. Fuzzy Sets and Systems 153, 115-135 (2005)

[119] Grzegorzewski, P., Mrówka, E.: Trapezoidal approximations of fuzzy
numbers-revisited. Fuzzy Sets and Systems 158, 757-768 (2007)

[120] Grzegorzewski, P., Mrówka, E.: Some notes on Atanassov’s intuitionistic
fuzzy sets. Fuzzy Sets and Systems 156, 492-495 (2005)

[121] Grzegorzewski, P., Pasternak-Winiarska, K.: Weighted trapezoidal approxi-
mations of fuzzy numbers. In: Carvalho, J.P., Dubois, D., Kaymak, U., Sousa,
J.M.C. (eds.) Proceedings of the Joint 2009 International Fuzzy Systems As-
sociation World Congress and 2009 European Society of Fuzzy Logic and
Technology Conference, pp. 1531-1534. Lisbon, Portugal (2009)

[122] Grzegorzewski, P., Pasternak-Winiarska, K.: Bi-symmetrically weighted
trapezoidal approximations of fuzzy numbers. In: Abraham, A., Benitez
Sanchez, J.M., Herrera, F., Loia, V., Marcelloni, F., Senatore, S. (eds.) Pro-



REFERENCES 195

ceedings of 9th International Conference on Intelligent Systems Design and
Applications, pp. 318-323. Pisa, Italy (2009)

[123] Grzegorzewski, P., Pasternak-Winiarska, K.: Natural trapezoidal approxima-
tions of fuzzy numbers. Fuzzy Sets and Systems 250, 90-109 (2014)

[124] Grzegorzewski, P., Stefanini, L.: Non-linear shaped approximation of fuzzy
numbers. In: Carvalho, J.P., Dubois, D., Kaymak, U., Sousa, J.M.C. (eds.)
Proceedings of the Joint 2009 International Fuzzy Systems Association
World Congress and 2009 European Society of Fuzzy Logic and Technol-
ogy Conference, pp. 1535-1540. Lisbon, Portugal (2009)

[125] Hanss, M.: Applied Fuzzy Arithmetic. Springer-Verlag, Berlin (2005)
[126] Heilpern, S.: The expected value of a fuzzy number. Fuzzy Sets and Systems

47, 81-86 (1992)
[127] Hong, D.H.: On shape-preserving additions of fuzzy intervals. Journal of

Mathematical Analysis and Applications 267, 369-376 (2002)
[128] Hong, D.H., Lee, S.: Some algebric properties and a distance measure for

interval-valued fuzzy numbers. Information Sciences 148, 1-10 (2002)
[129] Hong, D.H.: A note on the correlation and information energy of interval-

valued fuzzy numbers. Fuzzy Sets and Systems 123, 89-92 (2001)
[130] Hong, D.H.: Shape preserving multiplications of fuzzy numbers. Fuzzy Sets

and Systems 123, 81-84 (2001)
[131] Jahn, K.U.: Intervall-werige Mengen. Math. Nach. 68, 115-132 (1975)
[132] Jimenez, M.: Ranking fuzzy numbers through the comparison of its expected

intervals. International Journal of Uncertainty, Fuzziness and Knowledge–
Based Systems 4, 379-388 (1996)

[133] Kahraman, C., Kaya, I.: A fuzzy multicriteria methodology for selection
among energy alternatives. Expert Systems with Applications 37, 6270-6281
(2010)

[134] Kelemenis, A., Askounis, D.: A new TOPSIS-based multi-criteria approach
to personnel selection. Expert Systems with Applications 37, 4999-5008
(2010)

[135] Kim, K., Park, K.S.: Ranking fuzzy numbers with index of optimism. Fuzzy
Sets and Systems 35, 143-150 (1990)

[136] Klement, E.P., Mesiar, R., Pap, E.: Triangular norms. Springer (2000)
[137] Klir, G.J., Yuan, B0. Fuzzy Sets and Fuzzy Logic. Theory and Applications,

Prentice Hall (1995)
[138] Klir, G.J., Wierman, M.J.: Uncertainty–Based Information. Physica-Verlag,

Heidelberg (1998)
[139] Kolesarova, A.: Triangular norm-based additions preserving linearity of t-

sums of fuzzy intervals. Mathware and Soft Computing 5, 98-99 (1998)
[140] Krohling, R.A., Campanharo, V.C.: Fuzzy TOPSIS for group decisionmak-

ing: A case study for accidents with oil spill in the sea. Expert Systems with
Applications 38, 4190-4197 (2011)

[141] Kumar, A., Singh, P., Kaur, A., Kaur, P.: A new approach for ranking
nonnormal-norm trapezoidal fuzzy numbers. Computers and Mathematics
with Applications 61, 881-887 (2011)



196 REFERENCES

[142] Kuo, M.-S., Win, J.-W., Pei, L.: A soft computing method for selecting evalu-
ation criteria of service quality. Applied Mathematics and Computation 189,
241-254 (2007)

[143] Lawson, C.L., Hanson, C.R.J.: Solving least squares problems. Prentice-Hall
(1974)

[144] Lee, E.S., Li, R.J.: Comparison of fuzzy numbers based on the probability
measure of fuzzy events. Computers and Mathematics with Applications 15,
887-896 (1988)

