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Abstract * Streszczenie

The paper deale with a modification of the Shapley value in 
which the process of coalition formation is not necessarily uni­
form (as in the case of the usual value) but it depends on some 
indicators of individual initiative and attraction toward 
already existing coalitions. The value is given an axiomatic 
treatment and some methods are proposed how to measure the 
coefficients of initiative and attraction of individuals in a 
given population by comparing the expected and actual outcomes 
in a sequence of games played within this population. Presented 
example deals with the population of students participating at 
an experiment performed at Warsaw University.

METODA POMIARU INDYWIDUALNEJ INICJATYWY I ATRAKCJI PRZY POMOCY 
ZMODYFIKOWANEJ WARTOŚCI SHAPLEYA

W pracy zdefiniowano modyfikację pojęcia wartości Shapleya, w 
przypadku, kiedy proces tworzenia się koalicji nie jest równo­
mierny (jak w przypadku zwykłej wartości) lecz zale2y od pewnych 
wskaźników indywidualnej inicjatywy i skłonności do 
przystępowania do ju2 istniejących koalicji. Wartość jest tu 
potraktowana w sposób aksjomatyczny. Zaproponowano metodę pomia­
ru współczynników indywidualnej inicjatywy i atrakcji w danej 
populacji przez porównanie oczekiwanych i faktycznych wyników 
serii gier rozgrywanych w tej populacji. Podano przykład 
populacji studentów Uniwersytetu Warszawskiego biorących udział 
w eksperymencie.
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In the present paper we study cooperative games with ind­
icators of initiative and attraction which are defined as pairs: 
a usual characteristic function game t> and and a system y of 
numbers describing propensities of the individuals to join the 
already formed coalitions. The coefficient y® is then interpre­
ted a6 a measure of initiative of the individual for and
ieS, r** is a measure of attraction of the individual i toward a 
coalition S.

For games of this kind, we axiomatlcally define the notion 
of value; we prove Its existence and uniqueness giving an expli­
cit formula. In case of the uniform indicators of initiative and 
attraction |A/\S| *, the value coincides with the usual Shap- 
ley value.

The theory can be applied to determine the Indicators of 
initiative and attraction for a given set of individuals. One 
can record outcomes in a series of games played by these players 
and then try to find indicators best fitting the observed 
outcomes. The phrase "best fitting" can be understood in many 
different ways and we propose and study a few of them.

He illustrate the procedure by example concerning the res­
ults of an experiment performed at Warsaw University (three 
students were asked to play a series of cooperative games).

Finally, we discuss relations of our results to those 
existing In the literature.



I. Games with indicators of .Initia tlye. and attraction

Let N = {1,2,— ,n) be a fixed set of players. We shall be 
dealing with ueual characteristic function games over N, in this 
paper called power functions defined as functions v assigning to 
each coalition SSM a real number v(S) and such that u(e>)=0. The 
set of all power functions over N will be denoted by V.

Denote A := {(S,i)| ScN, and ieS} (here and elsewhere in 
the paper the sign ”e“ denotes the strict inclusion). A system 
of indicators of initiative and attraction on N, abbreviated to 
eyst«m of indicators is defined as a function y:A—>R assigning

• sto each pair (£,i)e> a nonnegative number y , also denoted by 
y{S,i), so that, for all SxN, !• The 6et ot all systems
y will be denoted by r.

A cooperative game with indicators of initiative and attrac­
tion 1b defined as a triple

0 » < N, y >,
where N is the set of players, v is a.power function, and y is a 
system of indicators of initiative and attraction on N.

A solution concept for cooperative games G is a function 
♦ il'xT— »ren. For any (u,>')e(V'><r) , ve shall write

*(v,r) » [*1(v,j').*2(v,y).—  ,*n(v,>')J.
We shall be Interested in a solution concept satisfying 

some particular postulates. Before their formulation we must 
introduce eome definitions.

Let i^N and A coalition SZN\i is i-essential for v if
v(SUi) * v»(S). Player i is null in the game v if no coalition 
S£N\i is i-essential for u.

