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ON THE INTEGRATION OF EQUATIONS OF CELESTIAL 
MECHANICS USING DIGITAL COMPUTERS*

by

K R Z Y S Z T O F  Z lO L K O W S K l

The basic problem of celestial mechanics — the motion of celestial 
bodies — is characterized by a system of ordinary differential equations 
of the second order in which no first derivatives and an explicit indepen
dent variable occur:

(1 ) i i = f i ( x 1, x t , . . . , x n) (¿ =  1 , 2 , . . . , » )

where n is a number of the equations. (The point above the symbol of 
the variable means differentiation with respect to time). In computation 
practice, the most widespread method of solving such a system of equa
tions is numerical integration. The use of very fast digital computers 
gives new possibilities of applying various methods of approximate in
tegration of differential equations.

This paper is to present several criteria relative to the methods of 
Runge-Kutta-Gill, de Vogelaere, Adams-Stormer and Gautschi, which 
enable the choice of the integration method and the proper step of in
tegration, best adapted for the numerical solution of the given problem 
of celestial mechanics.

In Part I  of this paper the integral formulae of the methods under 
consideration, the flow charts according to which the computation pro
gram is prepared, and a brief description of each method, with respect 
to its application to digital computers, are presented.

Part I I  analyses the way of carrying out the task outlined in this 
paper (§ 5 and § 6) and sums up the results thus obtained (§ 7, § 8 and § 9).

Part I

§ 1. The Runge-Kutta-Gill method. When solving second order 
equations of type (1) with n =  3 by the Runge-Kutta-Gill method [3]

* The paper was subm itted on N ovem ber 1963.
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it is necessary to transform them into the equivalent system of seven 
equations of the first order:

= / i

•* =  ft  

Z* =  J3 

¿1 =  Z2 

X2 =  Zj

¿3 =
or generally:

Vi =  gdynVt, •••,3/7) (* =  1,2,  7)

where g ^ t) = 1 .  Using the fourth order method we introduce the fo l
lowing notation:

y if =  kij =  VtJ—i )

(¿ =  1 ,2 , . . . ,7 ;  ¿ =  1 ,2 ,3 ,4 )

The general formula for the value of the sought function in the m-th 
step o f integration, when the (m — l)- th  step is known is:

Vn =
(¿ =  1 ,2 , . . . , 7 ;  ¿ = 1 , 2 , 3 , 4 )

Qn —  9i,7-i +  3 [ a j ( k i f — — Cjk{j

1 . 1
« 1 = 2  b1 =  2 Ci =  -

« 2  =  1  —  ^ 2  ^ « =  1 o2 =  i —

«3 =  1 +  6* =  1  ca =  1  +  g

1 1 
a. =  -  ¿ » . = 2  c4 =  -

4 6 4 4 2

qn(t J =  0

9n(<m ) =  9<4 (im -i) (m  =  r ,  2 , . . . )

tm = » <i +  ( m - l ) / i

In  the above given formulae and in the follow ing tex t h stands for 
the step of integration.

where

and

putting



One can accomplish a computation program according to the follow
ing flow chart in which, as in the next ones, both input and output are 
designated by a circle and a rectangle is used to designate all the operations 
except logical criterions of the choice of a proper way, the blocks of which 
are designated by an oval.

The Runge-Kutta-Gill method of the fourth order requires 3 (2 » +  l )  
cells to store the quantities fry, y a , qy and twelve cells to store the constants 
ai, bj, Cj. (Although some constants are repeated the organisation of the 
program requires placing them in separate cells.) Hence 6w +  15 cells in 
operational memory of digital computer should be reserved. One starting 
point is needed to begin computations.

§ 2. The de Vogelaere method. The de Vogelaere method [5 ] is used 
for ordinary differential equations of the second order in which no first 
derivatives occur. Using the fourth order method, the following subsi
diary quantities are calculated in the first Btep of integration:

■Xi'i = ~  h i  a  

® » , i/2 =  ® ii  2  g  h 2f n  ( i  =  1 , 2 , 3 )
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The value of the sought function in each next m-th step of integration, 
when (m — l)-th  step is known, is derived from the formula:

® i ,m  =  ®<,m—1 “ I" 2 .X i,m —1 " ł"  1/2

(¿  =  1 , 2 , 3 ; ra  =  l , 2 , . . . )

where

Fi,m Fi,m -1/2 =  ^ 1/2

1/2 == ®ł,m—1 4"-3l i,m—1 g  P i ,m —3/2 “1“  1

^ i ,m  =  ^ i , m — 1 + J ’i  ,m—1/2 + P t , m

(¿ =  1 ,2 ,3 ;  «1 =  1 ,2 , . . . )

The de Vogelaere method requires reservation of 4 » cells in the ope
rational memory of digital computer. These cells are designated by P , 
Q, R, S (the index is omitted for simplicity sake). The contents of these 
cells are designated (P ), (Q), (R ), (8 ) respectively.

