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Abstract. In this paper scalable and parallelized method for cluster
analysis based on random walks is presented. The aim of the algorithm
introduced in this paper is to detect dense subgraphs (clusters) and
sparse subgraphs (bridges) which are responsible for information spread-
ing among found clusters. The algorithm is sensitive to vertices assign-
ment uncertainty. It distinguishes groups of nodes which form sparse
clusters. These groups are mostly located in places crucial for informa-
tion spreading so one can control signal propagation between separated
dense subgraphs by using algorithm provided in this work. Authors have
also proposed new coefficient which measures quality of given clustering
in a sense of an information spread control between clusters. Measure
presented in this paper can be used for determining quality of whole
partitioning or a single bridge.

1 Introduction

The most common way to grasp real world phenomena is to distinguish ob-
jects (elements, entities) and relations (interactions etc.) between them. From a
global perspective the entities and their relations form networks. The distribu-
tion of relations is usually not uniform and hence some structures of elements and
their relations may be distinguished. Mining such structures has the potential
of discovering new knowledge about the network or its parts or even members.
One of the basic steps of network mining is splitting of the network, or rather
its representation as a graph, into clusters. Clusters are groups of nodes which
are interconnected in a way distinguishing them from the surrounding network.
These groups or subsets of nodes are usually characterised by a denser set of
relations. Such subsets (clusters) can be interpreted in various ways. This cre-
ates a necessity for algorithms that can cope with diversity of possible meanings.
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Commonness of networks in everyday life (e.g. the Internet, data sets of citings)
implies using advanced methods to analyze them. The most common and natural
coding method for networks are graphs. Graph structure and the way of infor-
mation spread in networks are the most interesting fields of research in social
network community detection. In this paper scalable method of cluster analysis
based on random walks is presented. The method divides a graph into subsets,
where some of them can be used for information spread control. The main aim
of the algorithm presented in this paper is to detect dense subgraphs which can
be interpreted as tight communities and to detect relatively sparse subgraphs
interconnecting them called bridges, as they are deemed to bridge information
spread between the tight communities. The method provides clustering sensi-
tive to vertices assignment uncertainty. As a result of a introduced Parallelized
Locally Aggregated Random Walks (ParaLARW) algorithm one receives divi-
sion which distinguishes sparse groups of nodes responsible for signal transfer
between clusters.

2 Related Work

So far many algorithms for detecting communities in networks have been de-
veloped. Among most popular and most frequent used techniques one has to
distinguish four categories: bisection methods, hierarchical methods, combinator-
ical methods and spectral methods [1]. Because of the diversity of cluster analysis
problems, each of the areas is used in different situations. Choice of a method of
identifying clusters should be made so that the available knowledge about the
data could be used the most effectively. In practical tasks one mostly deals with
very large graphs, which frequently consist of hundreds of thousands nodes and
millions of edges. In such situations there is a limited number of methods which
provide a solution in a reasonable time. This is because of complexity problems
and difficulty of finding dense sets in large networks. An initial analysis, e.g.
estimation of expected number of dense sets, is hard to perform as well. These
are the reasons why hierarchic methods are mostly preferred in such situations.
The most efficient algorithms operate on smaller sets and then aggregate results
with a determined stop condition [2][3][4]. In this paper authors introduced a
parallelized version of hierarchic, scalable algorithm of cluster analysis which was
firstly proposed in [5]. This algorithm returns a very special partition. Among
standard clusters one can distinguish subgraphs which are sparse and cannot be
clearly assigned to any dense clusters. These special subgraphs enable control of
signal propagation between clusters. Such a situation is connected to a feature
of the MCL algorithm and it was fully discussed in section 2.1.
Many of articles speaking about modeling or controling the information spread
in networks focus on greedy selection of vertices that have the highest influence
in graph [6]. The main problem with such an approach is that user starts with
one the most influential vertex and then searches for the most influential node
in given neighbourhood. It can be easily seen that this kind of thinking produces
very local results. Additionaly it is very probable that first most influential ver-
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tex is deep in cluster. Finding few most influential nodes in social networks in
that way does not solve problem of signal propagation between clusters. The au-
thor of [7] noticed that vertices of high degree gather more information in their
neighborhood, while vertices of lower degree quickly transfer information inside
the graph. Similar behavior occurs in clusters obtained via MCL algorithm, as
we point at in 2.1. It was noticed, that in dense subsets information is transfered
relatively fast. It happens because such subsets have many internal edges and
a few on the outside. That creates the problem of communication between the
clusters, which should be solved by initiating signal transfer on the boundaries
of the clusters. This is what ParaLARW does. An interesting approach for iden-
tyfing influential veritices was presented in [8]. Authors analyzed dynamic social
networks and they developed algorithm which assigns dynamic influential value.
This coefficient is based on a probability of spreading influence through time.
It is calculated in a greedy way so there is again problem with local optimum.
Because it takes into account information from future states of a network it is
useless in static analysis. In work [9] authors introduced approach in which there
can be more than one type of influence. Every node can have a opinion which
is continous function of time. Despite that interesting approach authors assume
that influence of node is given by its degree. This assumption is too strong. It
is easy to imagine that vertex can have small degree but signal started in this
vertex will propagate very fast. This will happen in situation when such a node
is connected to several dense clusters.
In every work mentioned above vertices were considered separately. Algorithm
introduced in this paper provides division in a graph where some groups of ver-
tices can be used for signal diffusion control.

