b 1793
1793

CENTRUM OBLICZENIOWE
POLSKIEJ AKADEMII NAUK

ANTONI W. MAZURKIEWICZ

CLOSED PROGRAMMING
SYSTEMS

WARSZAWA 1972
PANSTWOWE WYDAWNICTWO NAUKOWE

http://rbc.ipipan.waw.pl

r %

CENTRUM OBLICZENIOWE
POLSKIEJ AKADEMII N A UK

ANTONI W. MAZURKIEWICZ

CLOSED PROGRAMMING
SYSTEMS

WARSZAWA 1972
PANSTWOWE WYDAWNICTWO NAUKOWE

The paper dealt with equivalence of programs and proving their
properties. A notion of closed programming system is introduced
and some properties of this notion are considered. An algorithm
for equivalent transformations or programs is given.

Praca dotyczy rownowaznosci programéw i dowodzenia ich whasnosci.
Wprowadzone jest pojecie zupetnego systemu programowania i zbada-
ne sgjego wlasnosci. Podany jest algorytm réwnowaznosciowej trans-
formacji programéw.

REDAKTOR WYDAWNICZY
CENTRUM OBLICZENIOWEGO PAN

Jan Lipski

Printed in Poland

Panstwowe Wydawnictwo Naukowe
Oddziat w todzi 1972
Wydanie !. Naktad 350+ 90 egz. Arie. wyd. 1,2*. Ark. drak. 1 10/16.

Papier offset kl. 111, 80 g, 70X100. Podpisano do druku 30 IX 1972 r.
Druk ukorniczono w pazdzierniku 1972 r. Zam. nr 369. D-10. Cena zl 10—

Zakiad Graficzny Wydawnictw Naukowych
todz, . Gdanska 12

1. INTRODUCTION

The growth of the computational power of a single statement
is a general tendency in the development of programming lan-
guages. One of goals in designing new languages is t« express in
few statements the action caused by more statements informer lan-
guages. Inparticular, the more advanced language,the lowernum-
ber of assignments statements in each program. How for can one go
in this direction?

In the present paper we try to answer this question. We con-
sider a programming system (abr./>j) with instructions of the form:

a . if B then f and b

where M s a condition, Z/is an operator, and a, b are labels
(initial and terminal). Finitesets of instructions are programs
in our ps. The restriction to the above form of instructions is
not essential, e.g. each instruction of the type

a:~f Bthen f and b else g and c
can be replaced in a program by the two following

a:~f B then f and b

a: if~Bthen g and c.

We are mostly interested In such ps where single instructions are
of the possibly greatest computational efficiency. To this effect
we Introduce a notion of a closed programming system (abr. cps)
with the property that for each (well-defined) program P in such
a system there exists a semantically equivalent two-instruction
program;.

Sp = ~starts if Bp then fp and stop,
start; if ~Bj>then loop j.
where neither Bpnor -p contain other Instructions. It should be

stressed thatthe reduced program Sp (said to be the canonical fonn
of P) is written In the same system that P is. In other words, any

4

closed programming system is reach enough to express properties
of programs written in this system. Usually, such properties can
not be described in the system itself but need some stronger meta-
-system. In fact, Sp describes the properties of P : for any data
vector x, if Bp(x) is satisfied, then -Sp, hence also/7,stops and
gives the result fp(x). In the opposite case, i.e. if ~ Bp(x) is
satisfied, the result of P is not defined.

Now, the following question arises: what properties should
have a psin order to be closed? How to reduce a given program in
s to its canonical form?

In the paper, after introducing some basis notions,a very sim-
ple ps is defined and conditions for such ps to be closed are for-
mulated. Next, we show what rules of replacement can be used to
transform programs into semantically equivalent canonical form
(Theorem 1). In the rest of paper we define a set of derivation
rules permitting to reduce programs into the canonical form, like
theorems in a deductive systems can be derived from the axioms of
this system. The basic result of this part is Theorem 2, on the
completeness of the set of the derivation rules.

2. BASIC NOTIONS

Definition 1. A programming system A , considered in this pa-
per, is defined by its language LA and its semantics MA. The lan-
guage of A consists of:

(1) an alphabet 2 p «

(i) a subset EA of » called the set of labels and contain-
ing three distinguished symbols start, stop and loop;

(i) a subset A of "0*, called the set of conditions and con-
taining a distinguished symbol true;

(iv) a subset fA of ’\’_‘Al called the set of operators and con-
taining a distinguished symbol empty.
The set

IA= (Ea- {stop,loop]s) x CAxFa x (Ea-{startj.)