Let

(-P ) =  xi,m-1) ( Q )  =  u  (P ) =  Pi,m— 1 > ( $ )  == i,m-3/2

The computations in one integration step are carried out according to 
the flow chart (see p. 49).

Three decimal constants occurring in the formulae of this method 
are to be stored in the operational memory of the computer. Hence 4 «.+  3 
cells in operational memory should be reserved, when the de Vogelaere 
method is used. One starting point is needed, as in the case of the previous 
method.

§ 3 . The Adams -Stormer method. The formulae of the difference 
method of Adams-Stormer were given by Kamke [4]. They are the 
following:

f- ®i,m+1 =  4

+  ~  (C7/im— 8/iim_i +122/im_2 — 8/i>m_3 +67/i>m_4)

II .  %i in i l =  “I" 2 “f-

h 2
+  2ąq (lV <>m+i +232/im-f222/ijm_,-f232/iim_2-j-17/i;m_3)

(¿ =  1 , 2 , 3 ;  m =  1 , 2 , . . . )

The flow chart of the computations in one step of integration is the 
following:
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The sought functions (and the corresponding right sides of the equa
tions) are calculated in the first approximation from the formulae of 
group I  when s =  0 and next, when s  =  1, more exact formulae (of 
group I I )  are used consecutively for all n  equations.

Transition to computations in each next step of integration require« 
the proper shiftings of the contents of the cells x  and / according to the 
flow chart in the box marked by an asterisk.

The method under consideration requires 12n  cells for storing the 
values of functions and right sides of the equations and 10 cells for ten 
constants occurring in the formulae. (As in the case of the Eunge-Kutta-Gill 
method, though some constants are repeated, they are to be placed in 
separate cells for the sake of the organisation of the program.)

Hence 12n+10 cells in operational memory should be reserved. Six 
starting points are to be known to begin computations.

§ 4 . The Gautschi m ethod. For equations having periodical solut
ions Gautschi [2] worked out a special method taking advantage 
of the quadrature formulas based on trigonometric extrapolation 
polynomials.

For the equations of type (1) the values of the sought functions in 
each step of integration are derived from the formulae:

(¿ =  1 , 2 , 3 ;  m =  l , 2 , . . . )

p  =  2 corresponds to the fourth order method; the parameter v is expres
sed by the formula:

where T  is the period of solution. The constants a and /? with the approp
riate indices have the form:

a22 — a2\ 1
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The program of computations which are to be carried out in one step 
of integration can be set up according to the flow chart:

Before the first step of integration is carried out the subsidiary quan
tities a and /? with the corresponding indices must be computed. The 
Gaustchi method equivalent to the fourth order methods ( p  =  2) requires 
the reservation of five storage cells for these constants; I n  storage cells 
must be reserved for functions and right sides of equations. Hence I n  -(-5 
cells of digital computer operational memory should be set apart. Three 
starting points have to be known to begin computations.

Part II

§ 5. To establish criteria permitting the choice of one of the numeri
cal integration methods discussed in Part I, to solve type (1) equations 
by digital computers, we have to find the value of the total error of the 
solution obtained by an approximate method for every step of integra
tion. There are three causes of such error:

1. Assumption of a finite number of terms in integral formulae;
2. Inaccuracy of input data;
3. Rounding off in every step of integration.
The value of this error can be determined when both the approximate 

and the exact solution of a given equation are known. Hence in order 
to analyse the error for the various methods we must choose a set of equa -
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tions which is representative, as much as possible, of the equation? of 
motion of celestial mechanics and having an exact analytical solution.

These two conditions are satisfied by, e. g., the equations of elliptical 
motion of two point bodies (e. g., the motion of the Moon about the Earth, 
disturbed by the gravitational activity of the Sun) occurs most frequently 
in practice, its equations cannot be taken as an example because its exact 
solutions are not known. These equations differ from the equations of 
motion of two bodies only by a small factor in right sides, called pertur
bation. It causes small deformations of the elliptical trajectory. This 
trajectory is just determined by the equations of motion of two material 
points, that is Kepler motion.

