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WŁADYSŁAW TURSKI

A LEARNING AU TOM ATON FO R  SOLVING STABILITY PROBLEMS OF 
DIFFERENTIAL EQUATIONS

PE3IOM E

B CTaTbe omicbiBaeTCH ajiropm^M npM6jm3KeHH0r0 HaxojKfleHMH oojiacm  npaK-
TMHeCKOfi yCTOMHHBOCTM flMHaMMMeCKOif CMCTeMe nOflliOpjKeHHOti CJiy'iaHHbIM B03My- 
meHMHM HeicoToporo TMna. Ajiropn<j)M ocHOBan Ha npiiH i;nne caM006yHeHHft bm- 
HHCJiMTejibHoii MamiiHbi pacno3HaBaHmo o6pa3on.

1. Statem ent o f  the prob lem .

Consider a dynamic system whose behaviour is mathematically represented by a solution of the set 
of 5  normal differential equations

(110 —  =J5c (* |. * 2  x s -,t) (fe =  1 ,2  Sj
i t

or, more concisely
(1.1") x '  *=f{x;t),
where, and further on in this paper, it is to be understood that * and /  arc vectors: x  =  (xt , x 2 *s)l

Under the well-known assumptions concerning the behaviour o f  functions /  there exists certain region R  
with the property that for any initial conditions belonging to this region there exists unique and contirous 
solution of eq. (1 .1").

From all normal differential equations we single out the equations defined by the following additional 
property o f  functions / ,
(1.2) /(O;0 == o
In addition we suppose that initial conditions
(1.3) *(0) =  0
belong to the region R .

W e shall henceforth assume, that the function f (x ; t )  ^  0 in the region R , except along the (0,<) axis. 
Such equations will be denoted by
(1.1) x ' ~ F ( x ; t )
Solutions o f eq. (1.1) widi initial conditions (1.3) are
(1.4) *(») =  0 0 <  < <  T,
where constant T depends on particular form of F, (eventually T ■= o o ). Solutions (1.4) will be called the 
equilibrial solutions.

It should be observed that quite a large class o f  differential equations may be reduced to the form (1.1) 
admitting equilibrial solution. Indeed, any equations describing deviations o f a process from a prescribed 
behaviour o f die system, due to badly controlled initial conditions, are o f die form (1.1) and admit equili­
brial solution, which in such cases represents just the prescribed behaviour o f the system.
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If the deviations from the prescribed behaviour arc due to some unexpected or ignored factors as well
as to badly controlled initial conditions, the proccss is described by solution of equation

(1.5) * '=  F(*;<) +p (*;<).

where x '  = F {x ; f) admits as before an equilibrial solution, and exact form o f p (x \ t ) — the perturbing 
fimction — is not known. W c shall, tentatively, assume that |p(x ;i)K J min (| F(x ;f)l,(5) in the region R. 
The non-negative constant d may be supposed to be small because o f its physical meaning. The equilibrial 
solution (1.4) is said to be practically stable if  there exists such S — dimensional region Q 0, entirely
embedded in R and containing the point x  — 0 that if  initial conditions

(1.6) *(0) =  x°
belong to Q 0 the solution of equation (1.5)

(1.7) x  =  (*°;0

satisfies condition

(1.8) * 6 Q , ( 0 < r < r < T ) .  Qo CQi -

in remaining parts o f this paper we shall say that the region Q 0 exists if, and only if, there exists a positive 
Integer e such that if  |x| <  £ then x  £  Q 0 ; this excludes the trivial case {* =  Oj =  Q 0 

The region Q „ represents all admissible initial conditions that give rise to solutions not leaving in a finite 
time the region Q ,. The latter region may be called the region with satisfactory behaviour o f the system. 
It is well worthwhile to observe that Q 0 depends on choice o f Q , and T; this choice being determined by 
considerations involving practical meaning of the solution and character o f the system.

If the so-called Ljapunov function for equation (1.5) were known, the problem o f determination of Q 0 

for given Q , and T  would be solved by an elegant analytical procedure (cf., e.g. [3]) valid even for an 
infinite T. Unfortunately, there is no general process for determining the Ljapunov function, and thus the 
probelm is as difficult as it was.

In this paper wc shall restrict ourselves to the following problem. Given equations (1.5), region Q ,, finite 
constant T, and particular set o f initial conditions (1.6). Determine whether condition (1.8) will be satisfied. 
It seems that great variety o f control engineering and management problems can be reduced to thus stated 
question.

