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Abstract. The Shapley value—one of the fundamental game-theoretic
solution concepts—has been recently proposed for the influence maxi-
mization problem, i.e. choosing the best seed nodes for the process of in-
formation diffusion [39, 40]. However, although applying game-theoretic
solution concepts such as the Shapley value to tackle this problem seems
to be a promising research direction, the performance of this approach
has not yet been thoroughly evaluated due to inherent computational
challenges. The contribution of this article is twofold. Firstly, we propose
a new game-theoretic methods to tackle the problem of influence max-
imization: the Shapley value- and the Banzhaf index-based refinements
of the Local DAG algorithm by Chen et al. [8]. Secondly, we provide
the experimental evaluation of those new and previously known game-
theoretic methods and compare its performance to other approaches from
the literature. Our simulation results suggest that out method achieves
competitive results when compared to the state-of-the-art heuristics.

1 Introduction

Diffusion in social networks is the process by which an idea, rumour, or disease
is spread by people through links between them [26]. An interesting example of
diffusion is the process of the public adopting a new technology. People recom-
mend the innovation to their friends, and whether or not it eventually becomes a
widely adopted technology depends on by how many people it has been adopted.
Similarly, infectious diseases spread in the society between individuals that enter
into physical contacts. The problem we are concerned with in this article is to
find a set of initial nodes that will lead to the most widespread effect of diffusion
in a network [29, 15, 42]. In other words, we look for a group of nodes (of a
limited, a priori given size) that has the maximal influence on others. We will
typically refer to nodes that have been successfully influenced by the diffusion
process as infected or active.
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The two most established mathematical models of diffusion are Independent
Cascade and Linear Threshold. In short, in both models, as time passes in dis-
crete time steps, new nodes are activated due to the influence of nodes that were
active in the previous time step. The models differ in the way that the infec-
tion spreads through a particular link. In the first model, an active node has one
chance to activate each of its neighbors with some pre-defined probability. In the
second model, each node has some random pre-defined threshold and becomes
active if it has enough active neighbors whose influence exceeds this threshold.

Unfortunately, the problem of finding the optimal set of initial seeds of limited
size, called in the literature the influence maximization problem or the top-k
nodes problem, is NP-hard in both models [29]. Given this negative result, recent
research has focused on developing approximate solutions. In particular, Kempe
et al. showed that the straightforward greedy algorithm that chooses a node that
makes the largest contribution to the influence spread achieves an approximation
ratio of 1 — 1/e, where e is the base of the natural logarithm. Improvements to
the greedy algorithm by Kempe et al. that focus on limiting the number of
spread function computations were made by Leskovec et al. [34], Goyal et al.
[23] resulting in CELF++ algorithm that is current state-of-the-art.

The literature also contains a variety of heuristics that either modify spread
function definition or focus on finding a solution that has no theoretical guaran-
tees but performs well in practice. The former include PMIA [7] and SIMPATH
[22] that simplify the spread to certain paths in the graph in Independent Cas-
cade and Linear Threshold, respectively. Another interesting greedy algorithm of
this type was proposed by Chen et al. [8] whose algorithm, in the search for the
top k nodes, focuses on the influence spread only in local directed acyclic graphs
(DAG). In simulations, this algorithm returns the solution that is of compara-
ble quality to the original greedy algorithm that operates on the entire graph.
Heuristics that focus on finding solution that has no theoretical guarantees but
performs well in practice are usually built on various centrality measures that
explore some properties of the network with the aim to estimate the importance
of a node for information diffusion.! They include the standard centrality mea-
sures (such as degree, closeness, and betweenness centralities [19]), and also more
novel heuristics designed especially for information diffusion (such as Discount
degree heuristics [9]). The advantage of these heuristics is their time efficiency
and scalability—they do not require the computation of the spread of diffusion
in order to establish the seed set.

Both those latter algorithms are currently the state of the art. Their improved
performance is achieved by limiting the calculations of the spread (only to a local
neighbourhood of each node) and by decreasing the number of calls of the spread
function.