5

is called the set of instructions in A. For any r = (a,B,f,b) in
IA we shall write

a: JX B then + andb .

We shall use also anabbreviated notation, writing

a: f and b instead of a: true then f and b
g: if B then b instead of a: Lf B then empty and b
a:b instead of a: if true then empty andb .

The label a is said to be the initial label of /', the label b

is said to be the terminal label of r. Two instructions with the
same initial labels and the same terminal labels are called simi-
lar, Every instruction such that its initial label is identical
with its terminal label is called reflexive. A finite subset P of
the set 1A is called a program in A . By£ (P) we denote the set of
all labels occurring in the instructions of the program P.A label
a is said to be blind in P, if stop ~ a / loop and there is no
instruction in P where a is initial. A label a is said to be in-
accessible in P, if a ~ start and there is no instruction in P

where a is terminal. Then, any label not in EiP) is blind as well
as inaccessible in P.

Every program P can be represented by a labelled graph Tp,hav-
ing E (P) as the set of vertices and P as the set of directed arcs.
To each instruction a: if B then f and b corresponds an arc,start-
ing in a, entering into b, and labelled with (B,f). Such agraph
is called the flow-diagram of P.

The semantics Ma of ps A is a system consisting of:

(i) a nonempty set (of states), called the domain of .in-
terpretation,

(i) a mapping (FA: FA» XA X 1], called the interpretation
of operators, !

(iii) a mapping”: CA* , called the interpretation of
conditions.

We shall assume that for every / in FA and x,y,z in XA

(empty, X, /) = 1liff X=14
& (true,x) =1
=i and 9A(f,x,z) =1 impliesy = z.

Given a semantics MA, we write Qx instead of §A (~,x) andy = +x

instead of A (f,X,y) > 1.
We shall write ~D”™iresp. Qi = Qg), if for all / in XA

QX =i implies Q@2x =i (resp. Qtx =i iff Q™ =1i). We shall
write Q3 = /2) if for all X, y,z in XA such that y = /'jX,
Z=f2X Qx=1 implies y =2Z. The set SA= £4* is called

the set of situations in A. If PA is a program in At then the
subset JpA of SA, SpA= E(PA)XXA is called the set of situa-

tions in PA. For every instruction r and any situations , 52*

we write
r: st—s2
if r is an instruction: a: _if Qthen / and b, ¢j = (ff,x), s2 =

= (b,y), and Qx= 1, y =1fx . For any program PA and situations
"f S2, we write

PA* ;i —m52

if there exists in PA an instruction r such that r: A se-

quence of situations:

(S0, n>0,
is called a computation in PA beginning with and ending with
Sn, if PA: —»Sj for i <i <n . W write RA: (or
simply: if A is known), if there exists a computa-
tion in FA beginning with S1 and ending with S2.
We write
Compp™ (x,y)

if PA: (start, X) =» (stop,Vy).

Proposition i. For any program PA, if J™"~jg.and
ti2 then 4 N3 *

Proof is obvious.

Let PA be a program in A,, and let

PA=1lai: I Q then / and A/ |/ =1,2,...,VJ, H>O0.

We shall say that PA is consistent, if for each L, j, i ~j ,1<
< i,j< N, and every X in XA,

0/ = fly implies Q[X = 0 or fyx = 0.

We shall say that PA is complete,it for each /, and
every X in , there exists j, such that

2 = fly and Qjx = 1.

We shall say that program PA is executable, if for each /,i< /<N,
and every X in , there exists y in such that

=1 implies y = {¢X.

A program /3 is said to be well-defined, if it is consistent.com-
plete, and executable. Note that the empty program Is well-defin-
ed.

Let s be in SA, let PA be a program in A. We shall write stop
(5), if 5= (stop, Xx) for some X in ~ ; we shall write loop(5),
if there exists no such 6' in SA that PA:S~S' and 8top(s"').

Proposition 2. For any well-defined program PA:

if and «§ =¢ 5g, then either 32 53
o 's2 = 53 or ¢3="2*%
if A jgp» J1=>53, stop(i2), and stop("g)>
then S2 = J3.

(iii) stop(j) implies loop(”~) does not hold.

(iv) if looping) and then loop(jl).

(v) Let f be a subset of SA - {j |stopis)}.

If for all inT, implies S2
is in T, then loop(,s) for all 5 in T.

(vi) I f and PA: S -+« S2, then = 82*

(vii) If Compp”(x,y) and Compp”(x,z), then Jd=2z.

