
Seeking Appropriate Tools
for Programming the Parallel Computations

Andrzej Zadrożny

Institute of Computer Science, Polish Academy of Sciences,
ul. Jana Kazimierza 5, 01-248 Warsaw, Poland

Abstract. Concurrent and distributed computations are in use since
many years. Now, the time has come for parallel computations. For nowa-
days computers are equipped with several processors(or cores). We start
with the observation that no programming language comes with tools
appropriate for programming parallel computations. There are several
languages and/or libraries that allow to program concurrent and dis-
tributed computations. Base on our experiment we propose a new paral-
lel model. The programmers will appreciate a possibility to manage the
processors (cores) and to communicate between objects of processes in a
truly object way.
Our experiments concentrates around LOGLAN programming language.
Because LOGLAN lacks parallel programming mechanism it can be a
good platform for experimental implementation. The proposed model is
not tied to LOGLAN platform and should be implemented for other if
proven useful.

1 Introduction

CPU

P
ro

ce
ss

1

P
ro

ce
ss

2

P
ro

ce
ss

3

Memory

Fig. 1. Concurrent model

Concurrent computations are getting more popular
like never before. Both versions of non-sequential com-
putations: distributed and parallel, are applied more
and more frequently. This is stimulated by the growth
of capabilities of single PC (it’s computing power,
memory capacity and core availability in single unit)
and availability of clusters. These features encourage
new development in this areas.

Concurrent computations first were realised as
processing unit switching between active tasks. CPU
time was managed and divided by the operating sys-
tem scheduler for all working tasks. This schema is
still used by operating system.

Distributed computations emerged due to popular-
ization of computer networks. Lack of shared memory

162 Andrzej Zadrożny

among computing units is the essential difference be-
tween distributed and concurrent programs. Fundamentals of this concept were
defined by C.A.R. Hoare[1][2]. Who also distinguished the case of disjoint paral-
lelism. Nowadays this schema of concurrent computations is called share-nothing
architecture and probably is the most popular.

C
P

U
1

C
P

U
2

C
P

U
3

P
ro

ce
ss

1

P
ro

ce
ss

2

P
ro

ce
ss

3

M
em

or
y

M
em

or
y

M
em

or
y

Node 1 Node 2 Node 3

Network

Fig. 2. Distributed model

It’s popularity is related to huge impact of Apache
Hadoop on industry. A whole ecosystem has grown
around Hadoop and Hadoop Distributed File Sys-
tem (HDFS). It now consist of many libraries, lan-
guages and frameworks. The concept of programming
in Hadoop, called MapReduce, is based on method-
ology proposed by J. Dean and S. Ghemawat in the
paper[3]. It assumes partitioning of main computa-
tion task into small sub-tasks. Computation of each
sub-task takes place in a distributed shared-nothing
environment. After all tasks are finished results are
combined into single final result. In between each
computation phase of algorithm partial results are
stored on a shared distributed file system. MapRe-
duce is broadly used thanks to it’s characteristics.
This schema is naturally simple. Algorithm is some-
what fault tolerant. If some sub-tasks fail, they can be
reassigned and computed by non-failed nodes.

Usage of shared-nothing architecture resulted in
popularisation of MapReduce methodology. At the
same time it leaves a lot of place for other optimi-
sations. An a example of such optimisation is Apache
Spark[4] project. Apache Spark extends MapReduce

programming schema with concept of in-memory caching intermediate sub-tasks
results.

MapReduce methodology was a simplification of earlier available techniques.
One of the first widely used standard was Message Passing Interface (MPI).
It is a standardized and portable message-passing designed pattern. In which
processes communicate with others by means of passing messages.

This approach was adapted 30 years ago by Loglan development team under
the name Alien Call protocol. It was suited to object-oriented language. It was
extended in LOGLAN’82[5][6]. A programmer creates a method in a process
which becomes a micro service. This method can be called by other processes
in Virtual Loglan Processor. Method call will be handled if a serving process
is active and accepts the call. Alien Call protocol turned out to be useful in
programming of distributed computations.

Similar message passing pattern and micro services where used in Java RMI.
Server program implements some interfaces and publishes it with a name. A
java client program needs to know which interface is implemented. After net-
work connection initialisation a client program binds a remote object by its

Looking for Tools for Parallel Programming 163

name to local variable. Client program can call remote method from server pro-
gram. The biggest difference between LOGLAN’s Alien Call and Java RMI is the
initialisation method. Client and server programs are initialised separately on
different machines. In LOGLAN all processes are initialised from single virtual
environment from main program.