Since these disturbances may be neglected we may extend the qua
litative results concerned with the analysis of errors of numerical in
tegration of the Kepler motion equations so as to cover the motions affected 
by the perturbation force of a third body.

The second reason for choosing the system of the equations of motion 
of two bodies is the existance of its exact analytical solutions, given 
by Kepler [1].

I f  the mass of the first body is taken as a unit and the mass of the se
cond body which is small in comparison with the first one (e. g. the Sun and 
a planet moving about it) is disregarded and the Cartesian coordinate 
system with the origin at the point in which the body having the greater 
mass occurs is adopted, the motion of the smaller body is described by 
the following system of equations:

(2) (¿ =  1 , 2 , 3 )
r

where the distance between the bodies r =  y  £ 3$ ,  and fe is the coefficient

known as the Gauss gravitational constant.
Kepler’s solution of these equations has the form:

(3) Xi =  «[P ^ cosP  — e ) + Q i ^ l  — e2sin7?] (¿ =  1 , 2 , 3 )

where E  — called the eccentric anomaly — is a function of time and is 
given by Kepler’s equation:

E —  esinP =  fit

The constants a  and e denote the semi-major axis and eccentricity of the 
ellipse respectively, that is two out of the six orbital elements, charac
terising its shape. The coefficient /j . occurring at the right side of Kepler’s 
equation is called the mean motion; it is connected with the semi-major 
axis of the orbit by the simple formula:

¡i =  lea '312

The constants P, and Q t are expressed by three other orbital elements 
determining the position of the orbit is space: Q  — longitude of the as-
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cending node, i  — inclination of the orbit, w — angular distance from 
perihelion to the ascending node. The corresponding formulae have the 
form :

P  j =  cos Q  cos to — sin Q  sin a> cost

P 2 =  sin .Q cos w — cos £? sin w cost

P 3 =  sin w sin i

Q t =  —  cos Q  sin a> — sin S2 cos at cost 

Q 2 =  — sin Q sin w - f cos Q  cos w cost 

Q 3 =  cos w sin t

§ 6. The analysis of the errors resulting from the use of the Runge- 
Kutta-Gill, de Vogelaere, Adams-Stonner and Gautschi method was 
carried out by solving equations (2) by the above mentioned methods and
by comparing the results with the exact Kepler solutions (3).

The difference between the exact and the approximate solutions was 
taken as the value of error. Since the starting points needed to begin com
putations in the methods of numerical integration were determined on the 
basis of the exact formulae (3), the deviation of the approximate solution 
from the exact one is due only to the use of integral formulae of the fourth 
order for all methods and to the summing up of all round-off errors in
each step of integration. The following values of elements of a fictitious
orbit were adopted for computations performed on Ural-2 digital 
computer:

Q  =  80°. 7 

i  =  10°.6

(4) to =  69°.9

fi =  0°.21415111 (a =  2.707 a. u.*) 

e  =  0.1, 0.3, 0.6, 0.9

The choice of the semi-major axis a was due to an analogy with compu
tations, most frequent in astronomy, of orbits of short-period comets 
and planetoids semi-major axes of which are of the same order as the 
assumed value a. All the computations were performed for the four 
values of eccentricity e  given above, in order to establish the influence 
of the shape of the orbit upon the value of deviation. The step of inte
gration h was represented in each method by the integral parts of the 
solutions period T,  the following values being adopted for all the methods:

T  T  T  T  

100 ’ 200 ’ T O O 1 80(T

* Astronom ical unit (a. u ): the mean distance from  the Earth to the Sun. I t  
is equal to  149.55 x  106 kilometers.



The integration of equations (2) was performed in the time interval 
equal to ten periods of the motion of the body under consideration around 
the central body.

§ 7. The analysis of changes in time of the deviation of solutions 
obtained by the approximate methods from the exact solutions proves that 
the total error in each step of integration oscillates near the zero value as 
the number of steps increases. The character of these changes is presented 
by the diagrams in Fig. 1, which shows the dependence of the deviation 
upon the Kepler solutions for the four methods in question* (for example 
for the coordinate x  of the deviation; similar changes can be observed for 
the other coordinates) which were used for the integration of equations (2) 

T
with the step , with the three different values of the eccentricity: 0.1

(fig. la ), 0.3 (fig. lb ), 0.6 (fig. lc ) and with the orbital elements (4).
The step of integration is marked on the horizontal axis in the same 

scale for all three diagrams, while the deviation is marked on the vertical 
axis; the deviations 10-s a. u. in diagrams a) and b), and 10-4 a. u. in 
diagram c) correspond to the distance between two successive scale marks 
for the Runge-Kutta-Gill, de Vogelaere and Adams-Stormer methods, 
while the scale of 10“ 3 a. u. is assumed in the all diagrams for the error 
resulting from the Gautschi method. The conse of the given coordinate 
in time is presented under each of the three diagrams, with equal scales 
on the abscissae.