2 Som e re m a rk s  on  num erical so lu tion  o f  equation  (1.5).

W e shall discuss three principal kinds o f function p entering equations (1.5): deterministic, stochastic and 
random. Function p is here considered as the deterministic one if  there exists a precise rule for its evaluation 
— exact formula, convergent series etc. W e call function p stochastic if  no such rule is known, but there are 
some ways for estimating the distribution o f  values o f p which is to be expected if distribution o f arguments 
follows certain pattern. In other words, wc know the correlation coefficients between { x ;i) and p(x ;l). If 
no such relationship exists, or is not known, we shall call p random. For deterministic p we may hope to 
find an analytic solution o f equations (1.5). For stochastic p there are some techniques that can supply us 
with ’’correlated” solution (cf., eg. [4]). It seems, however, that even these techniques may turn out to be 
o f  rather limited value for random p. Moreover, when numerical processes are involved in determination 
o f the solution, even the deterministic case becomes random due all sorts o f errors unavoidably encountered 
in using numerical integration procedures.

Thus we suppose that p is random (in the sense defined above). This means that we do not know anything 
o f values o f p { x ;(), except that, as already mentioned, we assume Ip(x;f)| ^  min (|F(.r ; t ) |,8). The truncated 
equation (1.5), i.e. * =  F(x;t )  may be solved by means o f any o f the widely used numerical integration 
procedures. Each of these methods requires that values o f  F  be evaluated for a number o f  different ( x ;(). 
If  the obtained values of F  arc every time summed up with random numbers z,  |z | min (|F (x ;t)|, <5) we 
shall get a curve which will be called „solution” o f equation (1.5). O f  course it would be precarious to expect 
that this solution faithfully describes behaviour o f the system, but we may hope that sufficiently numerous 
samples o f such trajectories will represent some statistical properties o f the system.
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It may be worthwile to notice that when performing numerical integration the accuracy aimed at does not 
need be too great, since if the random errors produced by the integration procedure do not exceed d, their 
effect will be masked by additions o f z ‘s. Below, we give an example o f the "special integration" procedure, 
based on Rungc-Kutta-Gill’s method, that may be used to perform the numerical integration o f equation
(1.5) over one step.

procedure special RKG (delta, S, RHF, It, t, X, Y, firststep); 

real procedure RHF; real delta, h. I; integer S; array X, Y;

Boolean firststep;

comment This procedure integrates the set o f 5  differential equations x \ .  = xs) +  p^

over time interval [f,i +  /i] under the assumption that the functions p^ are unknown perturbations 
minfl/j,!, delta). Initial conditions, i.e. xk(t) are represented by array X  which on the exit from 

the procedure is replaced by approximate values o f x^(t +  It). Non-local real procedure RHF(i) eva­
luates function f  using as arguments the values o f elements o f array y . W hen computing over many 
steps, the Boolean firststep may be set to false on every entry into the procedure,- except when the
first step is taken, thus resulting in both better accuracy and some economy o f the execution time;
begin

own array Z [0  : S], A, B, C [1 : ♦]; array K [0 : S];

real procedure random; begin comment This procedure generates one random number —1 ^  random

^  1; end random; integer t , j \  comment repeated is a non-local Boolean, it is to be set to false at the

begining o f a programme to which it belongs; 
if  repeated then go to LI;

A [ \ )  : =  C [l]  : =  C[4] : =  0.5;
A [2] : =  C [2] : =  1 — sqrt(0.5);
A [3 ] : =  C [ 3 ]  : =  1 +  sqrt (0.5);
B [l] : -  B[4] : =  2;
B(2]: =  B[3]: =  1; A[4]  : =  >/6;
repeated : =  true;

L I: if  firststep then for i : =  0 step 1 until S do Z [/] : =» 0;

V[0] : =  I;
for i : =  1 step 1 until S do y [i]  : =  X[i];

K[0] : =  1;
for j  : =  1 step 1 until 4 do begin for i : =  1 step 1 until S do begin real temp; 

temp : =  RHF(i);

K  [i ] : =  temp +  random x (if abs (temp) delta then delta else temp) 

end;

for i : =  0 step 1 until S do begin

y w  = =  y w  +  /.x (^ r / ix (K [ ,- ] -B [ /]x z [ f ] ) ) ;

Z[i] : =  Z[i] +  3x(/4[j] x(K[i] — f l[ j]x Z [i]))  - C [ j ] x K p ]  
end i;

e n d j ;

t : ~ V [ o);
for i : =  1 step 1 until S do X [ i ] : =  V[/]; 

end^special RKG;
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3. G eom etric background o f  the learning autom aton.