2.1 MCL Feature

During work on the scalable modification of Markov Clustering Algorithm (MCL)
very interesting feature was revealed. The figure 1 shows behaviour of the algo-
rithm in situation of three vertices.
In the figure 1 result of the standard MCL algorithm can be seen. Despite that
there is no distinction between these three nodes, the method has found two
clusters. It happened because probability mass ran out very fast from vertex
number 3 to other vertices. It should be noticed that there are several edges
between vertex number 3 and vertices 1 and 2. This is why the MCL method
decided to mark vertex 3 as a different, in a sense of probability mass distribu-
tion, subgraph. Role of a node 3 is to transfer random walker between vertices
1 and 2. It is not hard to imagine that nodes from figure 1 can be groups of
vertices. If one of the groups hidden underneath vertex 3 forms a sparse cluster
and its neighbouring clusters are dense then vertex 3 is a bridge candidate ac-
cording to a definition from section 3. As can be seen in section 5.1 bridges play
important role in information spread through networks. If one wants to reach
as many units as possible in shortest possible time then it is not recommended
to start in node located deep in a dense cluster. In such a situation signal will
need a lot of time to travel between different clusters. The best way is to identify



142 M. Wojtasiewicz, M. Kłopotek, K. Ciesielski

1

2

3

Feature of MCL Based on Random Walks

Fig. 1. MCL feature. Nodes 1 and 2 were pushed into one cluster and node 3 into a
second one.

bridges (if they exist) and initate signal in one or some of them. On the other
hand removing bridges adjacent to a considered cluster will make leaving that
cluster more difficult. One can control signal propagation over a graph by simply
opening and closing information flow through bridges.

3 ParaLARW Algorithm

Popular way of dealing with a complex problem is to divide it into smaller
parts. The point of this process is to minimize the complexity without losing key
data. One has to find optimal trade-off between global and local approach. The
algorithm presented in this paper is an answer to a problem of scalability of MCL
method [10]. That algorithm relies on simulating random walks on a network.
The MCL procedure comes down to multiplication of stochastic matrices. There
are several computational problems related. The most significant is multiplying
very large matrices. Because of that one has to have huge amount of operation
memory and computational power. At the beginning of the process stochastic
matrix is sparse but it becomes dense quickly, after several steps. As the matrix
gets more and more dense the operation memory starts to become insufficient.
It regards even small graphs. The solution suggested in this paper is based on
execution computations on specific subsets of graph. Dense subsets are separated
using the MCL algorithm locally and then aggregation step is performed. This
is a hierarchic method which results with multilevel clustering. Such a division
has an important advantage. Among selected clusters are subgraphs which are
not dense in a sense of a number of internal edges. Authors have named these
sparse subgraphs bridges candidates which were defined in section 4.
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3.1 Scheme

In this section authors recall a scheme of the LARW algorithm proposed in [5].
The scheme consists of three main steps which are discussed briefly below and
can be seen in figure 2.

Fig. 2. Flowchart of LARW algorithm

1. Find spanning tree T (G) of a given graph G. Now find vertex v which fulfills
condition:

V (T (G))min = argmin
u∈V (T (G))

(deg(u)) (1)

v = argmax
w∈G

(deg(w) : w ∈ V (T (G))min) (2)

where V (T (G)) is set of all vertices in graph G and deg(v) is a degree of
vertex v. Next, cut out neighbourhood of rank r of found vertex v. Save the
rest of a graph as G′. Repeat this step for all next G′ until reaching situation
when all nodes are assigned to some neighbourhood. This first clustering will
be called initial clustering.