Definition 2. We say that a programming system A is closed,
if the following conditions are satisfied:

1. There are defined in QA operations: (unary), V(binary),
A (binary), such taht for all X in XA and Q, Q2 in OQA:
(~Q)x =1 iff Qx =0,
01V @) x = i iff Qtx =1 or Q2X=1,

| iff Qix =1 and Q2X = 1.

(Qt AQ2)x

We shall assume ~ stronger than A ,A stronger than V . We shall

write false instead — true. Note that the pair of instructions:

ai I£Q then /7 andb =

aj if ~Q then g and C

is written usually as

a: ifQ then f and b else g and c .

2. There is defined in F* an operation o (binary) such that
for all x in XA, and f f2 in FA

y = (/jo/g)x iff there exists z in XA such thatz = f2X

and y = /jZ.
3. There are defined mappings oc: JA* FA*FA FA, i$: QA* FA-*~QA,
@~ 8UCh that for any Q in QQ, f, g in FA, and for all
X,y in XA:
y =a (Q, {,<NH* iff either Qx=1 and y =fx , or. Qx a 0
and ¥ = gx ;
fi>(.Q,f)x = 1i iff there exists z in such that Qz =
=iand z = &5
y = ==, /Hx ITF there exists a sequence >0,x1,...Ff
X/72), ns*0, such that XQ =X ,QX? + =
=1,Xi = +<i<n,Qn= o, Xn=

=y, xn 1is in XAe

Instead of fog, oc(Q,f,g), we shall write fg,

Q\\(Ji t)f. Q *ft respectively. We shall assume o to be stronger
than * , and y8 stronger than ~ , A , V. it should be noted the
difference between ={/2 and, for instance, V ~2; the Tfirst
denotes a binary relation in the set @, while the second denotes
an element of QA. The same note concernes

If A is closed, then we can define, for eachnon negative in-

teger k , every f inFA, and any QZ,...,0" In@, the follow-

ing operators and conditions:

fe= empty,
0 ferl / k o\
\ false, V Q@* V 9 V ,
i=1 /=1 v-1 7/
0] *+1 f k \

A Q= true, /\ A fil] AN+1*

We shall interprete fgk as Zigk).
Proposition 3. For any closed programming system

(iv) Let FA be a program in A and let A= PQOP", contains

no instructions with a as the initial label, ={<7: if
Q then and \'L=1,2,..., XY, N>O0.
N

a» \Y Qi=true iff PA is complete,
/-1

b. Q,Ail)i=£alse for /£, i<j , L<N , iff consis-
tent ,

c. if FA is complete, then:

N
Vv true // = true iff PA is executable.

//1

3. PROGRAM TRANSFORMATIONS

In this section we shall consider an arbitrary but fixed closed
programming system A ; we shall use an abbreviated notation.writ-
ing P, £(P), X,... instead PA, E(Pa), Xa,.»- and similarly for
other symbols. In whole this section programs are assumed to be
well defined. The main result of this section concernes program
transformations preserving the relation Comp. Our purpose is to
prove that every well-defined program P in a closed programming
system can be transformed into the well-defined, two-instruction
program S containing no labels but start, stop, and loop, and
such that Compp = Comp”. After such a transformation,the semantic
analysis of P becomes quite simple.

Definition 3. Program P is said to be strongly equivalent to
a program H (or, simply, equivalent), if for every X,y in X

Compp (x,Y) if and only if Comp”™(x,y) .

10

Lemma 1. (On the elimination of blind labels). Let P be
a program. If b is blind in P, then P = P\j{bi loop]-is a pro-
gram equivalent to P .

Proof is obvious.

Lemma 2. (On theelimination of inaccessible labels).Let
P be a program. If a is inaccessible in P and start is not blind
in P, then P = start: if false thenalm is is a program equi-
valent to P .

Proof is obvious.

Lemma 3. (on the reduction of similar instructions).A pro-
gram

Nl = POu{a: i~ then and b, a: #2 then ~2 and
is equivalent to the program

P2 = DU (as — #1V #2 then ™1 1IN| and

Proof follows directly from the definition of the operator

Lemma 4. (on theelimination of reflexive instructions).
Let P+ a pQu ifA Qj then and m | L=20,1,..., A/} M>0, be
such a program that?