More sophisticated heuristics to solve the influence maximization problem
were proposed by Narayanam and Narahari [39, 40]. The authors developed

! Intuitively, in this approach, the seed is chosen following the ranking of nodes given
by a chosen centrality measure. For instance, one can choose top k£ nodes with the
highest degree centrality.
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two algorithms based on the Shapley value-based centrality measures. These
centralities belong to a wider class of advanced centrality measures that are
based upon solution concepts from cooperative game theory. To construct such a
centrality measure, we define a cooperative game over a network in which players
are nodes, coalitions are subsets of the set of nodes, and payoffs of coalitions
depend (in some way) on the network topology. Next, we use the Shapley value or
other game-theoretic solution concepts that quantify the importance of a player
in the game, as centrality measures that quantify the importance of nodes in
the network. For instance, Narayanam and Narahari [39] construct their game-
theoretic centrality as follows. Their payoff function assigns to each coalition
the value that equals to the number of nodes this coalition is able to influence
directly (i.e. the number of the coalition’s neighbours). Then, the Shapley value
is used to quantify the role of each node in influencing neighbours. Finally, all
the nodes in the network are sorted according to their Shapley value and the first
k of them are chosen as the approximate solution to the top-k nodes problem.

Unfortunately, unlike other heuristics for influence maximization, those based
on the Shapley value-based centrality measures have not yet been extensively
evaluated in the literature. In fact, the only experimental analysis that we are
aware of is that of Narayanam and Narahari [39, 40]. These results, however, are
very preliminary.

In this work, we reconsider the Shapley value-based approaches to the prob-
lem of influence maximization. We first propose a game-theoretic solution to
the problem that is designed to fit parallel processing architectures and then
we present a thorough evaluation of all the game-theoretic methods comparing
them to other heuristics from the literature. In more detail, the contributions of
this article can be summarized as follows:

— We show that the use of game-theoretic solution concepts for information
diffusion is not restricted to the Shapley value and the cooperative games
considered by Narayanam and Narahari [39, 40]. To this end, we combine
both the Shapley value- and the Banzhaf index-based centrality measures
with the Local DAG model [8]. Not only do our methods perform competi-
tively (see the next bullet point), but we show that it is possible to parallelize
the computation of both solution concepts in the Local DAG model. By do-
ing so, we are able to fully utilize the computational advantages of local
DAGs.

— In the simulation section, we compare all the above game-theoretic ap-
proaches to the aforementioned state-of-the-art heuristics, i.e. Greedy LDAG,
CELF++ and Discount Degree. Importantly, in our simulations, whenever
possible, we use the results from Aadithya et al. [1], who showed that some
game-theoretic centrality measures, and the one from Narayanam and Nara-
hari [39], in particular, can be computed in polynomial time. In other words,
for game-theoretic centrality measures we consider exact solutions rather
than Monte Carlo approximations.

Overall, the results of our experiments suggest that various approaches built
upon cooperative game theory are competitive, even when compared to the
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state-of-the art Greedy LDAG and CELF++ algorithms. In particular, our re-
evaluation of the algorithm by Narayanam and Narahari [39] confirms that this
approach outperforms the simple Degree Centrality heuristic. Moreover, also the
Shapley value-based LDAG model proposed in this paper is competitive when
compared to Greedy LDAG and CELF++. As for the comparison between the
LDAG model based on the Shapley value with the one based on the Banzhaf
index, the former turns out to achieve a more consistent performance than the
latter.

The remainder of this article is organized as follows. In the next section, we
formally introduce basic concepts from game theory and define influence models
and the influence maximization problem. In Section 4 we describe game-theoretic
solutions for the LDAG model by Chen et al. [8] and analyze their computational
characteristic. Next, we present results of our experiments evaluating all the
algorithms in Section 5. Conclusions follow.

2 Preliminaries

In this section we present the relevant concepts from cooperative game theory
and graph theory, including the problem of influence maximization in networks.
We also introduce notation used throughout the paper (comprehensive summary
can be found in Appendix B). Finally, we discuss the basic idea behind the
concept of game-theoretic centrality that connects cooperative game theory with
graph theory.