In this scction wc shall consider some binary properties o f the domains formed in Euclidean space by 
Intersection o f a number o f hypcrplanes, when the points in the space can be dichotomously separated with 
respect to a certain property CT. By this wc shall understand that every point in the space either has or has 
not the property a .  No point can be neutral or ambiguous, and the separation of the points with respect to 
the property a  is independent o f any factors but the property itself and coordinates o f the points.

In the sequel o f  this section wc shall confine ourselves to a simple case o f Euclidean plane E2 and straight 
lines, the results obtained will be easily extrapolated into any dimensions.

Let us denote an arbitrary point in the plane by P. This means that P denotes an ordered pair o f real 
numbers (x,y). Similarly, let L denote an arbitrary straight line in the plane; we understand that L denotes 
an ordered triple o f real numbers (a,b,c) such that ax +  by — c =  0 is an equation o f the line.

Define the binary product o f a given point P; and a given line Lj (denoted as P,- * Lj) as
(3.1) P( * Lj =  1 +  sgn(«yxy + bjyi —  ry)(mod 1),
where, as usual,

sgn(f)
- n / f  < o  

o . y {  - o  
l ¡f £ <  o.

Consider now a compact set Q  in E2 composed o f region U  and its boundary, and a separating property a  

W c shall employ notation P° to indicate that point P  possesses the property G and notation P° otherwise. 
Notation P  without a superscript will denote either a point whose dichotomous affiliation is irrelevant, 
or a point o f  which no knowledge as to possession o f property O is available.

If the region U  is crossed by n lines L t , L2,.. .,  L„ then Q  is divided into K  compact sets called 
domains, boundaries o f  i 2 being segments o f Lj and parts o f the boundary o f  U . The number K  satisfies 
the condition K  ^  M  where M  for E2 is «(« — 1)/ 2 -f 1. In general case, M  depends on a number of 
dimensions o f the space and on a number o f the hyperplanes drawn.

Consider now a set o f points JJ  =  j p f } (i =  1 .2 ,..., m ; K; =  either a or <J ) such that none 

o f domains contains more than one P £  . If  contains a point P, £  I I ,  then we shall say that is 

classified by this point. This is to be understood as it follows: if is classified by p f \  then if  P; £  i ik
wehave27/ =  £{■

O f course, such classification o f domains will be correct only for especially chosen lines Lj and set FI- 
and not every a will permit to construct them at all. W e leave the detailed topological analysis o f possibility 
o f such construction to be discussed in another paper.

Let us now introduce the binary matrix (i =  1 ,2 ,..., m ; j  =  1 ,2,... n) A,y =  P, « Lj. To each 
row  o f  this matrix uniquely corresponds one o f the classifield domains Q v. Indeed, if  wc take any 
P;J £  Q v and form products P/( « Lj (J =  1 ,2 ,..., «) wc shall have P;, « Lj — A / j , where I is a subscript of 
the point which classifies Q v. Reversely, if  we take point P^ belonging to any o f the classified domains, we 
can determine to which one it belongs by computing the components o f vector v(Pj) =  |P^  * l.j | 
(j =  1 ,2 ,...,« )  and comparing them with the rows of matrix \\Ajj\\.

This correspondence permits us to see whether a point PX possesses the property a  without checking it 
straightforward (what may in some cases become a cumbersome procedure), indeed, all we need to do is 
to determine to which of the classified domains it belongs (this may be easily done by simple arithmetics 
described above) and use the definition o f classified domain for determining of the affiliation o f P / .

If, however, the number o f classificl domains, m, is less than the total number o f domains K, we are not 
able to establish the affiliation of all points P ^ U  in this manner, for the vectors representing unclassified 
domains are not present in ||/4^||. Suppose now that die process by which we have arrived at the classified 
domains (i.e. the construction of lines Lj) and at the set I I  (i.e. the construction o f points P,'1') is such that i 
cannot be extended to give m =  K  aad preserve the correctness o f the classification procedure, or that we
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cannot guarantee that in a finite number o f steps we shall be able to achicve m — K  (this is the case with 
Bravennan's algorithm described in the next section). W c may try then to employ a procedure which will 
generalize the existing classification so as to includc yet unclassified domains. It cannot be expected that 
such a procedure would yield fully correct classification even if the starting classification were hundred 
percent reliable, but in cases when a "statistically reliable” classification is aimed at, the following procedure 
may be very helpful.