Let ic/V and SsM\i. The Player i is said to be S-null for a 
power function u if w(TUt) « u(T) for all TsM\i with TnS * &.

Let SoN. A system of indicators y is said to be S-exhaus- 
ting if s:£eSXij>\“ 1 for all TcS and if 0 whenever and
Tr>iN\S)*0.

We say that systems of indicators y and ? are consistent on
a set ScN if y* » p* whenever ><&S, and R£S\*. k k
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The definition of a null player ie etandard. Further, a 
coalition S nay wish to admit only ¿-essential players. On the 
other hand, if Player i is S-riull for some S, only subcoalitions 
of N\S\t may be Interested in including that player to increase 
their power. At the end, notice that, if a ays ten of Indicators 
is S-exhaueting, then only subcoalitions of the coalitions S or 
N\S can effectively arise.

Let Ate//. Let y and y be systems of indicators satisfying 
ya=yc for all S whenever j»t. We define a real functionj j
y i y on A in the following way: 

[y * y](T,i) ■
if

rk * V  l£

(Note that under obvioue Inequality restrictions, y y is 
also a eyetem of indicators.)

We define the v«alu® * as a solution concept satisfying the 
following six postulates:

Axiom 1 (v-t in»ar( ty) : For each and a,f3£0,
i(av*-f)w,y) = ai(v,y) *■ p*(w,y).

Axiom 2 (null player): If t is a null player for v«y. then 
^(u.r) = 0 for all .

Axiom 3 (»//¡eisncy): Let SsM and y«r. If y Is S-exhausting, 
then for any power function u

*i(^.y) “ u(S).

Axiom 4 (»<juival»nc»): Let S<iN, i«W\S and uel'. It y and y 
are systems consistent on S and satisfying y" = y“, and if 
player i is N\S\t-null for v, then

*t(u,y) = *;(u.?).

Axiom 5 (boudvdnttss): For each power function v the function 
*(«,•) is bounded on r.

7



Axiom 6 (y-a.rddi L ivi L y) : Let, and \xsV. Let Y and Y be
a —s k —such systems -that r .= y . for all S whenever J and y + y <= r.j >

If one of the conditions:
*. M=t; or
b- Player /« belongs to ail ¿-essential coalitions for i>; 

is eatiefied then
S (v.y I y) = i (v,y) + ».(u,p).

V  V  V

Axioms 1 and 2 are standard. Axiom 5 is obvloue. Also the 
interpretation of Axiom 3 in alear. Namely, when y is S-exhaus- 
tlng, no coalition properly containing S is willing to arise. 
Therefore, it is reasonable to require that the whole worth u(S) 
ehould be divided only between t.he players in S.

Assume now that a Player ¿ is W\S\i-null. Then it may be
useful for that Player only to join subcoalitions of S. Having 
this in mind, the requirement of Axiom 4 seems very natural.

The interpretation of Axiom 6 is based on some further
assumptions about the model. Let Player )*i belong to all
¿-essential coalitions. Hence, it may be useful for Player ¿
only to join coalitions T containing Player M. On the other 
hand, during the process of creating such a coalition T, Player 
At influences that event by hie earlier Joining subcoalitions of
T (with respective intensities y*, SsT\k). Now, if we assume that
Player * influences the payoff of Player ¿ by joining T in an
“additive way", and that the whole payoff of Player i is the sum 
of all his payoffs related to all such coalitions T, then Axiom 6
Is a natural consequence of that fact. If Ai=i, the interpretation
is similar.

For yeT and TsN we introduce the following notation:
Qiy.O) :** 1. (1)

and for T*Q
<}(y.T) - £  Q(y,t). (2)

7«n(r)
where n(T) denotes the set of all orderings t = (t ,—  , t ) of T,

0{y.t) « y(0. {it} , ij)« (2a)
while t=IT |.
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Clearly, if r* is interpreted as the probability that 
Player i joins the previously existing coalition S then q {y ,T) 
corresponds to the probability of formation of coalition S at all.