2. Apply the MCL method for every cluster in initial clustering. Save received
results.

3. Aggregate every cluster from the second step to one supernode. Create a new
graph from supernodes and assign transition probabilities between them as a
sum of probabilities between vertices from considered clusters. Such a graph
save as G′′.
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4. If number of edges in G′′ (without loops) is equal to 0 then STOP otherwise
G = G′′ and go to step 1.

The ranks of neighbourhoods are chosen arbitrary once for all runs of the al-
gorithm. In future authors will investigate procedure with adaptive choice of
neighbourhoods orders.
The first step of the scheme above contains an important rule for choosing ver-
tices. This rule should cause a situation where vertices chosen firstly are located
near borders of clusters. Neighbourhood of that vertex probably consists of ver-
tices from different clusters. Every neighbourhood requires utilization of one
spanning tree in a graph so algorithm finds multiple spanning trees for multiple
neighbourhoods of initial clustering.
The MCL algorithm should find out that certain initial cluster has to be divided
according to borders of actual dense subsets.
Aggregation of clustering results with grouping vertices to a supernode is a
typical technique of hierarchic algorithms. As one can see proposed algorithm
returns multilevel clustering with more and more coarse partitioning. After one
run of LARW [5] one can choose the most adequate clustering between several
obtained. The main idea of the algorithm is to recognize where in the graph
are located borders of true clusters and then divide initial clusters along them.
Local approach satisfies requirement of scalability of algorithm for large datasets.
Hierarchic way ensures that vertices near to a border which are from different
clusters will be still separated. The LARW performs tens or hundreds times
faster than MCL [10] for large sets and that advantage becomes higher with
larger graphs.
In this paper the parallel version of LARW was introduced. Because of structure
of the algorithm the second step (Run MCL for every initial cluster) from figure
2 can be easily done in parallel manner. Every run of MCL on any initial cluster
is independent from the others so can be performed by different thread. Firstly
introduced in [5] LARW algorithm is a single thread version of ParaLARW. Table
1 contains running times in seconds for every part of LARW and ParaLARW.
Times were measured only for the most demanding first stage of algorithms. It
means before any aggregation. As can be seen by parallelization of LARW one
can achieve even 30% profit of a running time. Of course such method should
be applied only to large graphs where time needed for proper initialization of
parallel computations is significantly smaller than time needed for multiplying
stochastic matrices.

4 Bridges Quality

In this section the new clustering quality coefficient is presented. Until now many
different coefficients were developed and considered [11]. A significant number
of them is concentrated on measuring how dense clusters are. One of them is
the most frequently used. It is so called modularity [12]. Value of modularity
measures how far from a random graph is certain cluster. In this paper authors
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Graphs Initial 1 thread 3 threads Aggregation
clustering MCL MCL

Snapshot 507.75 1006.25 694.6 359.82
Gnutella 270.46 30.32 22.64 129.95
HepPh 71.52 23.76 16.81 31.19
HepTh 51.81 20.87 14.62 22.37

Coautorship 36.21 15.92 13.46 3.03
Polblog 0.12 8.97 9.85 0.2
Football 0 0.28 0.58 0.01
Lesmis 0 0.2 0.52 0

Dolphins 0 0.2 0.55 0.2
Zachary 0.02 0.21 0.53 0.02

Table 1. Table of running times in seconds for every part of algorithm.

proposed a new coefficient which was developed to measure quality of found
bridges. It is clear that some bridges will be more important in a sense of infor-
mation spread in network. Proper measurement of bridges quality will allow to
choose clustering which is the best for information diffusion control.
Well defined coefficient should take into account three important factors: a prob-
ability that signal will travel between two clusters through given bridge (Pbridge),
density of neighbouring clusters (ds) and fraction of bridge vertices which di-
rectly participate in signal transfer (Fbridge). Together with introduction of new
coefficient, the definition of bridge is needed. Intuitively bridges are subgraphs
which have fewer internal edges than external ones. Additionaly they have at
least two neighbouring clusters and at least two of those clusters are dense. Of
course bridges should connect dense clusters stronger than edges that connect
them directly. Formally, they are specified by Defintion 1. as follows:

Definition 1.
Among clusters one can distinguish two categories:

1) dense cluster with dsC > 0.5 where ds of cluster C is defined as a number of
edges within cluster divided by half of sum of degrees in the cluster.
2) the remaining ones which may be called sparse ones.
Among the sparse clusters one can distinguish bridge candidates that is ones
with two or mores neighbouring dense clusters. For the bridge candidates statis-
tics Pbridge, Fbridge and dsbridge were defined as follows:

Pbridge =
Ebridge(C1, C2, . . . , Ck)

Einter(C1, C2, . . . , Ck) + Ebridge(C1, C2, . . . , Ck)
, (3)

Fbridge =
V (bridge)− V (bridge)iso

V (bridge)
, (4)

dsCj
=

E(Cj)
1
2

∑
v∈V (Cj)

deg(v)
, (5)
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dsbridge =
dsC1

+ dsC2
+ . . .+ dsCk

k
, (6)

where Einter(C1, C2, . . . , Ck) is a number of edges which directly connect dense
clusters C1, C2, . . . , Ck (these clusters are all the dense neighbors of the bridge
candidates), Ebridge(C1, C2, . . . , Ck) is a number of edges which connect bridge
to its neighbouring dense clusters, V (bridge)iso is number of bridge candidate
vertices which are not directly connected to dense clusters, V (bridge) is a num-
ber of all vertices which form given bridge candidate and deg is a degree of a
given vertex. Bridge candidate for which Pbridge > 0.5 will be called bridge.

All bridges considered in further part of this paper follow definition 1.
The measure of bridge quality, InfoSpredbridge, will be introduced.

InfoSpreadbridge =
3 ·Pbridge · dsbridge · Fbridge

Pbridge + dsbridge + Fbridge
. (7)

Intuitively, a dense cluster is one that would capture a random walker within
it for a large number of steps. They may be viewed as tight communities. A
bridge would participate in the transfer of a random walker between two dense
clusters on the rare occasions when he leaves a dense cluster. Pbridge shows how
often random walker will travel through bridge if such a transfer occurs. Fbridge

tells about importance of internal nodes of bridge candidate for such a trans-
fer. dsbridge expresses how difficult it is for random walker to escape the dense
clusters that bridge candidate connects. These three quantities characterize dif-
ferent aspects of being a connection between communities. All three measures
range between 0 and 1. As a consequence, also InfoSpreadbridge lies in the same
range. To compare two different clusterings one can use sum of InfoSpread values
over all bridges. Such a measure was shown in table 4. In future work authors
will use values of InfoSpread not only to determine which bridge candidates are
proper bridges but also to aggregate them. Such a procedure will result in a
smaller number of bridges but characterised by more important role in informa-
tion transfer. Rest of bridges candidates will be joined to dense clusters in order
to maximize the value of modularity.

5 Results

5.1 Clustering Quality

In this section we compare the proposed ParaLARW algorithm with three meth-
ods: Louvain algorithm [2], Walktrap [3] and FastGreedy algorithm [4]. These
three methods maximize modularity coefficient [12]. Louvain method is a hierar-
chic, greedy algorithm. It aggregates neighbouring vertices in order to maximize
modularity. Walktrap works similarly to Louvain but distances between vertices
are calculated using short random walks. Walktrap uses gain of modularity as
a stop condition of aggregation step. The FastGreedy method is very similar to
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Louvain algorithm. The main difference is that Louvain is multi-level (hierarchic)
clustering method. Because of that FastGreedy results with slightly different par-
titioning. However, authors noticed that running time needed to receive results
with the FastGreedy method is significantly smaller and this is because of tricky
use of special data structures and clever algorithm implementation.
Because ParaLARW results in multilevel clustering, so partition which corre-
sponds to the highest value of modularity has been chosen. We used for evalua-
tion datasets listed in table 2 and there one can see number of vertices (V(G))
and edges (E(G)) of chosen graphs. All of datasets can be found on [13] or [14].
In table 4 authors presented four values: modularity [12], assortativity [11], num-
ber of found bridges and values of sum of InfoSpread Coefficient introduced in
section 4. Because of definition 4 if clustering has higher number of true bridges
it has higher potential of information spread over graph. Sum of InfoSpread is
useful in case when there is similar number of true bridges in both compared
partitionings. Average values of InfoSpread could be misleading because distri-
butions of InfoSpread values which are skew. In future work authors will investi-
gated more measures for describing bridges. These are important statistics which
measure quality of resulted clusterings. Authors have investigated four values of
rank r which determines neighbourhoods: 1, 2, 3, 4. Also four values of inflation
were investigated. These values are 1, 1.25, 1.5, 2. Previous analysis showed that
setting larger values of inflation results with very fine clustering. In table 4 one
can see statistics of clustering which is characterized with the highest value of
modularity.