Consider the f i - th row of matrix Mty||, i.e. vector v^,  and vector i>̂  obtained from by the following 
transformation:

(3.2) A m

The vector v1 represents either domain adjacent to Q /t and separated from it by a segment o f the A-th 

iine Lf, or a non-existing domain. E.g. vcctor vn for the situation depicted in Fig. 1 is (1,1,1) and i<| - 

=  ( 1 ,0 , 1) represents domain ¡2* =  (}$,  whereas =  (0 ,0 ,0) represents the non-existing domain 

Generally, the transformed vcctor v* will represent a non-existing domain if  X corresponds to a line no 

segment o f  which forms a part o f the _Q(,  boundary.



fo r  reasons that will become apparent later we shall not make any distinction between existing and non- 
existing domains. Instead, wc shall carefully distinguish two situations arising from the examination o f the 

classifications o f  domains Q fl and Q K  Let the domain be classified by point P j 1'. If domain £?* is classi­

fied, i.e. if  among the rows o f ||/tyl| there is vector vv = v*, we check whether If no — wc call

this case contradictory and take no further action with these values o f /> and X- If  the answer is yes or if  do­

main i j *  is unclassified, we ’’erase” the separating segment and consider thus enlarged domain as an entirety. 

In matrix \\A;j || this entirety will be represented by either o f two vectors vfl and Vv provided that wc neglect 
the values o f  elements A/r; and A t\.  In order to mark the neglected elements o f  the array \\Ay || we create 
a new binary matrix o f the same dimensions as the A y and fill it with elements according to the 
following prescription: if  A y  is to be neglected By =  0, otherwise By =  1. The elements o f  \\Ay\\ for which 
the corresponding B arc not zeros will be called significant. It is quite clear that if  transformation (3.2) leads 
to a non-existing domain the corresponding element A ^  may safely be considered as insignificant and negle­
cted in all identification processes.

The just described procedure is to be rcpaeted for all elements o f l\Ay . W hen repeating it, however’ 
one should remember that the adjacent domain indicated by transformation (3.2) may already be joint to 
another o f its neighbours — and thus be classified inspite o f  the absencc of the corresponding row in |\Ay',\. 
In order to avoid any ambiguity such as dual (and perhaps opposite) classification o f the originally unclas­
sified domains, in establishing which domain is represented by a given transformed vector, the components 
o f the vector should be compared with the rows o f ||v4jy|| by significant elements only.

If, for example, domains £2S and ¿2, in Fig. 1 were classified by points P 5 and P, respectively, and 
domain Q 6 were left unclassified, the enlarging (or "learning”) proccss without adequate precautions might 

have jo in  L i t  to i 2 5 and thus classify £Jb by P 5 and afterwards, considering Q *  it might find as yet uncla­
ssified and classify it by P j. If, however, the proper use has been made o f the fact that in i>5 the first element 

is insignificant, then v J is identical with y s (when neglecting first elements) and we have the contradictory 
situation, which probihits both the dual classification o f i i 6 and the ncglccting o f A t2.

Now, in order to determine the affiliation o f an arbitrary point Pa £  Q  wc first form vector va  =
=  {P„ * Lj |  ( j  =  1 ,2 ,.. .,  n) and then compare this vector with the consecutive rows o f by the
significant elements, until an agreement is discovered. If  the row number o f the row that agrees with 
va is P  then Pa =  P^P.

Concerning the order in which the elements o f  |\Ay || are picked for analysis o f their significance we may 
expect statistically better results from the learning process if  this is done in random order. If any form of 
the computer programming is involved in order to simulate the learning proccss, it is worthwihlc to observe 
that some reduction in memory space requirements may be obtained by deleting from \\Ay || and ||B^ 1| the
rows that are the same in ||B^-|| and have the same significant elements in \\Ay ||.

4. The m od ified  B raverm ans a lgorithm .

E. M. Braverman has published an algorithm [1 ] designed to simulate a learning proccss involved in 
pattem-rccognition. In my previous paper |5] the suggestion was made to use this algorithm (or rather its 
modification) for simulating the learning automaton that could be employed to recognize the practical 
stability regions. Leaving the exposition of principles o f such application to the next section, wc shall con­
sider in this section the fundamental part o f  the Braverman’s algorithm, viz. the construction o f set I I  and 
lines Lj, as defined in the preceding section.