(i) Po does not contain any instruction with the initial label
Qo*
(i) aQ”™ ai for i< i<M;

Then

P2 = PqQU {0Q: if ~ true (Qq # /q) then loop], U

(Vv a 0* V thep *1 <f0* V and a>\

t ~ 1,2, n

is a program equivalent to P
Proof. At first, check P2 Is well-defined. The program P2

M m
is complete; indeed, V Q[{Q0* fQ) = \/ Qi(()0* fQ). because QO(QO
M M
* fQ) = false, and by Proposition 3(i) \VqQi (CO* QNQO

______ O). Hence,

11

M
V Qi(Qo * /o)v~true(Oo « Q)= true,

and, once more by Proposition 3 (iv)(a)t is complete.
The program P2 is consistent. In fact, by proposition

3(1) (Qt(Q0* f0))MQj(QO0* fQ)) = (Qi A Qj)(Q0* f0) - false by

assumption, for L £j , 1< i, (Qi(Qo~ fQ))A~true ())
d true f J)A~true (Qq* fQ) = false. Finally, P2 is execu-
table: there exists always y in Y such that y = empty x (namely,a);
if Qi(t)o* fQ)x = I» then there exists z in X such that z =

and Qiz =1,hence, by assumption, there exists y in X suchthat
y =z , what proves the executability of P2. Thus, is well-
-defined.

Now, assume Comp™ (x,y). It means that there exists a computa-

tion in PN
(Sqi 5j,...,5f), > 1,

such that s = (start, X), Sn = (stop, y). Let us consider the

subsequence (Sj , Sj ,..., Jijm), /ra>l, of this computation, de-
o] 1
fined as follows:

(1) j. =5 = (start,A)
Jo
(ii) = (stop, ™)
iii Let J; = (fl,z). Then, if a t a we put s, = s.,.",
(iii) 3 = (fl.2) , W p i
if a= a we put 5. = 5, , 1* where p is the smal-
0 N+1 AP +1
lest non-negative integer such that = (b,t) im-

plies b £ aQ. Such an integer always exists.because stop

*V
We claim that for each k, I<k<r/n,

#)

P2: St — St
b Ik Jk+1

Let 5"=(a, z). If a ™ a0, then PQi Sjk~~Sjk+i andby defini-

tion of thesubsequenceand the program weobtaiq (#).

12
Assume a = dQ and consider the following sequence:

f'Sa» 7 » eee t G # Y)e
* £+1 £+/> k +/3+1
This sequence Is a computation InP.,; by definition of C, there
is I, 1<i<M, and Z(Q) in X, I<9</7, such that:
4 /> i - z' - fifPz> QON0Z = ° ANeN2r=A*
that is, by Proposition 3(v) fP =* o, Q[*Qq * =1* ¢ =

= f[(Q0O* fQ)zi »hat implies (*). Hence, the considered subsequence
is a computation in PO what proves Comp
V2
Assume now CompDZ(x,y), and let (5 ,Jll,...,J n), n>1i,be a com-
r

putation in P2such that SQ = (start,X), 5= (stop,y).W shall
prove that for all j, O0<j<tl-1, Pi S =mJy+1l. Let Jy = (c, z),
S#l = (b,t). If Q7 aQ, then PQ: ~ =>5J+1 what implies Pzx:Aj~*

:>$,7°+1- If a =then by the definition of P. % there must be

Qi(Q0 * fo)z=1 A= h <Q * fo}z*

Thus, there is such u in X that u= {Q_* {)z and t = -fiu ;hence,
0,(i) ,(2)

there exists an integer p > 0 and a squence z , Z
elements of X, such that

z 7 of

z(?) = 0z, 1 for 1q<p,

and

Consider the sequence:

((a0, z), (flo, z(1)),..., (fl0, z(/5), (a,-, n).

As it follows from the definition of P”, this sequence is a com-
putation in P+ whatyields: &=* i*+1. By transitivity of-*we
obtain 'Sn =>Sn, what completes the proof of Lemma 4.

13

Lemma 5. (On the elimination of labels). Let P = PAVAVB
be a program such that:

@) A =]aj: if Rj then fj and b | 7=1,2,..., A,
(@i) B =f{A :JIX Q then 9 apd Ci (¢(=1,2, ...

ain P o does not contain any instruction with initial or ter-
minal label identical with b,

av) aj it b ~ Ci (There are no reflexive instructions in A\JB),
1<i<M, 1<

() >¥*>0, M> 0 (b is neither “blind nor inaccessible).

Then the program

A2 = po U{a): — AQIfj then 916 and ci |j - 1.2,... A,

is equivalent to P~.

Proof. We shall prove only P2 is well-defined; the rest of
the proof, as similar to that of Lemma 4, will be omitted.To prove
consistency, consider

1<j, k<H, 1</, m<«M, J+k or / jtm. If J jtk,then since
P4 is well-defined, Rj I\Rk** false, and (1) m false.