From concurrent processing emerges one more model: parallel processing. It is
available on systems where are multiple processing units and they share memory.
The tasks are not switched while processing by single processor but are computed
truly simultaneously by multiple processors. However, from programming point
of view implementing concurrent and parallel computations are all the same.

Lets think about Java, or any other language equipped with threads. A pro-
grammer can start two threads, but he never knows if those threads are to be
executed in parallel or concurrent manner.

C
P

U
1

C
P

U
2

C
P

U
3

P
ro

ce
ss

1

P
ro

ce
ss

2

P
ro

ce
ss

3

Shared memory

Node 1

Fig. 3. Parallel model

This approach can be efficient when writing pro-
grams that should work on nodes with single cores
and multiple cores as well. But our intuition is that
parallel processing has a mix of properties of both
concurrent and distributed: shared memory and truly
simultaneous. We should treat parallel computations
as completely different model from concurrent compu-
tations. A new model to be found. We could look at
it as improved distributed model, rather than faster
concurrent model. In this concept parallel processing
still lacks proper managing and programming tools to
really leverage it’s potential.

Regardless of model being used programmer needs
to take care of problems related with non-sequential
processing. These problems are known: deadlock, star-
vation, livelock, race condition and others. Some mod-
els are more prone to particular problems than others.

This paper is a report of current state of research
and it brings perspectives for future work.

In next chapter we discus use case of LOGLAN
language and Alien Call protocol as simulation of par-

allel computation on matrix multiplication. Our deliberations are based on Can-
non’s Algorithm[7] and SUMMA Algorithm[8]. In subsequent chapter we discus
changes done to Loglan language runtime environment (Virtual Loglan Proces-
sor VLP). In the last chapter we summarise profits and digest possible research
and future development.

2 Case study

The base for our case study is distributed matrix multiplication.

C = A ∗B

164 Andrzej Zadrożny

Cannon’s Algorithm divides input and output matrixes into p2 sub-matrixes
(figure 4). Number of sub-matrixes is equal the number of processors. Cannon’s
algorithm requires that the dimmentions of original matrixes are multiplicity
of sub-matrixes dimmentsions. Each processors’ Pi,j task is to compute a sub-
matrix of matrix C of dimmentions N x N.

C0,0 C1,0 C2,0 C3,0 C...,0

C0,1 C1,1 C2,1 C3,1 C...,1

C0,2 C1,2 C2,2 C3,2 C...,2

C0,3 C1,3 C2,3 C3,3 C...,3

C0,... C1,... C2,... C3,... C...,...




=

A0,0 A1,0 A2,0 A3,0 A...,0

A0,1 A1,1 A2,1 A3,1 A...,1

A0,2 A1,2 A2,2 A3,2 A...,2

A0,3 A1,3 A2,3 A3,3 A...,3

A0,... A1,... A2,... A3,... A...,...




*

B0,0 B1,0 B2,0 B3,0 B...,0

B0,1 B1,1 B2,1 B3,1 B...,1

B0,2 B1,2 B2,2 B3,2 B...,2

B0,3 B1,3 B2,3 B3,3 B...,3

B0,... B1,... B2,... B3,... B...,...




P0,0

P0,1

P1,0

P1,1

P0,0

P0,1

P1,0

P1,1

P0,0 P0,0

P0,1

P1,0

P1,1

P0,0

Fig. 4. The schema of data splitting in Cannon’s Algorithm.

Before first iteration matrixes are split and transferred to processors. At each
iteration each processors multiplies sub-matrixes and sums up to the output sub-
matrix.

Between each iteration sub-matrixes are shifted to the next processor (figure
5).

A0,0 A1,0 A2,0 A3,0 A...,0

A0,1 A1,1 A2,1 A3,1 A...,1

A0,2 A1,2 A2,2 A3,2 A...,2

A0,3 A1,3 A2,3 A3,3 A...,3

A0,... A1,... A2,... A3,... A...,...

B0,0 B1,0 B2,0 B3,0 B...,0

B0,1 B1,1 B2,1 B3,1 B...,1

B0,2 B1,2 B2,2 B3,2 B...,2

B0,3 B1,3 B2,3 B3,3 B...,3

B0,... B1,... B2,... B3,... B...,...