The diagrams in fig. 1 show that:
1. The period of changes of deviations of the approximate solutions 

from the exact solutions is the same for all the methods and equals the 
solution period T .

2 .  The deviation changes its sign as the first derivative of the coordi
nate with respect to time equals zero, that is as the corresponding com
ponent of the velocity of the body in the orbit vanishes.

3. The absolute value of the deviation is the greatest when the cor
responding component of velocity have extreme values.

4. The amplitude of deviations increases with the increase of the num
ber of the steps performed. The amplitude is different for all the methods 
in the corresponding periods. Different methods have different rates of 
the increase in the amplitude.

5. A  strong dependence of the shape of the error curve and of the 
value of deviation on the shape of the orbit, first of all on its eccentricity, 
is observed. Such dependence on other orbital elements is not found.

§ 8. Since changes in time of the deviation of the approximate so
lution from the exact one are periodic it is necessary to define a definite 
measure of error in some time interval in order to establish criteria of 
the choice of the method and the proper step of integration. The maximal
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deviation in one full motion T  of the body under consideration around 
the central body, regardless of its sign, is adopted as the measure of error.

1. The dependence of the maximal deviation on the eccentricity of the 
orbit is shown in fig. 2 for all the methods. Eccentricity and the logarithm 
of deviation are marked on the axis of abscissae and the axis of ordinates, 
respectively. The large values of maximal error for large eccentricities 
account for the use of a logarithmic scale to determine the deviation. 
The diagrams a) show the course of the considered function after one so
lution period, the diagrams b), after three periods and the diagrams c),

the Method of Runge-Kutta-Gitl

the Method of de voqeioere

the Method of Adam$ -Sttjrmet

the Method of Cautshi
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after ten periods. Every courve is plotted for the appropriate step of 
integration. The diagrams show that:

a) The step of integration in certain ranges of its value has a compa
ratively small effect on the value of maximal deviation for some eccen
tricities (there are points in which the curves corresponding to various 
steps meet). For example for the Eunge-Kutta-Gill method after three 
periods of integration the maximal error is almost the same, for the orbit

T
with the eccentricity of ca. 0.4 and for integration with the steps , 

T  T
—  —, or — . Similarily, when integrating the equations of motion

the trajectory of which has the eccentricity of 0.3 by the de Vogelaere 
method, after three periods the error is nearly the same regardless of the

T T T  T
step used: ----- , ------ ,  , or   .

1 100 200 ’ 400 ’ 800
b) The increase of maximal deviation with respect to the eccentricity 

of the orbit is slower for smaller steps of integration for all the methods 
considered.

c) For the Adams-Stormer and Gautschi difference methods a compa
ratively smaller “dispersion” of curves is observed. This shows that the 
effect of a step of integration on the value of maximal deviation is smaller 
than in the remaining methods.

2. The dependence of maximal deviation of an approximate solution 
from the exact one upon the value of the step of integration used in 
computations is given in fig. 3.

Step of integration is marked on the horizontal axis and the cor
responding values of deviation, in the logarithmic scale, as in the former 
case, are marked on the vertical axis. The diagrams in the columns a),
b), c) show the course of the function after one, three and ten solution 
periods respectively. The considered relations for the four values of ec
centricity: 0.1, 0.3, 0.6, 0.9, are given in four successive lines, in which 
the diagrams are placed. In every diagram different curves correspond 
to different methods. The diagrams in fig. 3 show that:

a) For small eccentricities more exact results can be obtained by
I T  T  \

using greater stops of integration I y — , -  ^ I. This can be explained

by the small effect of the cut-off error and the small accumulation of 
error when a small number of steps of integration is performed. On the 
contrary, for orbits with large eccentricities integration with smaller 
steps markedly reduces the maximal error because the cut-off error now 
becomes more important than the accumulation of error.

b) A  similar dependence of maximal deviation on the step of integra
tion is observed for the Runge-Kutta-Gill and de Vogelaere methods.
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c) The greatest errors, regardless of the step of integration and the 
orbit shape, are yielded by the Gautschi method.