Graphs #V(G) #E(G)
Slashdot 82144 500481
Gnutella 62586 147892
HepPh 34546 420877
HepTh 27769 352285

Coauthorship 16264 47594
Polblog 1490 16726
Football 115 615
Lesmis 77 254

Dolphins 62 159
Zachary 34 75

Table 2. Table of graphs descriptions.

As can be seen in table 4 for almost every graph, values of modularity and as-
sortativity are lower in case of ParaLARW algorithm. Other three algorithms
are aimed at modularity maximization so it is hard to compete in that field.
However, after analysis of the last two columns (number of found bridges and
sum of their InfoSpread values) of table 4 one will see that ParaLARW almost



148 M. Wojtasiewicz, M. Kłopotek, K. Ciesielski

always outperforms other algorithms. It is worth to mention that authors have
chosen ParaLARW clustering with highest value of modularity. Probably there
can be found a partitioning with lower modularity but higher value of the sum
of InfoSpread Coefficient. Interesting thing is that Louvain and FastGreedy al-
gorithm did not find almost any bridges at all. It is because they are greedy
algorithms strictly aimed to modularity maximization. Second interesting ob-
servation is that if ParaLARW did not find bridge no other algorithm did. It is
quite clear that for small graphs it is very difficult to distinguish any vertices
which lie between subgraphs and transfer random walker between dense clusters.
Only one algorithm is really devoted to detect bridges and it is Walktrap. This
method is based on random walks as well but it is aimed to maximization of
modularity rather than InfoSpread. However, Walktrap finds more bridges in
case of HepTh network. It is related to the fact that Walktrap has tendency to
result with clustering generated by neighbourhoods of hubs - vertices of a very
high degree. After analysis of structure of networks HepTh and HepPh authors
realized that these two citition networks have very skew degree distribution. It
means that there are a few hubs and rest are vertices with relatively small de-
gree. In such a situation the Walktrap distinguishes large subgraphs with many
internal edges generated by hubs and at the same time cuts off vertices which
are between neighbourhoods of these hubs. The way of finding bridges in case of
ParaLARW and Walktrap are significantly different. It is because of that Walk-
trap uses short random walks only to calculate distances between pairs of nodes
while ParaLARW simulates random walk for determining approximated transfer
probability distribution. As was shown in section 2.1 the MCL algorithm is able
to distinguish groups of vertices which are responsible for information transfer
between dense clusters. In future authors will investigate different ways of de-
termining initial clustering which has important role in applying MCL locally.
Proposed method clearly finds proper bridges what is shown more precisely in
section 5.2.

5.2 Signal Initialization

Possible way of analyzing bridges influence is to simulate how fast signal discovers
a graph when it was started in a bridge against signal initialization inside a
cluster. To do such simulation Markov Chain was involved again. For every
bridge authors did the same procedure:

1. Identify bridge and cut out subgraph induced by vertices from considered
bridge and adjacent clusters. Call that subgraph Gsub. Set of neighbouring
clusters does not contain other bridges.

2. Simulate signal propagation by multiplying stochastic matrices (related to
Gsub) 1,2,. . .,d times where d is diameter of Gsub. For every cluster and
bridge in Gsub, in every step calculate how much of information has spread
outside them in certain number of steps.

The simulation performed in step 2. was done by calculating fraction of positive
transition probabilities from given cluster to the rest of analyzed subgraph Gsub.
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Fractions where calculated for every step of a random walker. Now it is enough
to compare fractions of positive probabilities derived from bridge and derived
from its neighbouring clusters. To receive proper value for whole graph authors
calculated two average fractions of positive probabilities, over all found bridges
and over all neighbouring dense clusters, for every step of random walker. Every
bridge has its Gsub with neighbouring dense clusters. Then for every step of ran-
dom walker average differences of the fractions were calculated. Of course number
of steps as well as the diameter can be different in different Gsub. Therefore cal-
culated difference is a measure of an average coverage difference calculated for
every step of random walker, for different signal initializations spots. The figure
3 shows results of ParaLARW bridges impact. Simulations were provided for
datasets where at least one ParaLARW bridge was found.
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Fig. 3. Signal Initialization with ParaLARW