P0,0

P0,1

P1,0

P1,1

P0,0 P0,0

P0,1

P1,0

P1,1

P0,0

Fig. 5. The schema of data shifting in Cannon’s Algorithm.

Our algorithm differs from Cannon’s algorithm in following manner. Each
processor Pi,j gathers whole rows from N ∗ i to N ∗ (i + 1) of matrix A and
whole columns from N ∗ j to N ∗ (j + 1) of matrx B (figure 6). Authors of
SUMMA[8] also took this approach. Cannon’s algorithm gathers only parts of
rows and columns of A and B for each round. After each round it rotates parts
of input data between processors. Our approach simplifies the algorithm, takes
up more memory, but loses less time on data reshuffle.

Looking for Tools for Parallel Programming 165

Authors of SUMMA algorithm describe[8] other optimisations used to gain
performance. We omit those optimisations as we want to focus on communication
aspects of algorithm.

C0,0 C1,0 C2,0 C3,0 C...,0

C0,1 C1,1 C2,1 C3,1 C...,1

C0,2 C1,2 C2,2 C3,2 C...,2

C0,3 C1,3 C2,3 C3,3 C...,3

C0,... C1,... C2,... C3,... C...,...




=

A0,0 A1,0 A2,0 A3,0 A...,0

A0,1 A1,1 A2,1 A3,1 A...,1

A0,2 A1,2 A2,2 A3,2 A...,2

A0,3 A1,3 A2,3 A3,3 A...,3

A0,... A1,... A2,... A3,... A...,...




*

B0,0 B1,0 B2,0 B3,0 B...,0

B0,1 B1,1 B2,1 B3,1 B...,1

B0,2 B1,2 B2,2 B3,2 B...,2

B0,3 B1,3 B2,3 B3,3 B...,3

B0,... B1,... B2,... B3,... B...,...




P0,0

P0,1

P1,0

P1,1

Fig. 6. The schema of sub-matrix splitting in our algorithm and in SUMMA algorithm.

This algorithm has been chosen because of it’s characteristics. It is an ex-
ample of disjoint parallelism defined by C. A. R. Hoare. All processors use over-
lapping parts of matrices A and B. But each processor writes only its own part
of matrix C. No other process depends on parts of matrix C that is written by
other processor.

In order to gain some experience we developed a version of algorithm working
on a cluster. This cluster is called Virtual Loglan Processor. Nodes are connected
by network. This leads to the following assumption on data:

– the data are distributed over network (e.g. because they were registers in
this distributed way), or
– there is not enough space to store all three matrices A,B,C on one computer,

Below we present our implementation:

Listing 1. matrix multiplication in LOGLAN with Alien Call protocol
1 program Matr ixMul t ip l i ca t i on ;
2 un i t S l i c eMat r ix : c l a s s (x1 , x2 , y1 , y2 , s i z e : integer) ;
3 var T: a r rayo f a r rayo f real , i , k : integer ;
4 un i t mult : function (x : S l i c eMat r ix) : S l i c eMat r ix ;
5 var i , j , k : integer , s : real ;
6 begin
7 r e s u l t := new S l i c eMat r ix (x . x1 , x . x2 , y1 , y2 , s i z e) ;
8 for j := y1 to y2 do
9 for i := x . x1 to x . x2 do
10 s :=0;
11 for k := 1 to s i z e do
12 s := s + T(j , k) ∗ x .T(k , i) ;
13 od ;
14 r e s u l t .T(j , i) := s ;
15 od ;
16 od ;
17 end mult ;
18
19 begin
20 writeln (” c r ea t e matrix ” , x1 , x2 , y1 , y2) ;
21 array T dim(y1 : y2) ;
22 for i :=y1 to y2 do
23 array T(i) dim (x1 : x2) od ;
24 end S l i c eMatr ix ;

166 Andrzej Zadrożny

25
26 uni t Table : p roce s s (node , s i z e : integer) ;
27 var Tab : S l i c eMat r ix , k : integer ;
28 un i t get : function (i , j : integer) : real ;
29 begin r e s u l t :=Tab .T(j , i) ; end get ;
30 un i t put : procedure (i , j : integer , wartosc : real) ;
31 begin Tab .T(j , i) := wartosc ; end put ;
32 un i t f i n : procedure ; begin cont inue := fa l se end f i n ;
33 var cont inue : boolean ;
34 begin
35 Tab:=new S l i c eMatr ix (1 , s i z e , 1 , s i z e , s i z e) ;
36 cont inue := true ;
37 k :=0;
38 return ;
39 while cont inue do
40 accept put , get , f i n ;
41 od ;
42 end Table ;
43
44 uni t Mu l t i p l i e r : p roce s s (node , x , x2 , y , y2 , s i z e : integer , A,B,C: Table)