Consider the set Q  and the chosen at random point Pj £  Q .  Determine its superscript £  i by straightfor 
ward checking o f the possession (or otherwise) o f the property a  by this point. By picking long enough 

asequence o f random points belonging to Q  we will arrive at point P^ such that (wc assume that
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neither o f the two classes o f points is empty in i?  and both are o f the same number o f dimensions asi3).
Disregarding points P2, P3 P^-i we may define f i  =  2 and draw a line L,  =  (a, ,b, ,ct), where a, and
b, are random numbers —1 m ax(|4, | , |i> ,|)ij +1 and c, =- (a, (.v, +  x 2) 4  (y, 4  y2))/2. This line
divides Q  into two domains and classified by pointsP^ 1 and P2i2 . Next, wc shall apply repeatedly

the following procedure: Take the random point Pm . This point belongs to one o f the already existing 
domains ¿2lt •••• &k> ^ 5^ m — 1» f°rmcd by n lines. Among these domains there are nt—1 domains 
which are classified by the points P{, P 2, . . . , Pm-i* If point Pm belongs to certain unclassified domain i2j  
we shall use this point to classity the domain. If domain i i j  is already classified by point Ps~s, s <  m, and 
2js — S m then we shall reject point Pm from our consideration and pick another random point assigning 

to it die same subscript m. If, on the contrary, X m  “  X ,  then we draw(n 4  l)st line Z.„_|_ t =  (<i„ ̂ + t , 
c«4 i) where r„ + 1  =  (a„+ 1(-’fm4.*J) 4  b„ ^ ,(ym 4  ys))/2 and an f l , arc again random numbers
from the intcrwal [—1,1], and thus increase a number o f the existing domains. The point Pm classifies 
that one o f the newly formed domains to which it belongs.

By repeating this process we shall always have the situation formally identical with the one considered 
in the preceding section, viz. n lines defining K  domains, m— 1 o f which contain one (and only one) 
P £  77, where 77 denotes the set o f  our randomly chosen and checked against die property a  points.

O f course, our theoretical assumption concerning uniform affilation o f all the points beloning to a par­
ticular classified domain will not be generally fullfillcd by the domains and points generated at random 
in the described process. It should be noted, however, that as soon as an explicit contradiction to our sasump- 
tion is encountered — i.e. when a chosen point turns out to be o f the affiliation opposite to the affiliation 
o f the relevant classifying point — this contradiction is removed by drawing a suitable separating line. 
Hence, at any stage of the construction of domains and classification o f points we may suspect that the exis­
ting classification is unreliable, but wc have no ’’proof” to support this statement. In other words, at any 
stage of the described process the classification is in full agreement with our experience.

It may be worthwhile to observe that if  we were not rejecting the chosen points o f the same affiliation 
as the affiliation o f tht classifying points, wc could gratly improve the depcndablencss of the classification 
by drawing lines that would have been the best "separators” in statistical sense. In this connection it is worth 
mentioning that Cooper [2] has shown great advantages o f  hypcrplancs as separators in pattern recognition 
techniques, and his remarks could be readily applied to our case.

W e once more lay stress on the fact that if  we deal with E™, it >  2 rather than with E2, the procedures 
described in the preceding and this section are valid provided that "lines” are replaced by “hyperplana>”

5. A pplications to  practical stability problem s.

In the present section we describe an algorithm for solving the problem stated in section 1. This algo­
rithm is fairly easy to implement on a digital computer and thus may serve as a practical tool for handliuig 
the practical stability problems. A rigorous proof o f  die algorithm’s applicability and validity shall be given 
elsewhere, in the present paper, devoted mainly to the practical side o f the problem, we shall present the 
algorithm (and some of its possible extensions) intuitively.

Consider the regitm Q , o f the phase-space (as defined in section 1) as the set Q  o f section 3 and define 
the property a in the following. Wc shall say that point P £ Q , possesses the property a if  it belongs to Q 0, 
otherwise, i.e. if  P £  (Qt — Q 0) we shall say that it does not possess this property. Thus, wc propose to use 
the following flow-chart (Fig. 2) o f the algorithm aimed at establishing whether the given initial condi­
tions (1.6) satisfy criterion (1 .8).