If j =k and L jtm, then (l) is equivalent to Rj A
AQm)fj) by Proposition 3(i). On the other hand QjAQn = false by
the assumption thus (1) is also false.

To prove completeness, it suffices to show that

N M N
(*)

In fact, by Proposition 3 (i)

and by assumed completeness of P., \y Q-= true {M> 0) hence#
/-1

is equivalent to

14 ,

But Pi is well-defined, hence executable, thus Rj 3 true fj for

H N
all 7/, K i<N, and thus \/ (RiAtrue /) = \/£;.
J jmi J J 7=1
To prove executability, observe that if (Rj AQ/fj)X = i,then
PyA = i, hence by the assumption there exists y in X such that y =
= fjX ; since QifjiX = 1, wehave Q[y = 1. Hence, by the assump-
tion, there Is u In X suchthat U - fry, i.e. U = what

proves to be executable.

Theorem 1. For any closed programming system A and any
well-defined program PA inA,there exists acondition Qp in @A,
and an operator fp in , such thatP is equivalent to the pro-
gram:

Sp ={ start: if Qp then -p and stop,

start: if ~ Qp then loop].

Sp will be called in the sequel the canonical formof P

Proof. Consider the set £ (p). If start isnot in£(P), then
start is blind in P. Hence, by Lemma 1 we can replace P by its
equivalent

P U{start: loop],

If start is in £(P), but stop is not, then stop is inacces-
sible in P and by Lemma 2 we can replace P by its equivalent

PU{start: if false then stop].

Thus, we can assume that start and stop are in £(P). Now, if loop
is not in £(P), then loop is inaccessible in P and by Lemma 2 we
can replace p by its equivalent

Pu{start: if false then loopj..

Hence, we can assume that £ (P) containis jstart, stop and loop.
Let (j{P) = £(P) - {start, stop, loop]. We shall prove Theorem
1 by induction with respect to card((J(P)i
a. Assume card(j3(P)) = 0. In this case, applying the result
of Lemma 3 we obtain the following well-defined program.equivalent
to P:

{ start: 1f Qp then fp and stop,

start: if Rp then loopj,

15

and, since this program is well-defined, Rp is ~Qp ; in this case
Theorem 1 Is valid.

b. Suppose Theorem 1 is true for all programs P, such that
card 6(P'))<n, n>0. We shall prove it for P such that card(6(P))=
= n, by transforming P into P', card(&(P')) = H- 1. This trans-
formation will be performed in four steps.

Step 1. As In Lemma 3, we reduce all similar Instructions in/3

Step 2. As in Lemma 4, we eliminate all reflexive instructions
inP; since there are no similar instructions in P, Lemma 4 can be
applied.

Step 3. Since card {&{P))> 0, we can find a label in 6(P),say,
b. If b is blind in P, then we apply Lemma 1; if b is inacces-
sible, we apply Lemma 2.

Step 4. Since b is neither blind nor inaccessible in P,and
P contains no reflexive instructions, we can eliminate label b as
in Lemma 5.

Every step listed above fransforms a program into its equi-
valent, preserving the property "to be well-defined". Hence, the
result of this transformation is a program P', equivalent to P,
and if P is well-defined, then so is P'. Since E(P') contains all
labels of E(P) excluding b, card(ZA&(P"')) = H - 1. Hence, the proof
is completed by induction.

Corollary i. Let P .be a well-defined program in A ,Sv={ If
Q then / and stop, iJ_~Q then lo o p be the canonical form of P .
The following equivalence holds for all X in XA\

x =1 iff there is y in XA such that Compp{x,y).

Proof. Since P is well defined, so is 3p. Hence Sp is exe-
cutable; it means that if Qx» 1, then there exists y in such
that y =/x, i.e. that Compp(x,y). On the other hand, if Qx = 0,

then (~Q)x = 1 and there exists no such y in XA that Comp(x,y),
what completes the proof.

4. DERIVATION RULES

In this section we suggest another approach: each program
will be considered as a set of "axioms" (instructions) that de-

16

scribe the next state function of the program. Now what we want
is to give a set of "derivation rules" that permit to produce new
instructions (theorems) describing the transitive closure of the
next state function. Such derivation rules are introduced in this
section; the main result of this section is a theorem to the ef-
fect that the introduced derivation rules are reach enough to de-
rive the canonical form for every well-defined program.
Definition 4. Let A be a closed programming system, and let
PA be a program in A . The set Cons(P/) is the smallest subset of

IA satisfying the following conditions. For arbitrary in
Qa* f f2 in ~*and a' C Ea (writing - r instead
of r is in Cons(fy)):
1. If
Pf-a: if_ then and b, Q2 3 0i»Q2 3 = *)
then