Theorem. There exists a. un t q\je valud &( v , y ) ,—  (v,y)]
on the class of all cooperative- games G with indicators of ini­

tiative and. attraction which satisfies Axioms 1-6, given by

^  <t(.r,r)^fw(TUi) - v(r>], (3)
TSN\t ...' ieW, veV, r<=r.

Substitutitng in (3) the uniform system := |A/\S| *, we
immediately obtain:
Corollary. For each power function v # &(v,y) is the Shapley 
va I ue of v .

II. Proof of the theorem

The proof of the Theorem will be preceeded by several 
lemmata :

Lemma 1. The valu» $ determined 6y Theorem 1 satisfies Axioms 1-6.
Proof. The fact that * satisfies Axiom 1,2 and 5 is trivial; 

in case of the remaining axioms it is a matter of easy verific­
ation.

Lemma 2. Ever y value $ = [$ ,$ ,—  ,$ ] satisfying Axiome 1 and 2A 2 n
has of the form

* (v,r) » E aT(y)[v(TUi) - u(T)]. ieN, vcX , yeT. (4)
1 TZN\i 1

uifxere ar(y) are some constants independent of v.

Proof. It proceeds in exactly the same way as for Theorems 1
and 2 In Weber [1988]. One should only replace the dummy axiom by
Axiom 2, and the "dummy player" by "null player".
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L.'-nuna 3. Let / be a bounded /unction from a rec tangle B (in R l)
into K, uAicA satis/ies: /(x*y) = /(x) +/(y) for all x,y«B with
x+yeB. Then there exist constants â ,â , — , such that /or each
x=(x ,x ,—  ,x )eB, /(x) = a x i-a x t +a x .v i • 2. . t \ / lt 22 i i

Proo/. The case £ = 1 is classical (the known Cauchy functio­
nal equation). The generalization to t>l is straightforward. 
Therefore /(0, —  ,xif—  ,0) = for i = l,—  ,t. Sunning now over
all i, the lemma follows.

Lemma Let a vatu» $ = [$ ,$ ;*,i J have the /orm. (4) and
satis/y part (a) o/ Axion 6 and Axiom 4. Then /or each yeT
there exist constants (bT(y)l i<=N, TcĴ \i) such that for all T*N

<\(r) ** b*(y)r* , /or i*N\T, (5)
and. fox' any two ^y stems y and y cons i s tent on T,

bT(r) “ bJ(P). for icN\T, (6)i I

Proo/. Let us fix and RsN\i. Let u be the power func­
tion determined by: u(T)~0 for T*Rui and u(Rut)=l. The only
¿-essential coalition for u is R. Kence, (4) Implies

*l(uii') “ “"(r). for yer. (7)
Now, let r and p be any two systems consistent on R and

satisfying y*“ p*. Since Player i is AA^RXi-null for u, Axiom 4

and (7) imply a*(y)*><i*(p). Hence, by the arbitrarity of r and
P, it follows that a*(y) depends only on the variable r" and on
the variables from the set D (y), where

D*lr) s- lrT. | J**. T<zR\j } . (8)

On the other hand, we easily see that (a) of Axiom 6 can be
applied to get that is additive in ri. Therefore,
because of (7), also a*{y) is additive in , and Lemma 3
applied to this fact immediately implies (5). Relation (6) is a
straightforward consequence of the statement given directly
before (8). This completes the proof of the lemma.
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To formulate the next lemma we need some notation:
Let £eA/. For TSA/\£, we define

A(T) := {p|i>:r— >2T satisfies j&pU) for all jeT}
(in particular, A(O) * O) and, for £«N, let := ^ T s N \ i ^ ^ ' 

Further, for , ¿«W and a mapping £\;A^— »K+ , let

P.^.O.fT) := £T(0,£) (9)
and for 7>0,

p. (j'.r.r.) := ^  £\ (p )j'(io(x*) ,x* jr(p(xT2) .x^)*...*r(r>(**) .
peA(T) (10)
T Twhere 7" = {x‘ ,— x‘ > .