2.1 Concepts from Cooperative Game Theory

Let N = {a1,az,...,a)n} be the set of players that participate in a coalitional
game. A characteristic function v : 2V — R assigns to every coalition C C N
a value (or a payoff) representing the quality of its performance, where it is
assumed that v()) = 0. The set of all players N is called the grand coalition. A
coalitional game, also called the characteristic function game, is a pair (N, v).
Let us now introduce the concepts of the Shapley value and the Banzhaf in-
dex. Both are intended to answer the following question: assuming that the grand
coalition has formed, how should its value be distributed among the players?

The Shapley value: Shapley proposed to evaluate the role of each player in
the game by considering marginal contributions that this player makes to all
coalitions [43]. In more detail, the marginal contribution of a player a; to coalition
C C N\ {a;}, denoted p(a;, C), is the difference between the value of C' with
and without a;, i.e.:

plai, €) = v(C U{ai}) = v(O).

For example, when the player a; joins the empty coalition, the value of its
marginal contribution, p(a1,®), is equal to v({a1}) — v(0) = v({a1}). Subse-
quently, when another player as joins this newly created coalition {a;}, its
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marginal contribution, p(asz, {a1}), is equal to v({a1, a2}) —v({a1}). The process
continues until all the players have joined the coalition and the grand coalition
emerges.

The order in which players build subsequent coalitions to finally form the
grand coalition can be represented as a permutation of players. Let m denote
such a permutation, 7(a;) the position of player a; in m, and Cy(a;) the coali-
tion formed by all the predecessors of the player a; in . Formally, C;(a;) =
{aj : m(a;) < m(a;)}. For example, in the permutation (as, as, a7,...,an, ..., a2),
m(a7) = 3 and Cr(a7) = {as,as}. Naturally, given n players, there are n! per-
mutations, i.e. ways to form the grand coalition. The Shapley value of player
a;, denoted SV(a;), is the average marginal contribution of a; to Cy(a;) over all
permutations:

SV(a) = Y ﬁ(V(Cw(az‘)U{ai})*V(Cw(ai)))- (1)

well(N)

where IT(N) is the set of all permutations of N.

The importance of the Shapley value stems from the fact that this division
scheme is the only one that meets certain desirable criteria. We refer the reader
to the overview by Colman [11] for more details on various axiomatizations of
the Shapley value.

The Banzhaf index: The Banzhaf index [1965] is another solution concept
for the problem of dividing the payoff of the grand coalition. It was initially
proposed to measure the power of players in voting games, i.e., games in which
each player has some given number of votes and a given quota of votes overall
is needed to win. Such a scenario can be described as a simple coalitional game,
where the characteristic function is binary—the coalition either has enough votes
to win (value 1) or not (value 0). In simple coalitional games, the Banzhaf
index of a player is equal to the number of all coalitions in which this player
is indispensable to win divided by the number of all coalitions. This definition
can be straightforwardly generalized to any characteristic function—here, the
Banzhaf index is the expected marginal contribution made by the player a; to a
randomly chosen subset of N\ {a;}. The formal definition of the Banzhaf index
of player a; is as follows:

Blw) = 55 Y. [(CU{a}) —v(0)]. (2)

CCN\{a:}

The difference between the Shapley value and the Banzhaf index can be intu-
itively described as follows: the Shapley value measures the player’s expected
marginal contribution if players form the grand coalition one by one in a ran-
dom order, whereas the Banzhaf index measures the players expected marginal
contribution if each player decides whether to take part in formation of the grand
coalition independently with probability 1/2 [6].

More details on the Banzhaf index and its axiomatizations can be found in
the works by Chalkiadakis et al. [6] and Lehrer [33].
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2.2 Concepts from Graph Theory and the Influence Maximization
Problem

A graph (or network) is a tuple G = (V, E), where V' denotes the set of vertices
(or nodes) and E C V x V denotes the set of edges. Every edge from set E
connects two different vertices in set V. By (v, u) € E we denote the directed edge
connecting vertices from v to u, v,u € V. In such a case, we call v an in-neighbour
of v and to u as an out-neighbour of v. In this article, we consider weighted
graphs, where additionally we have a function w : E — R¥ that assigns a weight
to each .edge. For simplicity We assune that. Voev 2uev (o} w-((zf, v)) < 1.