The figure 3 presents a potential of signal diffusion by using ParaLARW bridges.
It proves that initialization of a signal in a bridge leads to higher coverage of a
network than initialization in any other neighbouring dense cluster. All coverage
differences are non-negative which means that signal started in a bridge explores
graph faster. However, these graphs are only for academic research and are not
interesting in a sense of practical usage. As can be seen in the figures 8, 4 ran-
dom walker travels faster when the value of InfoSpread Coefficient is significantly
higher. It means that proposed coefficient truly measures quality of a clustering
with respect to its potential of information spreading. Clearly, with higher value
of the InfoSpread for ParaLARW partitioning, faster exploration in several ini-
tial steps of networks Coauthorship and Slashdot is achieved. Such a behaviour
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is preserved also for HepTh but with advantage for Walktrap(figure 5). In the
case of HepPh (figure 6) the values of InfoSpread are very similar for Walktrap
and ParaLARW but Walktrap bridges seem to be located more properly. It can
be related to the fact that Walktrap results with larger clusters and it is very
difficult to transfer random walker between dense clusters. Also Walktrap clus-
tering has higher value of the modularity. Important conclusion appears. The
ParaLARW does not work very well for citation networks. In near future it will
be improved in this direction. The best performance of ParaLARW can be seen
in the figure 7. The difference between proposed method and Walktrap is huge.
It is worth mentioning that both sum of InfoSpread and modularity is higher
in case of ParaLARW. There is no need to provide comparison with Louvain
or FastGreedy algorithms because these methods hardly found any bridges and
their values of InfoSpread are significantly smaller. Detailed analysis shows that
sum of InfoSpread is related to dynamics of signal propagation in first steps while
value of modularity determines maximal coverage differences. It is intuitive. If
value of sum of InfoSpread is high so there is a lot of good bridges what means
that signal started in in one of them will propagate quickly. In the same time
value of modularity shows how well separated are dense clusters. In case of high
value of modularity it is very hard for random walk to get out of dense cluster.
That is why higher value of modularity implies higher maximal coverage differ-
ence. These two statistics should be considered jointly while analyzing bridges
potential of information dispersion.
Both algorithms resulted with statistical significant difference in coverage but
for almost every set confidence intervals are wider in case of Walktrap. Authors
provided estimation quality with significance level equal 5%. Less acurate estima-
tion for graphs HepPh and Coauthorship implies that there is hardly a difference
between coverages achieved by ParaLARW and Walktrap, even if Walktrap re-
sults with higher mean. The rest of sets are characterized by good estimation
with narrow confidence intervals.
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Fig. 4. Signal Initialization in Coauthorship network with ParaLARW and Walktrap
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Graphs Algorithm Modu Assorta Found InfoSpread
larity tivity bridges sum

Louvain 0.335 0.449 1 0.364
ParaLARW 0.157 0.163 534 102.31

Slashdot Walktrap 0.186 0.265 123 66.03
FastGreedy 0.319 0.469 1 0.327

Louvain 0.5 0.53 0 0
ParaLARW 0.407 0.408 1501 556.953

Gnutella Walktrap 0.356 0.494 199 75.967
FastGreedy 0.505 0.562 0 0

Louvain 0.723 0.803 0 0
ParaLARW 0.372 0.399 53 27.1

HepPh Walktrap 0.681 0.775 41 26.036
FastGreedy 0.526 0.857 0 0

Louvain 0.657 0.723 0 0
ParaLARW 0.328 0.38 71 39.55

HepTh Walktrap 0.566 0.613 276 160.622
FastGreedy 0.506 0.76 0 0

Louvain 0.84 0.866 0 0
ParaLARW 0.666 0.674 140 83.2

Coauthorship Walktrap 0.742 0.78 20 10.128
FastGreedy 0.78 0.873 0 0

Louvain 0.427 0.843 0 0
ParaLARW 0.412 0.828 0 0

Polblog Walktrap 0.426 0.851 0 0
FastGreedy 0.427 0.847 0 0

Louvain 0.605 0.674 0 0
ParaLARW 0.601 0.66 0 0

Football Walktrap 0.603 0.671 0 0
FastGreedy 0.55 0.671 0 0

Louvain 0.556 0.702 0 0
ParaLARW 0.528 0.66 0 0

Lesmis Walktrap 0.521 0.714 0 0
FastGreedy 0.5 0.652 0 0

Table 3. Table of clustering results.
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Graphs Algorithm Modu Assorta Found InfoSpread
larity tivity bridges sum