Lemma S. Assume that a ualue S = [#  ,$ ] satisfies Axioms 1, 2
and 4-6. Then for each £eAf there exists a /unction £ :A—1 1  +
such that

*.(” . r ) = £  p. (y.T.r )^T[u(rui)
1 TSN\ii t 1

with p defined by (9) and (10).

Proof. Let us fix £eN, Rs//\£ , and MeR. Let u be the power 
function defined at the beginning of the proof of Lemma 4. 
Therefore, by (T) and (5),

*l(u,)0 = b*(r)r*. for K ,  (12)

and (6) holds for T=R. The coalition R is the only £-essential 
coalition for u. Hence, since M«lR, Player >« belongs to all 
£-essential coalitions for u. Because of (6), depends only

T Kon r eC (r) (see (8)). Let ue fix for a moment the variables 
and all from the set

D\(r) := {i-j | J*sR. J T S R \ J }  ,

- «(r)], (11)
ieN, veV', ycT,

(1



and consider ^(u,*-) as a function of variables from the set

D"(?-) := Dh (jO  \
Condition (b) of Axiom 6 eaye that this function ie additive. 

Therefore Lemma 3 can be applied to w.r.t. variables
from to get the following formula with the help of (12):

- V  ,(r) r[. for yer, (13)
i  /  i k  k

TSR\k

where coefficients eT, (y) depend only on the variables from thei k
set £>* (y ). How we fix S£R\h and le=R\At. For further considera--k
tions we shall need the following two sets

rs := {yeTl yT= 0 for T*S}, 
k k

and
o". Ay) :* {y] | J**. T<=R\j} .

- k - l  J

By (12) and (13). it is easily seen that the restriction of
the function $ (u,-) to the set rs satisfies 

I  k

r* \  - yerk’ (14)
\

Let uo fix for a moment the variables from the set D* (y)-k-l
and consider * («,>') as a function of variables from the set

f y r i  = = * ! > )

Now we easily see that Axiom 6 with (b) hold6 under and
again. Therefore, it follows that *.(u,r) is additive in

variables from D (y), and consequently, Lemma 3 with the help I; I
of (12) and (13) give the following formula:

e\(r) = Y* C . r T  former. (15)
I k  t k I  I

TSR\l

where coefficients depend only on the variables from the set
£>* (r). Now, taking into account (13) and (15), we get

- k - 1

12



for yeT.
TsR\h L&tSl

It is easily seen that this procedure can be continued to 
the moment when each of the coefficients obtained at the end 
will be constant on the set r. Then these coefficients will 
be equal to £ (*>) for i«=N, with the obvious **eA(R) and, cons­
equently, i>R(r) = p(r,R,E), according to (10). This equality v v v
also holds in the second case R=0 because of (6) for T=O and (9) 
Now formula (11) ie a simple consequence of Lemmata 2 and 4.
Thus the lemma has been proved.

Lemma 6. Let 0-*T<=N and JgT . Ass\im& that /or all T-exha\xs t ing ycT

mente contained in a sufficiently small Interval (0,a), a>0, can

right-hand eide of (16) can be coneldered ae polynomial which is 
equal to 0 on eome email rectangle. Hence, ite coefficients must 
satisfy (17),

Lemma 7. Let $ • > [ $ , $  — ,& ] be a value determined 6y Lemma 5,1 2  n
which satii/i«« Axiom 3. Then & coincides with the valve detoi—  
mined by (l)-(3).

Proof. Let * of the form (11) satisfy the assumption of the 
lemma. Let teN and define E° letting

V  c(<>))'(f>(x[) .x^tpfxj) ,x[)ic~K}'(»)(xJ) ,x’) = 0, (16)

where c(f>) are real constants Xi'hile T\j “ {xT xT}. Then 
kl

c ( P ) = 0 for ( T ) . (17)

Proof. Note that any system i*"" | ¿«T'V/, RcT) with all ele-

be extended to some r-exhausting system y«T. Therefore, the

1 if p is one-to-one and the family of sets 
£̂ (tp)=' (p(m)¡meDomp) is linearly ordered by inclusion;

0 otherwise ,

(notice that £°(0) = 1 for all £).