An important research direction in social network analysis is the study of
how individuals influence each other and how this influence leads to a diffusion
of a given phenomenon (such as information, innovation, or disease) throughout
the network [21]. In this context, a social network is often called an influence
network. In what follows, we introduce definitions of two most prominent models
of influence in the literature: the Independent Cascade (IC) Model [20] and the
Linear Threshold (LT) Model [29].

The influence network is typically modelled with a weighted, directed graph
G = (V, E,w), where an edge e = (u,v) with weight w(e) represents the strength
of the influence that node v imposes on node v. In the IC and LT models time, ¢,
runs in discrete time periods and each period is called a round. The set of nodes,
S C V “infected” in the first round is called the “seed set”. With this notation
we state the formal definition as follows:

Definition 1 (Independent Cascade Model [20]). Let G be an influence
network and let S C V be the seed set that becomes infected in round t = 1. In
each round t > 2, a node v that was infected in round t — 1, influences each of
his out-neighbours, u, with probability w(v,u). The process terminates at round
t when no nodes are infected in this round.

Intuitively, in the IC model, a newly infected node v has only one chance to
infect each of its neighbours (each with independent probability). This happens
in the round that immediately follows v’s infection.

To define the LT model, we assign to each node v € V' \ S an activation
threshold, t,, from the set [0, 1] uniformly at random.

Definition 2 (Linear Threshold Model [29]). Let G be an influence network
with t, sampled for each v € V'\ S. Furthermore, let S C V be the seed set that
becomes infected in round t = 1. In each round t > 2, a node v becomes infected
if the influence from his infected in-neighbours exceeds t,, i.e.:

Z w(u, v) > ty.
w:u is infected
The process terminates at round t when no nodes are infected in this round.

Unlike in the IC model, where an active node has only one chance to activate
each of its neighbors, in the LT model, node v can contribute to activation of its
neighbour at any time period.
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Having defined both influence models, let us now introduce the function
o : 2V — R that, for each seed set S C V, returns the expected number of
infected nodes in a given model (at the end of the process). We will call o the
spread function and write o7c(S) and o (S) to denote the spread function for
the respective models. We will now formalize the top-k nodes problem.

Definition 3 (The influence maximization problem (top k-nodes prob-
lem)). Let G be an influence network, k < |V| a positive integer, and M an
influence model (either IC or LT). The influence mazimization problem is the
problem of finding a seed set S CV : |S| =k that maximizes the oy function.
Formally:
Sec2V:on(S)= max on(9).
5'e2V |8 |=k

We conclude with a basic property of defined models: an additive decomposi-
tion of the spread function. To this end, we formalize first what the activation
probability of a node is.

Definition 4 (Activation probability of a node). Let G be an influence
network, S C 'V the initial seed set, and M an influence model (either IC or LT).
We define the activation probability of a node v, denoted ap]CV;[ (v, 2Y) —[0,1],
as follows:

ap$; (v, S) = P(v is infected when S is the seed set under M),
where we will omit the superscript in apf/f(v, S), when G is clear from the context.
Kempe et al. [29] proved the following result.

Lemma 1 (Spread function node-additivity). Given the model M (M is
either IC or LT) the expected number of nodes infected if the infection starts
from seed set S C 'V is the sum of activation probabilities of all nodes:

om(S) = Z ap (v, 5).

veV

2.3 Game-theoretic Centrality

Grofman and Owen [25] were the first to propose using game-theoretic solution
concepts as measures of centrality. The basic idea behind this approach is as
follows. First, we define a coalitional game over a network, where the nodes are
treated as players and the value of each group of nodes depends in a certain
way on the network topology. Next, we rank the nodes according to their payoffs
assigned by the chosen solution concept, such as the Shapley value or the Banzhaf
index. Intuitively, the nodes with the highest (weighted) contribution to various
groups of nodes will be ranked top by such a centrality measure and vice versa.

In this article, we will consider a coalitional game (V, v) in which vertices are
players and the subsets of vertices are coalitions. Furthermore, the characteristic



102 Szymon Matejczyk et al.

function v : 2V — R will be a function that depends in some way on the graph
G, with v(0) = 0. We will use the phrase “value of coalition C” to informally
refer to v(C'), where C C V.