[145] Leekwijck, W.V., Kerre, E.E.: Defuzzification: criteria and classification.
Fuzzy Sets and Systems 108, 159-178 (1999)

[146] Lehmann, E.L.: Theory of Point Estimation. Chapman & Hall, London
(1983)

[147] Li, D.F.: A ratio ranking method of triangular intuitionistic fuzzy numbers
and its application to MADM problems. Computers and Mathematics with
Applications 60, 1557-1570 (2010)

[148] Liou, T.-S., Wang, M.-J.: Ranking fuzzy numbers with integral value. Fuzzy
Sets and Systems 50, 247-255 (1992)

[149] Ma, M., Kandel, A., Friedman, M.: A new approach for defuzzification.
Fuzzy Sets and Systems 111, 351-356 (2000)

[150] Marchant, T.: A measurement-theoretic axiomatization of trapezoidal mem-
bership functions. IEEE Transactions on Fuzzy Systems 15, 238-242 (2007)

[151] Matarazzo, B., Munda, G.: New approaches for the comparison of L− R
fuzzy numbers: a theoretical and operational analysis. Fuzzy Sets and Sys-
tems 118, 407-418 (2001)

[152] Mesiar, R.: Triangular-norm-based addition of fuzzy intervals. Fuzzy Sets
and Systems 91, 231-237 (1997)

[153] Mesiar, R.: Shape preserving additions of fuzzy intervals. Fuzzy Sets and
Systems 86, 73-78 (1997)

[154] Modarres, M., Nezhad, S.S.: Ranking fuzzy numbers by preference ratio.
Fuzzy Sets and Systems 108, 83-90 (1999)

[155] Moore, R.E.: Interval Analysis. Pretince-Hall, New Jersey (1966)
[156] Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis.

SIAM, Philadelphia (2009)
[157] Nakamura, K.: Preference relation on a set of fuzzy utilities as a basis for

decision making. Fuzzy Sets and Systems 20, 147-162 (1986)
[158] Nasibov, E.N., Peker, S.: On the nearest parametric approximation of a fuzzy

number. Fuzzy Sets and Systems 159, 1365-1375 (2008)
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Rådström theorem, 156
reducing function, 31
right-hand ambiguity, 32

sample median, 153
scalar multiplication, 21
scale invariance, 47
semi-trapezoidal fuzzy numbers, 14
semilinear space, 156
shadow, 114
shadowed set, 114
side of fuzzy number, 10
strongest t-norm, 22
subtraction of fuzzy numbers, 19
sum of fuzzy numbers, 18
support, 6
symmetric fuzzy number, 11

t-norm, 22
T-norm based addition, 23
T-norm based multiplication, 24
trapezoidal approximation, 57
trapezoidal approximations of intuition-

istic fuzzy numbers, 176
trapezoidal approximations of intuition-

istic fuzzy numbers preserving core,
181

trapezoidal approximations of intuition-
istic fuzzy numbers preserving ex-
pected interval, 178

trapezoidal approximations of intuition-
istic fuzzy numbers preserving value
and ambiguity, 179

trapezoidal approximations preserving ex-
pected interval, 57

trapezoidal approximations preserving the
ambiguity and value, 88

trapezoidal fuzzy number, 13, 171



INDEX 203

trapezoidal fuzzy number approximation
of an intuitionistic fuzzy number,
176

trapezoidal intuitionistic fuzzy number,
38

trapezoidal median, 155
triangular approximation, 55
triangular fuzzy number, 12
triangular intuitionistic fuzzy number, 38
triangular median, 155
triangular norm, 22

upper fuzzy set of the interval-valued
fuzzy set, 41

value of a fuzzy number, 31

weakest t-norm, 23
weighted L2-type distance, 26
weighted expected interval, 33
weighted expected value, 30
width, 32
worst alternative, 168



The Project is co-financed by the European Union from resources of the European Social Fund

ADRIAN I. BAN, LUCIAN COROIANU,
PRZEMYSŁAW GRZEGORZEWSKI

FUZZY NUMBERS:
APPROXIMATIONS,
RANKING AND APPLICATIONS

M
O

N
O

G
R

A
PH

 SER
IES

M
O

N
O

G
R

A
PH

 SER
IES

INSTITUTE OF COMPUTER SCIENCE 
P O L I S H  AC A D E M Y  O F  S C I E N C E S
INSTITUTE OF COMPUTER SCIENCE 
P O L I S H  AC A D E M Y  O F  S C I E N C E S

ISBN 978-83-63159-21-4

KAPITAŁ LUDZKI
NARODOWA STRATEGIA SPÓJNOŚCI

UNIA EUROPEJSKA
EUROPEJSKI

FUNDUSZ SPOŁECZNY

9M
O

N
O

G
R

A
PH

 SER
IES:

9

 FU
ZZY N

U
M

BERS  A
PPRO

X
IM

ATIO
N

S, RA
N

K
IN

G
 A

N
D

 A
PPLICATIO

N
S

ADRIAN I. BAN, LUCIAN COROIANU,
PRZEMYSŁAW GRZEGORZEWSKI

FUZZY NUMBERS:
APPROXIMATIONS,
RANKING AND APPLICATIONS


	Monografie - cz 9 - Grzegorzewski - 1-2 strona.pdf
	Pusta strona