13



One can easily see that the value —  ,$°] of the formi n

= £ p  ( r . r . E ^ j r y c v i r u i ) - v ( r ) j ,  (18)
1 TZN\i 1 * *

igM , yt̂ V, ycT,
with defined by (9) and (10), coincides with the value $
described by (l)-(3). Therefore it suffices to show that S=*°, 
or equivalently that

E (*>) = r°(p), for ieN. Tsx\i, **eA(T) . (19)

We shall give an inductive proof of these equalities with 
respect to the number t = |7"l.

“* O  — 15Let Further, let y = I and r t=0 for (S,j) x (0,i).
L J

Hence, (11) implies that & (u,P) = E (O)v(i) for veV'. On thei I
other hand, p is {t}-exhausting. Therefore, by Axiom 3, * (v>,p )i
= v>(i) for veV'. Thus and (17) has been shown for t=0.

Assume now that (17) holds under the additional assumption 
ITISM-l, where h is some integer l<M<n. ( Note that this implies 
Pi(J',2’,£,°) = p^r.T.E) if |T|<fc-l). We shall show that this im­
plies the validity of (17) when |T|=M.

Let RsN with |R|=*+1 be fixed. Let p be any R-exhausting 
system Buch that p^ ” 0 for ieR. Hence, by (10),

p (y.T.E ) = p (r.T.E°) » 0 (20)i i i i
if T does not include R. Lemma 1 and Axiom 3 lead to the state­
ment: for all t>€̂ , [*°(u,*-)-*. (v,p) ] " 0. But thl6, with
the help of inductive assumption, (3), (11). (10) and (20), can 
be equivalently rewritten as

^  [/3i(y.^\i.£:®)-Pi(r.R\i.£ri)J/:̂ lCu(K)-V(K\£)] - 0 
ieK

for all Therefore, it follows by (10), that

£  C£t(p)-£,l(p)J>'(p(x"sl).x*vl)y(S2.x*Nl)*” ->*y(»>(x"vl) . ^ l)-o
p«A(R^i)

14



for ¿«R and for all R-exhausting yeT. But here we can apply
Leona 6 to get immediately that E (f>) - E°(*>) = 0 for all ieRi i
and *>«A(Rxi). Now taking into consideration the fact that R can 
be chosen arbitrarily, and |R\£|=M, we immediately get the vali­
dity of (19) under |7'|=fc. Thus, by induction principle, the 
lemma hae been proved.

Proof of Theorem 1. The result is an Immediate consequence of 
Lemmata 1, 2, 5 and 7.

Ill. How to Bfasure the coefficients of Initiative and attraction

Suppose we are given a fixed set of individuals H = {1,— , n} 
characterised by eome fixed but unknown indicators of lnlti&t-

jfcive and attraction y ■ To find out the most adequate evaluation 
— >y for y we let the individuals play a series of characteristic
function games and then we may either try to find the values of 

$an evaluation for y directly, without referring to our theory 
of initiative and attraction, or otherwise we may try to find 
them by comparing the actual outcomes of those games with 
formulae expressing the value and involving y. Below, we shall 
briefly describe two approaches of the first kind and five 
approaches of the second kind. The first approach is only 
available in the case where we have a complete information about 
the actual coalition formation process; the second, based on the 
analysis of empirical data, may produce untrue results but still 
it gives some information about the frequency of players' 
participation in decisive coalitions. The last five approaches 
are related to various mathematical procedures.

It should be stressed, however, that the actual initiative 
and attraction of individuals and coalitions may heavily depend 
on which games are actually being played. What we are looking 
for and expecting to determine is a sort of "absolute“ or 
"Ideal" Indicators of initiative and attraction, Independent 
of the prevailing circumstances and interests. As a consequence, 
the results obtained by Approaches III-VII may considerably 
differ from the observed behavior of Individuals and coalitions 
and described by means of empirical Approaches I — 11.