In the next section we discuss the Shapley value-based approach to the top-k
nodes problem and introduce our refined algorithm.

3 Approaching the k-Nodes Problem with the Shapley
Value-based Centrality

We start this section by presenting the approach by Narayanam and Narahari
[39]—the first application of a Shapley value-based centrality to the top-k nodes
problem. We also discuss the improvements made in a follow-up work by the
same authors [40]. Finally, we present our algorithm.

The Shapley value-based approach by Narayanam and Narahari [39]:
In the information diffusion context, it seems natural to think of the importance
of a node in terms of its impact on neighboring nodes. In this spirit, Narayanam
and Narahari defined the characteristic function as the number of nodes that
are adjacent to the nodes in a given coalition. Formally, for all C C N:

V(C):{o ifC =0 )

size(neighbours(C)) otherwise.

In order to approximate the Shapley value for the above characteristic func-
tion, Narayanam and Narahari [39] used a Monte Carlo approach.? In particular,
the authors randomly choose a relatively small (linear with respect to the num-
ber of nodes) subset of all permutations of nodes. Next, for each permutation m,
they compute the marginal contribution of each node v; to the coalition of nodes
preceding v; in 7, i.e. v(Cr(v;) U{v;}) —v(Cr(v;)). Finally, the average marginal
contribution of v; over all randomly chosen permutations is the approximation
of SV (v;).

A key shortcoming of simulations performed by Narayanam and Narahari
[39] is the limited number of Monte Carlo iterations—for instance the authors
run only 10,000 iterations for a network of 8,319 nodes. Unfortunately, as shown
by Aadithya et al. [1], the approximation error of the Shapley value for the
characteristic function (3) caused by an insufficient number of iterations may
be significant. Interestingly, however, Aadithya et al. proved that it is possible
to compute the Shapley value for the influence game (3) exactly and this in
O(|V] + |E|) time (see Appendix A for more details). In particular, the closed-
form formula for the Shapley value of node v € V in the game defined by the
characteristic function (9) is as follows:

(O EERD ——— (4)

vk E{VUNout (v)} 1+ deg;, (vi)

2 The issue of approximating the Shapley value with Monte Carlo techniques has been
extensively studied in the literature.
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In our simulations in Section 5, we use this positive result in order to compute
the Shapley value-based centrality defined by Equation (9) exactly. By doing so,
we present the first evaluation of Narayanam and Narahari’s (2008) approach
using the exact and not an approximate algorithm.

SPIN algorithm by Narayanam and Narahari [40]: [39] revised their ap-
proach by developing the SPIN algorithm [40]. As previously, SPIN relies on the
Shapley value-based centrality to determine the most influential nodes. However,
the characteristic function is changed as follows:

V(C):{o it =0 )

orr(C) otherwise.

Unfortunately, this case is much more computationally challenging than previ-
ously. Firstly, no polynomial-time algorithm is known for the Shapley value given
by this characteristic function; hence, one needs to rely on the Monte Carlo sam-
pling. Secondly, even the Monte Carlo sampling is more challenging as the values
of all coalitions, v(C) = o1 (C), have to be approximated [29]. Narayanam and
Narahari proposed the following approximation procedure:

(1) Choose a random subset I’ C IT of all possible permutations of players,
where |IT'| << |II|;

(2) For each 7 € II' and each node v; € m use a nested Monte Carlo technique to
approximate the marginal contribution of v; to the coalition of all nodes that
precede it in m, i.e., Cy(v;). This step is necessary due to the intractability
of v(Cr(v;) U{v;}) and v(Cr(v;)). In particular:

(2a) Sample the spread of influence of the LT model assuming that Cy (v;) U
{v;} and C,(v;) are the seed sets.

(2b) For each sample, compute the marginal contribution of v; to C(v;).

(2¢) Repeat (2a) and (2b) either 6,000 or 10,000 times depending on the size
of the network.