3. The diagrams in fig. 4 show the rate of the increase of the maximal 
deviation in time. Time is marked on the abscissa, its unit being one full 
solution period T .  The logarithm of maximal deviation is marked on the

1 *

/ /  5
/
i  4

J

?

1

flw C30 ?$)

F ig . 3

too m  coo JLm ¿0

ordinate, as before. Every diagram shows the course of the considered 
function for each particular method (separate curves), with a first step 
of integration and eccentricity of the orbit.

The similarity of these functions for the Runge-Kutta-Gill and the 
de Vogelaere method is interesting. As mentioned above, resemblance 
between these methods is also revealed by the dependence of maximal 
deviation on the step of integration. But as can be seen from the diagrams 
in fig. 1, the de Vogelaere method has a less regular course of the error 
curve in comparison with the Runge-Kutta-Gill method.
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4. The table below gives a relative estimation of the time needed for 
performing one step of integration by each of the methods under consi
deration while the corresponding time of the exact Kepler method is 
taken as the unit; the number of cells of digital computer operational 
memory that must be reserved for a given method when solving a system 
of equations of type (2) (n =  3); the number of starting points needed to 
begin computations by a given method:

Method R unge-K u tta -G ill de Vogelaere Adam s-Storm er 1 Gautschi

T im e •  1.66 0.89 1.00 0.78

Num ber o f 
cells

33 15

T ........................

46 26

Num ber o f
starting
pointa

1 1 6 3
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The conclusions formulated above refer to the analysis of errors i of 
the said methods of numerical integration of differential equations afrd 
their applicability to computations. These conclusions can be used as 
criteria facilitating the choice of the best method and the best step;of 
integration for a given problem. For instance, when one wants to find 
the coordinates of a body over a small time interval as exactly as possible 
and the body in question has an orbit which approximates ot a circle 
and thus has small eccentricity, and when it is advisable to perform 
computations as quickly as possible using a possibly small number of 
cells in the operational memory of a digital computer, then consider
ing the diagrams in figs. 2, 3, 4 and the table from the point 4 and taking 
into account the above assumptions, one should choose the de Vogelaere

T
method with a large step of integration e.g. -  — , as the most suitable

one. I f one wants to perform integration over a large time interval, e: g. 
eight periods, then the Adams-Stormer difference method, with the step 

T
e. g. ———, will be more suitable with respect to the value of the maximal 

100
error, in spite of a greater number of memory cells and a longer time 
needed.

§ 9. The shape of the curve representing the change in time of the 
errors yielded by each method of numerical integration of type (2) dif
ferential equations (fig. 1) suggests that it is possible to find empirically 
such a correction which, when adopted to the approximate solution, 
■will make it tome close as far as possible to the exact one. It is obvio
us that the radius vcctor error where the radius vector (t2 =  a\ +  oc\) 

will change in time*, analogically as each coordinate ( x 1 , x 2 , x 3) does. 
The shape of the curve of these changes gives reasons for assuming the 
following expansion of the deviation of the radius A r :

(5) A r  =  a 1 ( t ) c o s h t  +  a 2( t ) c o s 2 M - \ - . . .

where a, (<),'«,(<), etc. are time functions, an unknown form of which should 
be defined beforehand. The shape of the envelope of the curves in fig. 1 
seems to point to the possibility of assuming the quadratic function as 
the form of these relations:

® i(0  =  *ioH" ®n ̂  4" ®i2^2 

&i(t) ~  &2Q -f" <t2l ̂  "I"

The coefficients a if ( i  =  1, 2 , . . . ;  j  =  0 ,1 , 2) are merely functions 
of the step of integration and of the elements characterising the shape

* T im e  here means rather the number o f in tegration  steps perform ed than 
absolute tim e.
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of the orbit namely eccentricity e  and semi-major axis a . When these 
three quantities are defined and the deviations A r  of the radius vector 
in different moments are known one can solve equations (5), e. g., by the 
method of least squares in order to determine the sought coefficients. 
When these are known for various values of h ,  e  and a , one can correct 
the radius r  by adding the value of the computed correction A r  in each 
step of integration, considerably increasing thereby the precision of the 
solution.

The next paper of the present author will be concerned with finding 
the coefficients for the various values of steps of integration, eccentri
city and the semi-major axis of the orbit.

My thanks are due to Dr Wladyslaw Turski who has greatly hepled 
me when supervising my work.
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