P\—a : i£ Q2 then /2 and b;

2. |If
PAl—a : Lf Q then and b, PAEL b : if* Q2 then
and c,
then
Avr—a: If frAflgfj then /j and c;
3. If
A a: if ~ then and b, R¥F 7: if {{2 then
/2 and b, A Q2 ~ false»
then
PA\—a : if AV "2 then /N 1¢2 and b
4. |If
£: Lf Q then / and fl, Q ™ Qf ,
then

PA\—a : Q then loop;

17

PAA—a: If Q then f and a,

then »

RA\x—ai if true (Q*f) then Q*f and a;

6. If b Is blind in PA, then
PAN—Db : loo
7. If a is inacceslble in PA, then
PA}- start: if false then a.

The above definition can be treated as a set of rules, by

means of which we canderive some instructions from anothers. In
fact, it follows fromthe definition that PAL r if and only if
there existsa derivation of r from PA,i.e. a sequence
(ro, n >o,

where r = rnand where each r{- satisfies one of the following con-
ditions:

(1) // is in FA orri can be derived by means of rules 6 or 7}
(2) there exists rjwith j <i that derives /# by means of rules

i or 4 or 5;

(3) there exists fj, ~ with j,k<i that derive // by means
of rules 2 or 3.

Proposition 4. For every well-defined program FPFA
in a closed programming system A, and every Q,S in @, f, gq in
Fa, fl, b,c in Ea;

8. For every integer m>1, if FPAMa: .if. Q then -f and a, then

2,
PAl—a: if AoOf ~ then fmand a\
k=1

9. For every integer i, if

M\-a : if Q then f and a,

P\-a: if S then q and®b,

then

2 — Closed programming systems

18

RA\-a :

m
if SimA Qik _1 then and 2 ;

M—-0: it Q then b, PAN—~Db : /and C,

M\—a : 1fQ then f andc :

RA\—ai if Qthen / and b, R+ b : C,

10. If
then

11. |If
then

12. If

AL A:~f

then

13. If
then

14. |If
then

15. If
then

RnE a: Q then /andC;

then /7 and 6, R 3: if then f and b ,

At fl: if then f and b ;

R—Q : if Q then i and

AF fl: it (VJAJ thenf and /7%

/A af then/ and b,

P+——a : if 0 thenj and6;

NFa:/ and b,

M+—a : it Q then /7 and b .

Lemma 6. For any well-defined program A in a closed pro-

gramming system A,

P

if R is a canonical form of PAi

={start: if Q then f and stop,
start: if then loopl.

then 19

A kstart: if Q then f and stop,

A start: if ~Q then loop.

Proof. It suffices to show that each step In reducing a pro-
gram to its equivalent, as in Lemmas 1, 2, 3, 4, 5 can be perform-
ed by means of derivation rules. Reduction of similar instructions
can be performed by using rule 3; elimination of blind labels, in-
accesible labels, and labels can be made by means of rules 3, 6
and 7; elimination of reflexive Instructions can be performed by
means of rules 2, 4 and 5. It is only to show, that

true (¢ * f)) ~ (~ true (Q#f))f.

Indeed, assume ~ true (Q*f)x = 1 for some X in XA .Thatis,there
is no such y in XA that y = (Q*f)x, hence, by definition of{?*f,
for every z in XA there is no such y in XA that y = {Q*f)Z and
z =fx , butit means that (~ true ($#/))/X = 1.

Lemma 7. If PA isa well-defined program in a closed pro-
gramming system A, and FRKfl: if* Q then loop, then for all x
in XA such that Qx = 1, there is no such y in XA that PA: (a,x)
=> (8top,y). (#)

Proof. Let r denotes the instruction d\ it Q then loop, and
let (r, ,..., M), n>0, be a derivation of r from PA.

If n =0, then either r is in PA and by the definition of
a programand by Proposition 2 the assertion holds, or r arises
by rule 6 or 7from PA, and then obviously the assertion holds
as well. Assume the assertion is true for k < il, k>0; we shall
prove it for n =k. There are three cases to be considered.

(ry if /> arises from r,, i<k , by rule 1, then rj is of
the form a : then loop, and by induction hypothesis, Q”x =
= 1 implies the conclusion. But, in the case, Qx = 1 implies Q"X=
= 1, hence Qx =i implies the conclusion, too;

(2) if arises from //, Kj , I<k, j<k, by rule 2or rule

3, then the conclusion is true by Proposition 2;

(3) if arises from K, , L<k , by rule 4, then by Proposi-
tion 2 (r) the assertion is true.