15



Formally, suppose th at  the in d iv id u a ls  have played games
& k jv ,— ,v and, in a game v , they decided to distribute the total
revenue of vJ(W), or a part of it, according to a payoff vector

Approach 1 (detection or players' declaration). Suppose that, in 
the case of some games vJ, the outcome vector (â , —  ,aJ) has1 n
been reached in the following way: a coalition S has formed in
some order (¿i> —  i|s|^ anc* decided to distribute the total
revenue according to a payoff vector (a^,— .a') while the
remaining players were not objecting against it. Let J be the
set of all indexes of such gamee. We may try to detect, either
by asking the individuals involved directly, or by some other
available means, in the case of each game, what was that coali­
tion and in which order it has formed. Suppose that, in a game 
uJ, there was such a coalition and that it has formed in some 
order (¿^,— The reasonable assignment of Indicators 

"j
of initiative and attraction in this case seems to be the
following: for any coalition S denote

1 |s| 1
and, for any S and define

v - {
—  .i {,( > while ¿ = if V'O,

0 otherwise.
A disadvantage of this approach is that often no information 
about the actual coalition forming process is available.

Approach 11 (uniform average). For a game denote by SJ the 
set (t«A/|c»|>u( (¿>)}. We are assuming that S'1 is the coalition 
that has actually formed and decided about the payoff for vJ. 
(We restrict the attention just to the case where there are no 
such disjoint coalitions). We are also assuming that all order­
ings of players in which this coalition has formed are equally 
likely. Thus we define, for any ¿=1,— any coalition S and 
any

16



„ ü . j i s V r 1«  îgs>\s -
** VO otherwise

i

and, for any coalition S and any ¿«S,

Approach III (solving system of equations). A system of indica­
tors yK seems to fit best the data If the following system ofI
equations and inequalities is satisfied:

y q(r. T)rr[\>,(rui = a‘, for _/ = l,—  £ = 1, —  ,n;
^ rs^\t 1 1

/  < 1, for TcH; (21)
iprr 1

o < for rcw, ¿err.

The proposed method suggests solving this system for r 
(notice that <}(r,T) is Just an abbreviation for a polynomial with 
variables r*). A disadvantage of this method is that (21) has 
usually no solution, especially If the number of games played Is 
large (the number of variables is constant). If this is the case, 
we turn to Approach III in which we do not attempt to solve (21) 
but only try to minimize the error.

Approach IV (error minimization)- Assuming the least power (e.g. 
square) optimization rule, we are trying to find indicators y* 
minimizing the value of the expression (p^l)

£P(r) = y |y <r(r.T)r?(vi(Tuc)-vi(r) ]  - a*I
I ¿ t s n v  1

Jml,— . k 
subject to the conetralnts

y rj s 1. for TcM; (22)
^ i«T 1

0 S y*, for TcN, t«T.

Note that the minimized objective function is a polynomial 
of degree Spn. while the constraints are linear.

17



Alternatively, ue nay be interested in minimizing the 
expresssion

E (r) = max lY )-vj(7) ] - a'Io I«»,--.« t
J = ‘.-.»■

subject to the constraints
7 r  S 1, for rcW; (23)
** ieT 1
0 < ^  . for TcN. iftf.

A disadvantage of this method la that it may lead to a large 
variety of distinct and remote solutions. A considerable improv­
ement obtains after a modification described below.

Approach. V (average of near optimal solutions). Under this 
approach we calculate, for a fixed p£l or pi0 and *£0, an (inte­
gral) average of (all) optimal or ^-optimal solutions to (22) or 
(23). A numerical procedure to do so may require determination
of the minimal value E for E (Y) (e.g. by an optimizationp p
procedure or by generating at random a large number of systeme
of indicators Y and taking the minimal error E (y)).P
Then one may generate a reasonably large number p of systems of
indicators Y and take the average of all those y of them for
which E (J-)SE +*. p p

An advantage of this approach Is its numerical simplicity 
and uniqueness of the obtained result.