(2d) Compute the approximate marginal contribution of v; to Cr(v;) as the
average marginal contribution of v; across all samples;

(3) Compute the approximation of the Shapley value of v; as the weighted av-
erage of average marginal contributions of v; across all |II’| permutations;

(4) Sort the nodes according to their approximated Shapely value and return
the resulting ranking.

As we can see, the above procedure involves one Monte Carlo sampling nested in
another Monte Carlo sampling. Thus, the actual number of spread simulations
that needs to be performed is the product of the number of iterations in both
Monte Carlo samplings. In fact, because of this prohibitive computational cost,
we are able to report in the simulation section results for this method only for
networks with fewer than one hundred nodes and using a very small number of
Monte Carlo iterations (see Section 5 for more details).

DSV algorithm by Adamczewski et al. [2]: Recently, Adamczewski et al.
proposed a refinement of the algorithm by Narayanam and Narahari [39] called
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DSV. They compute the Shapley value precisely using algorithm by Aadithya
et al. [1], but improve the way the nodes are taken to the resulting seed set. The
algorithm achieves results that are only slightly better than previous approaches
[39, 40], but the algorithm is considerably faster.

4 The Shapley Value- and Banzhaf Index-Based
Centralities In Local DAGs

In this section, we present our second approach to the influence maximization
problem. It builds upon the work by Chen et al. [8], who proposed a greedy
algorithm that, in the search for the top k nodes, focuses on the influence spread
only in local directed acyclic graphs (DAGs). By the means of simulations, the
authors showed that their algorithm returns solutions that are of comparable
quality to the original greedy algorithm that operates on the entire graph. An
important feature of this approach is that, from a computational point of view,
each local DAG is typically much easier to deal with than the entire network.
Furthermore, multiple local DAGs can be analysed in parallel. Since Chen et al.
called their algorithm the Local DAG, we will abbreviate it to LDAG.

We extend the approach of Chen et al. [8] by introducing game-theoretic
centrality measures—the Shapley value- and the Banzhaf index-based ones—to
their model. Interestingly, as we will show below, it is possible to parallelize
the computation of both of them. By doing so, we are able to fully utilize the
advantages of considering local DAGs.

The remainder of this section is organized as follows. We first introduce the
model by Chen et al. [8] and discuss their main computational results (subsec-
tion 4.1). Next, we present our refinement of this model based on the Shapley
value and the Banzhaf index (subsection 4.2). Finally, we show that it is possible
to significantly speed up our algorithm in the case of the Banzhaf index.

4.1 The LDAG Model by Chen et al.

In this subsection, we present the results of Chen et al. [8]. We first restate com-
plexity results that motivate the LDAG approach. Next, we describe the LDAG
model and conclude with the theoretic results of the influence maximization
problem under this model.

The motivation behind Chen’s et al. LDAG method comes from the obser-
vation that there is little one can do to tackle the complexity of the top k-nodes
problem if the whole network is taken into account. In particular:

— Computing the spread function is #P-hard under both diffusion models;

— Moreover, even if, hypothetically, we could compute the spread function in
polynomial time, then finding a set that maximizes the spread function would
be still NP-hard.

Therefore, Chen et al. [8] propose to tackle the complexity of the problem by
reducing the extent of the diffusion process. To this end, they observe that the
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problem can be solved in linear time with respect to the number of nodes, when
G is a directed acyclic graph. Precisely, they introduce a notion of (Local) DAG
rooted at v, a directed acyclic subgraph of the original graph where:

— v has no out-neighbors; and
— every other node has at least one out-neighbor in LDAG; and
— it is a maximal subgraph fulfilling previous conditions.

Alternatively, one can think of DAG rooted at v as a subgraph of the origi-
nal graph consisting of nodes that can be reached from v going in the reverse
direction of the edges (see Figure 1 for an illustration).

0.3 0.3 /'qD 0.3
0.3
0.3
< 0.3 é < 0.3 O
(a)

a) Original graph (b) LDAG rooted at A with threshold 0.08

Fig. 1. Example o LDAG constructed for a given graph.