Note that r\ can not arise by rule 5, since there is no in-
struction with loop as its initial label. Hence, by induction,we
obtain the desired result.

20

Theorem 2. For any well-defined program PA in a closed
programming system A, and for arbitrary Q in @, f in FA, the fol-
lowing equivalences are true:

(i) A | start: if Q then f and stop if and only if for all
X, gin XA% Q=1 andy = -fx implies Comp™ (x,y)',

(i) P} start: if Q thenloop if and only if for all x in”",

QXs i implies that there is nogin XA such that Comp” (*,y).

Proof, (i) (a) Assume PAN start: if Q then f and stop and

Qx - 1, y - fx . First, observe that for any instruction a: it Q
then f and b in PA and for any X, y, in XA such that Qx =i and
y = fx , we have PA:(a,x) (b,y). Next, on the basis of Proposi-
tion 2, the derivation rules preserve this property, namely, if

PAa: if Q then f and b, then for all X, y in XA such that Qx=
=1, y = fx, PA: (a X)=>(b,y). Hence, by the definition of Comp"
we obtain Conmpp™ (x,y).

(b) Assume that Qx=i and y = fx implies Comp”(X,y). By Co-
rollary 1 there exists a condition Q@A and an operator fpA such
that Como” (.X,y) implies @A* = 1, fj =tPax * Then» Q N =

= fpA). By Lemma 6 we have

P4 - start: if QpA then prA and stop

Thus, by rule i, we obtain PA }start: if Q then f and stop, what
together with (a) gives the first part of Theorem 2.
(i) (a) Assume PA }-start: if Q then loop. By Lemma 7 we obtain

directly that for all X in XA such that Qx= 1, there is noy in XA
such that Comp”™(x,y).

(b) Assume Qx = 1 implies that there is no y in ~ such that
Comp”™(x.y). By Corollary 1 there exists QAiIn Q with (~QpA)x =

=i if there is no y in XA such that Comp” (X,y). Thus Q=>(QpJ‘
By Lemma 6 we have

PA}- start: if ~ Qo then loop,

21

and by rule 1 we obtain PAX start: if Q then loop, what,together
with (a), completes the proof of Theorem 2.
This Theorem is a kind of "completeness theorem" for our deri-

vation system.

Corollary 4. Let = start: if If then / and stop, let r2 =
= start: if then loop, and let R = -jVj, r2]. Then, for any
well-defined program Rt A and PA—r2 implies/*, is equiva-
lent to r.

Proof. Since R then Qx= 1 and y =fx implies Compp”(x,y),

what proves

Comp”(x,y) implies Comp”(Xx,y).
If Comp”(x,i/) does not hold, then, by Theorem 2, since
PAi—r the equality = 1 implies that there is no y inX"

such that Comp”~(xfy). Hence the proof is completed.

This Corollary together with Theorem 2 showshow to construct
the canonical form of a given programby means of thederivation
rules.

Example. Let us consider an Algol 60 program P:

start : / = 1; .
b :S m=m:= ali];
c: if /an then go to stop;
d: 7/ =/7+1;
e:s =5+ al/l]}
f : if m>a\-[£] then goto c;
m = al[/];

h : go toe;

Ko

We extend the Algol language allowing simultaneous assignments (as
e.g. X,y = X +y, - y). We shall assume the interpretation
of assignments and conditions to be known. At first, we translate
the program into a program in our programming system:

t. start: i =i and b

2. bl S, m := [/],a[i] and c

3. c: if i =n then stop

22

4. a if_ i £ n then d

5. di L:=m /+ 1 and e
6. e: s = s+a [/] and f
7. fi if m>al7flthen c
8. / : if_ /<if [/] then ¢
9. y: /Jz:= <Z[7] and A
10. Asc

Now we use the derivation rules 1-7 together with their con-
sequences 8-15 given in Proposition 4. The signs }will be omitt-
ed in the derivation. On the right-hand side of every derived in-
struction we shall'-write numbers of used lines and, after R let-
ter, the number of used rule.