In the process o f  generating the set I I  we shall use a special integration procedure (cf. section 2) to deter­
mine the affilation o:" a chosen point in 77.

63



Fig-2

This algorithm may seem to be gicatly uneconomical since it requires many numerical integrations of 
equation (1.5) to be performed in order to save one integration, that would have been needed to chcck 
criterion (1.8) directly, If, however, equation (1.5) represents die random case, the straighforward integration 
employed for checking o f criterion (1.8) may yield completely erroneous results, whereas if  it is used to 
determine the affiliation of many points in IJ  we may expect statistically better results. And besides, drawing 
the random hypcrplancs may smooth over (at least partly) the possible bias arising from application of 
special integration procedure. Secondly, if  we need to solve the problem of performance of the real system 
for great many different initial conditions (1 .6), and a number o f different cases is greater than a number 
of integrations needed in order to complete the first box of a given flow-chart (fig. 2), the over-all gain of 
computing time may be very substantial. Another important factor is that the determination o f the point’s 
affilation by means o f die method described in section 3 requires (when performed on digital computer) 
a very few arithmetic and some logical operations whereas the integration procedure will usually require 
rather a large number o f  arithmetic operations, thus the straightforward checking for fulfillment o f (1 .8) 
requires much longer a time than checking by means of the method from section 3. This fact may turn out 
to be o f utmost importance when the ’’real time” computing is required.

Suppose now that wc already have a set o f separating hyperplanes and the corresponding classifying 
points. W e can test the reliability of the determination o f points affiliation by taking a sample o f random 
initial conditions and detcrminig their affiliation by straightforward checking and comparing thus obtai­
ned affiliations with the ones determined by the method from section 3. The straightforward checking 
must here be performed by observing a behaviour o f the real system, or by simulating this behaviour by 
integrating equations (1.5) using a method similar to a special integration routine described in section 2, where 
the procedure random should be replaced by a procedure which simulates the real perturbanccs occuring 
in the course o f the process. Needless to say that when such simulation becomes impossible due to, e.g., 
lack o f the precise knowledge o f the perturbing factors, the special integration method may be used again 
in the described form; this time however we understand that it simulates the real behaviour, i.e. that the 
behaviour o f the system would have been fully consistent with the numerical solution if  the numbers supp­
lied by the procedure random were to represent exactly the relevant perturbations.

If  such test indicates too low a rcliablity o f indirect determination o f the point’s affiliation, then we may 
draw some more hyperplanes and classifying points.

Consider now another flow-chart (Fig. 3). It is pretty clear that the part o f  the flow-chart included in the 
broken-line rectangle and denoted by A  is independent o f specific system and may, be made quite general 
(this part o f the flow-chart will be henccfort called the ’’learning process”). An ALGOL programme that 
describes possible computer programme simulating the learning process is given as an appendix to  this paper.

The computer programme for the complete process described by the flow-chart in Fig. 3 may be consi­
dered as a digital model o f an automaton working in two modes. Mode I is the learning process; input con­
sists o f the data describing the system to which the automaton is to be joined, i.e. the functions/ ,  region Q „  
and constants T  and ¿; output consists o f  matrices ||/4,yl| and ||B,y||, and information on classification of 
the domains represented by the rows of ||^ij|| • This information may be in fact included into the matrix 
II^H  as its zero column, cf. the Appendix.

The operation o f die automaton in Mode I is independent o f  the real system and may be performed 
’’o ff  line”  with respect to the examined system.
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Fig. 3

Mode II is the determination process which tells whether given initial conditions bring about a satisfactory 
performance of the system. This mode uses as input a particular set o f initial conditions (1.6) and it gives as 
output the affiliation o f this point. Thus the second mode may be callcd a decision making or rctognizing 
process, and should be performed in practice "on line” with the system it examines. In fact, the input to 
Mode II o f the automaton is the ouptut o f  initial conditions measuring device, and the automaton's output 
in this mode is the decision whether the system is to be allowed to proceed from given initial conditions.
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Fig. 4.

Meaning o f the boxes is the following:
1. Performance o f  the system
2. Decision: to proceed with given initial conditions
3. Automaton mode II
4. Decision: not to proceed with given initial conditions
5. Creating new initial conditions
6 . Initial conditions measuring device
7. Checking whether the performance of the system is satisfactory
8. Drawing new hyperplanes and performing the necessary augumcntations and changes in \\Ajj\\ and 

HBy ll (as in Mode I after the discovery of a contradictory point)
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W hen the automaton is simulated on a digital computer we encounter the usual difficulties arising from 
a finite size o f  the computer memory that limits a number o f hyperplanes and classifying points we may use. 
If, however, in the learning process we have not used all memory cells allowed to the output information 
we may employ another variation o f  mode II, viz, a combination o f decision making and learning. The 
flow-chart for such a variation will be like the one presented in Fig. 4 where the double broken line denotes 
the transfer o f information within the model o f the automaton, viz. between its first and second mode.