;
45 var sc , sa , sb : S l i ceMatr ix , i , j : integer , tmp : real ;
46 begin
47 return ;
48 sa := new S l i c eMat r ix (1 , s i z e , y , y2 , s i z e) ;
49 sb := new S l i c eMat r ix (x , x2 , 1 , s i z e , s i z e) ;
50 for i :=1 to s i z e do
51 for j :=y to y2 do
52 sa .T(j , i) := A. get (j , i) ;
53 od ;
54 for j :=x to x2 do
55 sb .T(i , j) := B. get (i , j) ;
56 od ;
57 od ;
58 sc := sa . mult (sb) ;
59 for j :=y to y2 do
60 for i :=x to x2 do
61 c a l l C.put (i , j , sc .T(j , i)) ;
62 od ;
63 od ;
64 end Mul t i p l i e r ;
65
66 var A,B,C: Table , D: Mu l t ip l i e r , i , j ,m, n , n2 , node : integer ;
67 begin
68 n := 2 ;
69 m := 1000;
70 node :=1;
71 n2 := m div n ;
72
73 A := new Table (node ,m) ;
74 resume (A) ;
75
76 B := new Table (node ,m) ;
77 resume (B) ;
78
79 C := new Table (node ,m) ;
80 resume (C) ;
81 for i := 1 to n do
82 for j := 1 to n do
83 D := new Mul t i p l i e r (
84 (i −1)∗n+j +1 ,(i −1)∗n2+1, i ∗n2 ,
85 (j−1)∗n2+1, j ∗n2 , m, A,B,C
86) ;
87 resume (D) ;
88 od
89 od ;
90 end program Matr ixMul t ip l i ca t i on

Looking for Tools for Parallel Programming 167

For comparison we provide a quotation of MPI implementation of SUMMA
algorithm from the paper[8].

Listing 2. matrix multiplication in C with MPI (SUMMA algorithm)
1 #include ”mpi . h”
2 /∗ macro for column major indexing ∗/
3 #define A(i , j) (a [j ∗ lda + i])
4 #define B(i , j) (b [j ∗ ldb + i])
5 #define C(i , j) (c [j ∗ l dc + i])
6 #define min(x , y) ((x) < (y) ? (x) : (y))
7
8 int i o n e =1;
9 double d one =1.0 ,
10 d ze ro =0.0;
11 void pdgemm(m, n , k , nb , alpha , a , lda , b , ldb , beta , c , ldc , m a , n a ,

m b , n b , m c , n c , comm row , comm col , work1 , work2)
12 int m, n , k ,
13 nb ,
14 m a [] , n a [] ,
15 m b [] , n b [] ,
16 m c [] , n c [] ,
17 lda , ldb , ldc ;
18 double ∗a , ∗b , ∗c ,
19 alpha , beta ,
20 ∗work1 , ∗work2 ;
21 MPI Comm comm row , comm col ;
22 {
23 int myrow , mycol ,
24 nprow , npcol ,
25 i , j , kk , iwrk ,
26 icurrow , i c u r c o l ,
27 i i , j j ;
28 double ∗temp ;
29 double ∗p ;
30
31 MPI Comm rank(comm row , &mycol) ;
32 MPI Comm rank(comm col , &myrow) ;
33
34 for (j =0; j<n c [mycol] ; j++)
35 for (i =0; i<m c [myrow] ; i++)
36 C(i , j) = beta ∗ C(i , j) ;
37 icurrow = 0 ; i c u r c o l = 0 ;
38 i i = j j = 0 ;
39
40 temp = (double ∗) mal loc (m c [myrow]∗nb∗ s izeof (double)) ;
41 for (kk=0; kk<k ; kk+=iwrk) {
42 iwrk = min(nb , m b [icurrow]− i i) ;
43 iwrk = min(iwrk , n a [i c u r c o l]− j j) ;
44
45 i f (mycol == i c u r c o l) {
46 d lacpy (”General ” , &m a [myrow] , &iwrk , &A(0 , j j) , &lda , work1

, &m a [myrow]) ;
47 }
48
49 i f (myrow == icurrow) {
50 d lacpy (”General ” , &iwrk , &n b [mycol] , &B(i i , 0) , &ldb , work2