Louvain 0.519 0.679 0 0
ParaLARW 0.455 0.538 1 0.411

Dolphins Walktrap 0.489 0.735 0 0
FastGreedy 0.496 0.621 0 0

Louvain 0.415 0.6 0 0
ParaLARW 0.401 0.56 1 0.595

Zachary Walktrap 0.346 0.545 0 0
FastGreedy 0.387 0.621 0 0

Table 4. Table of clustering results.
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Fig. 6. Signal Initialization in HepPh network with ParaLARW and Walktrap
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Fig. 7. Signal Initialization in Gnutella network with ParaLARW and Walktrap
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5.3 Bridges characteristics

In this section authors described basic statistics of ParaLARW bridges for the
most interesting graphs. Relationship between size of a bridge and InfoSpread
Coefficent was analyzed as well.
Firstly it is important to check what percentage of bridge candidates is in fact
true, useful bridges.

Graph Bridge True Percent
candidates bridges

Coauthorship 252 140 55.56%
HepTh 815 71 8.712%
HepPh 944 53 5.61%
Gnutella 1501 1501 100%
Slashdot 743 534 71.87%

Table 5. Table of fraction of true bridges

Graph Mean Mean Std.dev. Std.dev.
non-bridge true bridge non-bridge true bridge
candidate candidate

Coauthorship 0.247 0.594 0.108 0.15
HepTh 0.044 0.557 0.081 0.124
HepPh 0.039 0.517 0.069 0.136
Gnutella 0 0.371 0 0.081
Slashdot 0.092 0.156 0.028 0.062

Table 6. Table of means and standard deviations of InfoSpread Coefficient for bridge
candidates and true bridges

As can be seen in table 5 only citation graphs have percentage of true bridges
below 50%. The best result can be seen in row with Gnutella set what is very
consistent with signal propagation from figure 7. Table 6 shows averages and
standard deviations of InfoSpread. Average values were compared here because
these are sparse clusters of different types - non-bridge candidates and true
bridges. Non-bridge candidates cannot be used for information spread control
because they do not transfer enough information. This is why sum of InfoSpread
is meaningless in this situation. One can easily see that average values are sig-
nificantly higher in the case of true bridges. More detailed comparison will be
part of future work. Next interesting question is whether size of a bridge is corre-
lated to value of InfoSpread Coefficient. Authors investigated occurence of such
a dependency by constructing simple linear model and analyzing significance of
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coefficient of explanatory variable which is InfoSpread. In the figure 9 one can
see the relation between InfoSpread Coefficient and size of a bridge.
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Fig. 9. Dependency between InfoSpread and size of a bridge for Couauthorship network

As can be seen in figure 9 InfoSpread Coefficent favours smaller bridges in
case of Coauthorship set. Detailed statistics for all sets where placed in table 7.

Graph Coefficient p-value
Coauthorship -5.439 0.00462
HepTh -302.3 0.0913
HepPh -5.317 0.186
Gnutella -66.73 0
Slashdot -48.596 0

Table 7. Tabel of coefficients of linear models where InfoSpread was modeled by size
of bridges.

Table 7 shows what can be seen in figure 9. Higher values of InfoSpread
Coefficient correspond to smaller sizes of bridges. Taking 5% of significance level
one can see that citations networks do not have this property. Figures 10a and
10b show relation in case of graphs HepTh and HepPh respectively.
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(a) InfoSpread vs bridge size for HepTh
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(b) InfoSpread vs bridge size for HepPh

Interesting observation is that structures of bridges in both cases are totally
different. In case of HepTh all bridges are small except one. This single bridge
on the other hand is very big. In second case sizes of bridges are very different
and do not concentrate on small or high values of InfoSpread Coefficient.
Such a correlation between bridge size and InfoSpread can be induced by fact
that InfoSpread consists partialy of information how many nodes of given bridge
directly take part in signal transfer. In smaller bridges larger fraction of vertices
will take part in signal propagation. That is why authors investigated correlation
between size of a bridge and every component of InfoSpread Coefficient. For this
purpose authors built one linear model for each set but this time every model
has three explanatory variables. Each variable is one part of InfoSpread. Such a
model will show which part is the most significant in sense of explaining size of
a bridge.