11. fi\tt m<a[I\ then m:=a [/] and h 8, 9, RIO
12. / :if£ m <a [/] then m.:=a [/] andc 11, 10, RII
13. f ; ifm~a [/] then m:= mand c¢ 7, Ri

note here that (/n:=/n) = empty; %
14.f :m := max(m, a [/]) and ¢ i2, 13, R3

note that OSY\X\ vy) = max(X,Y);

15. Ciif i <ri then d 4, RI4
16. Ci i >n then d 4, Rl 4
because Iji i <n or ¢>n
17. d: /,s s= /+ 1l S +Q[/ +1]land f 5, 6,R2
note the effect of the composition of assignments;
18. d: /7,5, mo /+i, s+a [/+i], max¢/rol[/ +1i])
and c 17, 14, R2

19. c: Ifl<n then /, 5, /n:= t+1, 5+ ¢ [/ +i] ,max(/x,ajj'+

+1]) and c 15, 18, R2
n-1 n-i
20. g: ~f/\ (/+J3 - 1<n)then /,S, mt* n,s + £ al/ +jl,
n-i J-' J-1
max(/n, _mai(al[/ +j\) and C 19, R8
becauseJ it can be proved by induction that if
f=(/, st mi= 1 +1, s+a [/+ 1], maxim,a[/ + i])),

then

23

k k
f= (/, S, m:= 1+k,5+ £ al[/+J\, nax(/n, Enaf a[i +7/1]))
y. 1 ’
and
f_\l(/<)(/:=/ +1)31* A_\l (i +J - 1an)i
el
21. C: /<« then ¢, s,mi= n, s+ X) al[/ +y], mx{/7i,
y-1
max, a\l + y]) and C 20, R1
/=1 n-i
because i<no /\(i +i - 1<n);
y-1
n

22. c¢: it i <n then /, s,m:=n, s+ £ o [_7/],

max(/n, max aly]) and c 21, R1
y-/+1
n
23. c¢: If (</jA/i = A then /, J, /w= 5+ JC aly] .
7"+
max(/B, “max”c[y']) and stop 22, 3, R2
n
24. ci If i<-n then i, s, m:= /z, s+ H aT/l,
J-/+1
mex(/J7, max fl[/])and stop 23, R1

25. ct it ¢an then /, j, m:=n, S+ X] aT/l »
y-/*i
max(/n, X Ol and sto 3, R1
U oY O 7)) jand_sto) P.

Because / = n Implies (/, S,mj=n, 5+ ~ ffL/]*

y-/+1
max(/n, max ,of,/]))m(/, 5, /fra= /, 5,/rc)=empty;
j-t+1
n
26. ct it i<n theni, s, m:= n,s + 20 1[/],

j-/*1

mex(/7?, maxa\j~\) and stop 24,25, R12
J-t+l

27. c: it i >n then/,5, /771;=/ + 1, 5 +a [/+1] , max(/K,

ff7+ 1]) and ¢ 14$ 18. R?

24

28. .Ci IX i >n then loop 27, R4
because /> n Implies i+t>n;
29. start; /,S, m =1, a[f],ar] and c 1, 2, R2
_ n
30. start: if 1<n then /, s, m :=n, oy\,
y-i
max <¥/1 and stop 29, 26, R2
31. start: it_ 1 > n then loop 29, 28, R2

Hence, by Corollary 4, we have proved that P is equivalent to the
following program:

{start: if 1<n then /, J, mi=n, (2 gIyl, max alj]
j=1 j-1

and stop,
start: if 1> n then loopj.

Of course, the presented proof seems to contain too many de-
tails; however, like in common mathematical practice,we omit usual-
ly some steps in a derivation.

REFERENCES

[ij A. B1i k 1e: Algorithmically definable functions. Dissertationes Ma-
thematicae, LXXXV, Warszawa, PWN, 1971, pp. 1-56.

[2] A-B1li k 1 e: Nets; complete lattices with a composition. Bull. Acad.
Polon. Sci., Ser. Sci. Math. Phys. Astronom, vol. XIX, No 12, 1971, pp.
1123-1127.

[3] A B1i k 1e: Iterative systems: an algebraic approach. Ibid (to ap-
pear).

[4] AB1li k1e: Complex iterative systems. Ibid (to appear).

[5] AMazurkiewicz: Abstract Algorithms and Their Closures (to
appear).

[6] Z. Pa w1l a k: Maszyny programowane (in polish). Algorytmy 10, 5-9.

SPIS TRESCI

Introduction
127] o o 1o} T o] o 1 PP
Program transformations........................

PwnNe

Derivation rules
Referencesc.ccooeeenennnnn.

http://rbc.ipipan.waw.pl

Page

17
21

23

23

23

23

23

A. W. Maiurkiewicz — Closed proarammina svstems

Line

29

24

10

15

16

ERRATA

For

taht
P A —b: loo

/7 if m> a; [i]

max alii
i+l

ecause

Read

that
PA t-6: loop

/. if m> afli]

k
A (i <n)

http://rbc.ipipan.waw.pl