, &iwrk) ;
51 }
52
53 RING Bcast (work1 , m a [myrow]∗ iwrk , MPI DOUBLE, i cu r c o l , comm row

) ;
54 RING Bcast (work2 , n b [mycol]∗ iwrk , MPI DOUBLE, icurrow , comm col

) ;
55
56 dgemm (”No transpose ” , ”No transpose ” , &m c [myrow] , &n c [mycol

] , &iwrk , &alpha , work1 , &m b [myrow] , work2 , &iwrk , &d one , c ,
&ldc) ;

168 Andrzej Zadrożny

57
58 i i += iwrk ; j j += iwrk ;
59 i f (j j>=n a [i c u r c o l]) {
60 i c u r c o l++; j j = 0 ;
61 } ;
62 i f (i i>=m b [icurrow]) {
63 icurrow++; i i = 0 ;
64 } ;
65 }
66 f r e e (temp) ;
67 }
68 RING Bcast (double ∗buf , int count , MPI Datatype type , int root ,

MPI Comm comm) {
69 int me, np ;
70 MPI Status s t a tu s ;
71 MPI Comm rank(comm, me) ; MPI Comm size (comm, np) ;
72 i f (me != root)
73 MPI Recv (buf , count , type , (me−1+np)%np , MPI ANY TAG, comm) ;
74 i f ((me+1)%np != root)
75 MPI Send (buf , count , type , (me+1)%np , 0 , comm) ;
76 }

Both examples are shortened for the purpose of presentation. Complete
source code of our example is in git repository[9]. One should notice that our
implementation uses single communication routine (lines 52, 55, 61). It calls
remote method via Alien Call which is part of the language.

On the other hand SUMMA algorithm calls multiple MPI functions (lines
31, 32, 71, 73, 75) and uses as many MPI specific data types (lines 21, 70, 53,
54). As we can see inclusion in language remote procedure call can be beneficial.

3 New environment

Our algorithm has been implemented in LOGLAN’82 language. It was compiled
on compiler from 1993 with later minor changes. Algorithm has been tested
on experimental runtime environment Virtual Loglan Processor (VLP) imple-
mented as a part of the author’s research[10]. This new virtual machine uses
wxWidgets and Boost libraries and is already prepared for running on Windows
and Linux platforms. Change in virtual machine also entailed some changes in
Loglan interpreter. Most substantial were interprocess communication changes.

One of our objectives was to check if we can run algorithm in parallel without
extensive changes in the virtual machine and without changes in the compiler.
We wanted only to check how big changes are required to create truly parallel
environment. On the other hand we have made great effort in preparing new
virtual machine and adapting whole package to nowadays operating systems.

Our second objective was to gather experience and experiment with model.
As a result of minor changes in virtual machine our algorithm was running as

4 processes on single machine on 4 CPU cores. This way we have simulated par-
allel environment. In essence, the computations were performed as in distributed
environment.

Alien Call protocol makes some assumption that makes it difficult to par-
allelize computations. Each process has access only to fields declared inside of
it or passed to it as arguments. If two processes run on the same interpreter

Looking for Tools for Parallel Programming 169

they are running concurrently. Memory sharing between processes on separate
interpreters is impossible at all.

All resources are private. This assumption comply with the concept of shared
nothing architecture.

In Alien call protocol an active process object executes its own instructions
or method ordered remotely by other process. There is no possibility to execute
two methods at the same time. This clearly shows that we are looking for other
programming model. We would like to have a system which can execute more
than one non conflicting method at a time. For this purpose we need to adopt a
schema to manage or designate methods as conflicting or not.

4 Effects and perspectives

The main profit from the research is the increase of scalability of the Virtual
Loglan Processor. Multiple instances can be run on single machine and effectively
utilize ale available CPU cores.

We have gained some experience from the examples discussed above. We
sketch a vision of the new model of parallel computations.

4.1 New model requirements

– programmer will have possibility to assign processes to particular CPU core,
– processes inside same interpreter can directly share memory objects,
– programmer will be able to manage or designate conflicting methods,
– parallel processes will be run truly parallel.

4.2 Development’s roadmap

Virtual Machine rewrite done
Multi-platform runtime system adapted for modern op-
erating systems written using wxWidgets and Boost li-
braries.

Alien Call - array variables in-planning
Allowing passing of array variables between processes.
Will require compiler update or rewrite.