Thus it seems that in practical applications we may derive some profit by not using all the available 
storage for the learning process and permitting the automaton to “ learn from its misjudgements” .

\  : \ • • • :

APPENDIX

In this Appendix an ALGOL-6O programme for the digital! computer simulation o f the learning process 
(i.e. Mode I o f  the automaton) is given. This programme has not been tested on a real computer with an 
ALGOL compiler and thus it may contain some errors. O n the other hand the programme ressembles, to 
a ccrtain extent, the Ural-2 computer programme used for checking the method.

The extensive use o f Boolean arrays may lead to very severe memory requirements when the subscrip­
ted Boolean variables arc represented internally not as single bits but as whole machine’s words.

The Reader is advised to note that before constructing the matrix ||B«|| the given programme tries to 
find out and ’’erase” the hyperplanes represented entirely by the insignificants elements o f Mjfll (cf. the 
block labelled B3).

begin Boolean array ^ [1  : N  +  1, 0 : M], B[1 : N, 1 : M ]; array X[1 : N  +  1, 1 : S],T»ll : M ,  1 : S +  1]; 

integer r, j ,  p; comment Integers N, M, S  and n and real limit are nonlocal to this block; 

real procedure random; comment This procedure generates one random number —1 ^  ran­

d o m ^  1;
Boolean procedure stability ( j) ; comment This procedure assigns value true if  and only if  the 

j'-th row of array X represents the initial conditions o f  differential equations in question 
belonging to the region Q0. Checking is performed by means o f  special integration 
described in the text o f  the paper; 

procedure generate (j); comment This procedure generates the coordinates o f a random point 

belonging to the region Q, and loads these coordinates into the j - th  row o f array X;
procedure draw (i , j , k, I); integer i , j ,  k, I ; value <; begin integer m, «; real tv; 

tv : -= 0;
for m : =  1 step 1 until S do begin

P[fe, m] : =  random;
u> ; =  w +  P[k, m) x(X[f, m] +  X [ j ,  m]) end;

P [fe, S  +  1] : -  ik /2 ;

for hi : =  1 step 1 until 1 do begin

w : -  0; ,1
for n : =  1 step 1 until S do 

tv : =  w +  P[k, n] xX[m , «];
A[m,  fc] : =  w—P[Jfe,S +  l ] ^ 0  end; 

r :  =  r +  l  
end draw;

procedure update (i); integer I;
■ ■ 

begin integer I', I; real w;

for k : =  1 step 1 until r — 1 do begin

w : — 0 ;
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for I : *• 1 step 1 until 5  do

IT: =  w +  p I*T, nxxTi.H ;-
A\ i , k]  : =  w—P[fc, S +  1 ] > 0  end

end update;

for i : =  1, j  while 2 do begin
generate (j) ; A  [ j ,0] ; =■ stability (J) ; 
i f  j  =  1 then go to L I ;

T e A [ l . 0 ] ^ X l 2 f l ]  then J  : -  1

T l  : / : = / +  1 endT T

r : =  1; draw (1 ,2 ,1 ,2 ); p : =  3;

B1; for j  : — p, j  while N  / \ r  < M  do 

begin integer l ,k;

generate (J); A \ i , 0 \  : =■ subility (j); update (J); 
for fe : =  1 step 1 until j  — 1 do begin 

for I : =  1 step 1 until r — 1 do 

i f ~ iy4[fc,(] — ¿4|j,/) then go to L I; 

i f  A  [it ,0] = / i r j , 0 ]  then j  : = ]  — 1 else 

i f  M  then draw (k , j , r , j ); 

go to L2;
L I; end fc;

1 -2 :/ : = - jT l  end fll;