Approach. VI (weighted average). Let, for a system of indicators
of initiative and attraction Y and a positive integer p, E (y )P
have the same meaning as in the Approach V; assume that for some
¿>0 and all r, E (y)>6. For a positive integer r, the following P
|A |-dimensional integral expresssion

r - /rc"r(r)dy(/r‘r(y)dy)'1p p
(the first Integral is taken with respect to the |A |-dimensional 
while the second with respect to l-dimensional Lebeegue measure) 
can be regarded as an evaluation of the true indicatores y * , 
since it is actually a weighted average of all Y with weights 
inversely proportional to the error corresponding to a given Y.
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An advantage of this method is its numerical simplicity 
(for purposes of the present paper we have been computing the 
integral by means of a random procedure and vie have combined It 
with calculations for the Approach V) and uniqueness of the 
result. A disadvantage is that, for small values of p and r it 
gives a solution near the center of gravity of P, otherwise we 
are faced with error accumulation problems.

Approach Vll (statistical). Applying this approach. one is 
assuming a statistical hypothesis concerning the distribution of 
the indicators r and test it with respect to the obtained data 
a*. A disadvantage of this method is that one can hardly assume 
that the distributions of different r* are independent and even 
if this were the case, the distrbutlons of thé Involved random 
variables q(r,T) are very difficult to determine. This approach 
has not been used while dealing with special case presented in 
Section IV,

IV. An example :__exPflrlffienta] determination of initiative and
attraction of 3 Individuals

The following experiment has been performed at Warsaw 
University In April 1991: three students, named 1, 2 and 3 have 
been asked to play the following games:

Game N Coalition | 123 12 13 23 1 2 3 0
i 2V , V 1 1 1 1 0 0 0 0
a 4V , V 1 o CO 0.8 0.8 0 0 0 03V 1 1 1 0 0 0 0 0<5V 1 1 0 1 0 0 0 0

7XJ 1 0 1 1 0 0 0 0
eV 1 0.8 o CO 0 0 0 0 0
o\> 1 COo 0 0.8 0 0 0 0
toV 1 0 0.8 0.8 0 0 0 0

Table 1. Description of games u1 thru w1D
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The Players have been situated in separate rooms and they 
were able to negotiate, pairwise, by phone. In each game, after 
an agreement (division of the payoff among the Players) has been 
reached. It was announced to the Referee. The Players have deci­
ded for the following payoffs:

.GamePlayer\ 1 2 3 4 5 6 7 8 9 10 TOTAL

1 0 0.5 0.4 0.4 0.82 0. 18 0 0.7 0 0. 15 3. 15
2 0.5 0.5 0 0.4 0. 18 0.82 0. 16 0. 15 0.67 0 3. 38
3 0.5 0 0.4 0 0 0 0.84 0. 15 O'. 13 0.65 2.67

TOTAL 1 1 0.8 0.8 1 1 1 1 0.8 0.8 9.2
Table 2. Outcomes reached in the experiment

Note that the payoffs obtained in Games 3, 4, 9 and 10 are 
inefficient. It may be of Interest to compare the actual out­
comes with Shapley values of the respective games, as shown in 
Table 3 below:

t Game Player \ 1.2,3,4 5 6 7 8 9 10

1 0.333 0.667 0.167 0. 167 0.6 0.2 CMo

2 0.333 0.167 0.667 0. 167 0.2 0.6 0.2
3 0.333 0.167 0. 167 0.667 0.2 0.2 0.6

« ♦ r*
Table 3. The Shapley value of games u'thru v*“

Oslng the data obtained in the course of the experiment, 
the valuee of the indicators of Initiative and attraction have 
been determined (or we tried to do so) by applying Approaches I 
thru VI. The results are presented below in Table 4. The evalua­
tion of coefficients y* for #S>2 are omitted since forming the 
grand coalition N, in most cases, has been strategically useless 
and therefore the available data are somewhat unreliable. To 
obtain the data In case of Approach I, the participants in the 
experiment have been asked about the actual process of forming
the succesfull coalition.The minimal errors have been found £ “2
0.779, rt<*3.670. All random procedures In Approach VI were inv­
olving 10,000 random samples; those in Approach V - 400 samples;
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usually computations have been performed several times and lea­
ded to the same or nearly the same results.
The results obtained by the Approach V seem to be most adequate 
arid they do not differ much for different values of the parame­
ters p and £ Involved.