Parallel process in-planning
Creation of completely new type of programming language
component. Will require compiler update or rewrite.

Parallel computation model in-progress
Design, testing and verification of the model for parallel
computations.

Below, we present a concept of code that we think should be runnable in the
proposed parallel processing model.

170 Andrzej Zadrożny

Listing 3. parallel matrix multiplication concept
1 program Para l l e lMa t r i xMu l t i p l i c a t i on ;
2
3 un i t Table : c l a s s (node , s i z e : integer) ;
4 var T: a r rayo f a r rayo f real , k : integer ;
5 begin
6 array T dim(y1 : y2) ;
7 for i :=y1 to y2 do
8 array T(i) dim (x1 : x2) od ;
9 end Table ;
10
11 uni t Mu l t i p l i e r : p a r a l l e l p r o c e s s (node , x1 , x2 , y1 , y2 , s i z e : integer , A,B

,C: Table) ;
12 var i , j : integer , s : real ;
13 begin
14 return ;
15 for j := y1 to y2 do
16 for i := x . x1 to x . x2 do
17 s :=0;
18 for k := 1 to s i z e do
19 s := s + A.T(j , k) ∗ B.T(k , i) ;
20 od ;
21 C.Tab(j , i) := s ;
22 od ;
23 od ;
24 end Mul t i p l i e r ;
25
26 var A,B,C: Table , D: Mu l t ip l i e r , i , j ,m, n , n2 , node : integer ;
27 begin
28 n := 2 ;
29 m := 1000;
30 node :=1;
31 n2 := m div n ;
32
33 A := new Table (node ,m) ;
34 B := new Table (node ,m) ;
35 C := new Table (node ,m) ;
36 for i := 1 to n do
37 for j := 1 to n do
38 D := new Mul t i p l i e r (
39 node , (i −1)∗n2+1, i ∗n2 ,
40 (j−1)∗n2+1, j ∗n2 , m, A,B,C
41) ;
42 resume (D, (i −1)∗n+j+1) ;
43 od
44 od ;
45 end program Para l l e lMa t r i xMu l t i p l i c a t i on

This code is much shorter than our simulation example. Thanks to memory
sharing between parallel processes all data synchronisation code is unnecessary.
Also code required by sub-matrix allocation was unnecessary.

Process allocation on particular core is done by resume command with addi-
tional parameter.

Acknowledgements

I thank my advisor professor Andrzej Salwicki for his support and all the com-
ments.

The paper is co-founded by the European Union from resources of the Euro-
pean Social Fund. Project PO KL “Information technologies: Research and their
interdisciplinary applications”, Agreement UDA-POKL.04.01.01-00-051/10-00.

Looking for Tools for Parallel Programming 171

References

1. Hoare, C.A.R.: Towards a theory of parallel programming. In Hoare, C.A.R.,
Perrott, R.H., eds.: Operating Systemss Techniques. Academic Press, New York
(1972)

2. Hoare, C.A.R.: Monitors: an operating system structuring concept. Communica-
tions of the ACM. 17(10) (October 1974) 549–557

3. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters.
In: Proceedings of the 6th Conference on Symposium on Opearting Systems Design
& Implementation - Volume 6. OSDI’04, Berkeley, CA, USA, USENIX Association
(2004) 10–10

4. Matei Zaharia, e.a.: Resilient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing, NSDI 2012 (2012)

5. Bartol, W.e.a.: Report on the Loglan’82 programming language. PWN Polish
Scientific Publisher (1984)

6. Ciesielski, B.: An implementation of distributed processes in Loglan’82. Master’s
thesis, Institute of Informatics, Warsawa University (1988) http://lem12.uksw.
edu.pl/images/2/29/ArtBolkaCiesielskiego1988.pdf.

7. Cannon, L.E.: A cellular computer to implement the Kalman Filter Algorithm.
PhD thesis, Montana State University (1969)

8. van de Geijn, R.A., Watts, J.: Summa: scalable universal matrix multiplication
algorithm. Concurrency: Practice and Experience 9(4) (April 1997) 255–274

9. Loglan: Distributed matrix multiplication in Loglan repository on github. https:
//github.com/lemlang/dmml/ (2015) [Online; accessed 30-September-2015].

10. Loglan: Loglan and VLP online repository on sourceforge. http://sourceforge.
net/projects/loglan82/ (2015) [Online; accessed 30-September-2015].