Graph Coauthorship HepTh HepPh
Coefficent p-value Coefficent p-value Coefficent p-value

Probability -4.175 0.03 -142 0.317 -2.974 0.33
Density 4.714 0.227 -706.9 0.026 -2.954 0.584
Fraction -4.427 0.004 132.7 0.421 -3.631 0.391

Table 8. Tabel of detailed coefficients of linear models, part 1.

Tables 8 and 9 show very interesting results. Only in case of Coauthorship net-
work part of InfoSpread which corresponds to fraction of nodes is significant with
the 5% level of significance. The second very interesting observation is that in ev-
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Graph Gnutella Slashdot
Coefficent p-value Coefficent p-value

Probability -371.273 0 -10.882 0
Density -121.062 0 2.117 0.035
Fraction -5.28 0.363 -0.655 0.513

Table 9. Tabel of detailed coefficients of linear models, part 2.

ery model coefficient related to probability that signal will flow through bridge
is negative. It means that smaller bridges transfer more information between
neighbouring dense clusters. This is exactly waht InfoSpread should measure. It
should distinguish bridges which are small and very influential.
Conclusion of this section is that InfoSpread favours small bridges and for con-
stant density and fraction, smaller bridges are characterized by higher probability
of transfering information. In addition authors checked Pearson’s correlation co-
efficient and any two pair of variables for any set was not correlated. For almost
every pair correlation value was smaller then 0.3. Only for set Slashdot correla-
tion between density and probability is equal 0.55, what is still not a high value.
Of course because of high values of p-value, coefficients for HepTh and HepPh
show that proposed values do not explain size of the bridges.

6 Conclusion

This section contains discussion of results received in sections 5.1 and 5.2. As can
be seen in table 4 ParaLARW gives clustering with lower modularity, however it
has a big advantage in detecting subgraphs responsible for information transfer
between clusters. Authors have introduced new measure, InfoSpread Coefficient,
which is useful for determining quality of found bridges. This new measure takes
into account three most important properties of a bridge: Pbridge, Fbridge and
dsbridge. InfoSpread can rank bridges for optimization purposes like a signal in-
tialization cost.
In figures presented in section 5.2 one can clearly see that bridges have a seri-
ous impact on information dispersion over a network. Especially in case of large
networks like Slashdot or Gnutella one can see that difference in coverage is sig-
nificant. It can be seen that after several steps signal started in a dense cluster
is trapped inside cluster while signal initialized in a bridge discoveres more and
more nodes. After some steps coverages become similar but these first several
steps are the most important. This is because of possible optimization of signal
initialization cost and importance of time necessary for reaching certain number
of nodes or communities.
It is clear that removing bridges from graph will significantly reduce potential
of information transfer between clusters. This is because most of paths between
dense clusters go through bridges.
ParaLARW (Parallelized version of LARW) is significantly faster (for large net-
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works) than non-parallelized version. One can see in table 1 that running time
gain can achieve even 30% for the most demanding stage of the ParaLARW
clustering process.
Next modifications of ParaLARW will allow to achieve better results for citation
networks which have very skew nodes degrees distribution.

6.1 Future Work

In this section future directions of research are presented.
As can be seen in table 1 time needed to perform the initial clustering can be
really high in comparison to main part which is MCL run. One can solve this
problem by providing adequate initial partitioning without building multiple
spanning trees. Probably a proper sequence of neighbourhoods can be deter-
mined with just one spanning tree. The authors consider to investigate more
ideas for providing initial clustering in the future.
The second direction of future work is proper aggregation of neighbouring bridges.
As can be seen in table 4 in some cases ParaLARW finds a lot of bridges. Part
of them could be aggregated to one bridge by maximization of InfoSpread Co-
efficient. Proper bridges should be maximally influential so appending two less
important bridges to one more influential can have significant impact on infor-
mation spread control.
Third important field of future research is different way of aggregation clusters
to supernode. One can construct supernode from more than one cluster resulted
from MCL. It could gain profit if one will aggregate more than one cluster what
will maximize modularity. Another very important area of research is using ran-
dom walks to detect bridges in any partitioning. If one has already derived clus-
tering which satisifies some conditions then only need is to find proper bridges
for information spread control. Such an approach will save time needed for reit-
eration of cluster analysis and will maintain important features of partitioning,
like high value of modularity.
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