Appr.I 0.2 0.5 0.3 0.6 0.667 0.5 0.333 0.5 0.4
Appr.11 .3333 .3833 .2833 .5625 .4167 .6429 .5833 .3571 . 4375
Appr.III System of equations (21) has no solution
Appr. IV .3291 .3397 .3313 .5760 . 4244 .7138 .5756 .2862 . 4240Appr.V
P=
2 .08 .362 .346 .289 .619 .557 .790 . 433 .200 .369
2 . 12 .372 .350 .275 .628 .555 .776 .438 .213 .360
2 . 18 .386 .355 .255 .684 .555 .737 . 429 .247 .333
2 .22 .395 .367 .235 .647 .577 .710 . 408 .271 .328
1 . 18 .361 .303 .336 .911 .547 .918 .449 .078 .085
1 .33 .360 .321 .317 .872 .540 .906 .453 .085 . 120

Appr.VI
p*s y- -
2 1 .259 .256 .263 .344 .339 .346 .346 .335 .335
2 2 .269 .257 .275 .353 .345 .362 .362 .334 .340
2 4 .280 .269 .296 .373 .353 .395 .390 .342 .351
1 1 .253 .252 .256 .338 .338 .341 .337 .334 .339
1 2 .260 .250 .261 .345 .340 .350 .342 .333 .326
1 4 .269 .255 .271 .359 .342 .369 .351 .324 .330
0 1 .255 .253 .251 .337 .339 .337 .336 .335 .3380 2 .259 .258 .255 .340 .340 .340 .342 .342 .340
0 4 .264 .266 .261 .349 .348 .354 .349 .350 .351
4 4 .305 .302 .307 .426 .360 .449 . 460 .366 .460
6 6 .263 .387 .268 .399 .282 .406 .628 .410 . 463

Table The indicators of initiative and atraction for Players 
1-3 in the experiment, obtained In different approaches. In the 
case of the approach IV we have taken p=2.
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V.

The concept of value of games with Indicators of Initiative 
and attraction generalises one known as Owen's value [1977] 
(cf. also Carreras and Owen [1988]).

Given a fixed set of players N = {1,2, —  ,n}, the set V of 
all power functions over N and the set ft of all partitions 
(coalition structures) of N, the Owen's value is defined as a 
function — ►&?" natlefying the usual axioms of efficiency,
symmetry and additivity and, additionally, the following:

If the game v among coalitions (Bjt—  , B ) forming a
coalition structure 3 i6 inessential then, for each J = 1,-—
£i («.*) = «(* ) (cf. Kurz [1988]).L t/3 I IiIt is not difficult to check that »(v.-S) = *(«,>-) for r 
defined as follows:

- |*V|“  if 7 is a union of some
,T . . _ |B.\r| * if T is a union of some B 'e and a part of

rK • ' ' ' ‘ B with ieS ;j i
- 0 otherwise.

This system r has a natural interpretation: the members of 
a coalition B in a coalition structure 2 join an already 
existing coalition T either immediately, i.e. in some order not 
interrupted by any members of any remaining Bt's or they do not 
join T at all. This means that the members of the remaining Sv's 
do not even have time to think of joining T before all members 
of Bj do so; this means that in thie case y(T,t) = 0 whenever 
i«Bi for l*j'.

The results in the present paper are also related to those 
of Kalai and Samet [1987] or Weber [1988], the main difference 
being that those authors rather deal with Just one value (in our 
terminology it would be ,ro)) while we consider simultaneous­
ly the whole family (*(•,y)|y«T).
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