B2: begin integer t ,k ,m,n;

for I : =  1 step 1 until r  — 1 do begin

for k : =  1 step 1 until j  — 2 do begin

for m : =  k +  1 step 1 until j  — 1 do begin

for n : ■* 1 step 1 until I — I, 1 +  1 step 1 until r — 1 do 

if  /4[fe,n] ^ A [ m , n ]  then go to  L I; 

if  ^4[fe,0] — A [m,0] then go to L2; L I: end m end k; 

for k : = I step 1 until r — 2 do begin

for ni : =  1 step 1 until j  — 1 do A[m,k] : — A [m ,k  +  1];

for m : =  1 step 1 until S  +  1 do P[fc,m] : — P[k + 1  ,m] end k;

r : =  r — 1; L2: end I

end B2;

B3: begin integer k , l ,m ,n \

for fc : — 1 step 1 until j  — 2 do begin

for / :  =  fc +  1 step 1 until j  — 1 do begin

for m : =  0 step 1 until r — 1 do

i f — A[k,m] *=A[l ,m]  then go to L I; 

for m : =  1 step 1 until j  — 2 do begin

for n : =  0 step 1 until r  — 1 do A[m,n] : =  A[m +  1,«]; 

for « : =  1 step 1 until S do X[m,n] : =  X[m +  l ,n ]  end m; 

j  : •= j  — 1; L I : end I end Jfe;

end B3;
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if r < M  A /^ S  N  then begin p : =  j ;  go to B1 end;

84: begin integer i ,k ,l ,m ;  Boolean array a ,b ,c[l :M ];

Boolean procedure compare (a ,b ,i); Boolean array a,b; integer t; 

begin integer I;

for / :  =  1 step 1 until ■ do

if 3 ] «[/] =  i> [/) then go to £.1;

compare : =  true; go to L2;

L I : compare: =  false;

1 2 : end compare; 

real procedure test (n); integer n;

begin integer success, trial, i; Boolean guesstab; 

success : =  0;
for trial : =  1 step 1 until « do begin

generate (N  -+■ 1); update (N  +  1);
for i : =  1 step 1 until j  -1  do begin

Boolprod (A ,B ,a ,r— 1 . N + 1,1, false);

Boolprod (A ,B ,b , r -  1,1,i, false);

if  compare ( a ,b , r - 1) then guesstab : =  /l[ i ,0 ] ,

go to L I; end i;

L I : if  guesstab == stability (N  +  1) then 

success : =  success -f 1 
end trial; 

test : =  success/« 
end test;

procedure Boolprod (/4 ,B ,C .i./.fe, special);

Boolean array A ,B ,C , ;  integer i , j , k ; Boolean special; 

begin integer /;

i f  special then begin for I : =  1 step 1 until i do

C [f]7 = A [ t ) ~ E [fe,/] end”
else for / :  =  1 step 1 until i do 

C [ l ] : = 7 u , J ]
end Boolprod; 

for i : =  1 step 1 until j  -  1 do

for fe : =  1 step 1 until r - 1  do B[/,fe] : =  true;

for i : =  1 step 1 until r - 1  do

for fe : =  1 step 1 until j  -  1 do begin

B[fe,i] : ■= false;

Boolprod (A,B ,a ,r  — l.fe.fe,false);

for / :  =  1 step 1 until fe — 1, fe +  1 step 1 until j  — 1 do begin 

if  ^4£fe,0J =  >4[/,0] then go to  L I;

Boolprod (A,B,b,r  — l , / ,fe,  false);

Boolprod (a ,B ,c ,r— 1 , 0 , f, true);

Boolprod (b,B,b,r  — 1 ,0 ,/.true);

i f  compare (b,c ,r— 1) then begin B[fc,i] : — true; go to L2 end;
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for i : =* 1 step 1 until j  — 2 do begin 

Boolprod (A,B,a,r — l . i . i ,  false); 

for k : = i step 1 until j  — 1 do begin

if '- |^ [ f e ,0 ]  =  X [i,0] then go to L3;

Boolprod (A,B,b,r  — l.fe.fc, false); — 

if  compare (a.fc.r — 1) then

begin for / :  «= fc step 1 until j  — 2 do begin 

for m : =  1 step 1 until r — 1 do begin 

_  A [ l , m ] T ^ A \ J + l , m ] - ,
B[/,m] : =  B[/ +  l ,m]  end m; 

for m : =  1 step 1 until S  do 

_  X [/,n i]T =  X [/ +  l.iH] end I;

j : —j — 1
end if;

L3: end k

end /;

'«) <  limit j

go to  B1 end

-  t

i f  test (n) <  limit N  / \  r  <  M  then begin p : = j ;

end BA

end programme
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