Now, it’s easy to observe that for a DAG rooted at v with vertex set V’,
we can compute the influence spread on v of the seed set S using any graph
traversing algorithm starting from every w € S N V’. Furthermore, the value of
o(9) in the original graph is simply the sum of influence spreads on root node
computed in LDAGs rooted at all nodes.

Acyclicity is a very strong assumption that is rarely observed in social net-
works. However, solution for the DAG case leads us to an approximation of
the influence in the network (not necessary acyclic) on each individual node by
assuming that diffusion takes place only in a particular local directed acyclic
graph, precisely:

(1) For each node v in G, we choose a directed acyclic graph ldag(v) that is
responsible for a high fraction of the influence on v?;

(2) We use acyclicity to compute the approximated spread o, on every node in
its LDAG (Idag(v));

(3) We obtain the approximated spread, o', that is the sum of spreads of all the
nodes.

3 Chen et al. prove that choosing an optimal LDAG for a node is NP-hard, but they
also observe that greedy algorithm for that performs very well in practice.
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Algorithm 1: Computing the Shapley value in the LDAGs model

1 foreach v; € V do

2 ldag[v;] < ldag rooted at v;;

3 for 1 to MCRuns do

4 7 < random permutation of nodes in ldag;

5 foreach node € ldag do

6 ‘ SV [node]+ = marginal contribution of node to v; in ;
7 end

8 end

9 SV[v;] = SV[vi]/MCRuns;
10 end

The choice of LDAGs leads us to the definition of new influence models,
where influence spreads only in the given LDAGs. They are an approximation of
the original IC and LT models. We call them LDAGs models and denote by o
(where M € {LDAG-LT, LDAG-IC}) the expected number of infected nodes.
However, as shown by Chen et al. [7], it is still NP-hard to compute the set that
maximizes the o function in these new models.

4.2 Refinement of the LDAG Model Based on the Game-Theoretic
Centralities

Since we assume that we can reduce the entire network to a set of LDAGs,
we find the initial seed set by analyzing the most influential nodes in all the
LDAGs. While, in order to achieve this, Chen et al. [8] use a greedy approach,
we propose an alternative approach that uses the Shapley value and the Banzhaf
index as measures of node centrality in the LDAGs. Since the computation of
both solution concepts is usually challenging, we use Monte Carlo simulations
where we approximate the solution by sampling permutations. Furthermore, we
take advantage of the LDAG structure, which is small relative to the size of
the network. We also reduce the number of input nodes for the computation
of the solution concepts (this reduces the number of necessary Monte Carlo
simulations). The pseudocode for our approach using LDAGs is presented in
Algorithm ?7. We precede it by the definitions and calculations that introduce
it.

Definition 5 (Influence LDAG cooperative games). Given an influence
graph G = (V,E,w), let V be a set of players, and the function oy (where
M € {LDAG-LT,LDAG-IC}) a characteristic function of a cooperative game.
We call this game the cooperative influence game for a given model.

We compute the Shapley value and the Banzhaf index assuming that the charac-
teristic function v is the os() influence function in LDAG approximation under
both the IC and LT models. The theoretical analysis of the problem is presented
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below, where we use the following additional notation: X&(S) denotes the prob-
ability that node v in graph G is infected, when S is the initial seed; ldag(v)
denotes the LDAG for node v; and ldag_ ,(u) and ldag_,(u) denote ancestors
and predecessors, respectively, of v in ldag(u). For marginal contribution p of v
to S we obtain:

(v, 5) = (a(SU{v}) —o(9)) (6)
=) XM (g ) — X[ () (7)

uFv
o Z deag(u S)) . XLdag(“)\S(v)_ (8)

uFv

Using Equation (1) we obtain the following expression for the Shapley value that
we use directly:

SV = 3 S - XS () XS0 ),

TI'GH(N) T u#tv

The above analysis leads us to a Monte Carlo algorithm that computes the Shap-
ley value and analogously the Banzhaf index (Algorithm ??). We note that in our
approach to the LDAG model based on the Shapley value and the Banzhaf index,
we take advantage of the additive nature of these two solution concepts. Specif-
ically, in order to calculate the Shapley value (or Banzhaf Index respectively) of
a node, it is enough to add together the “partial Shapley values” for that node
computed separately in each LDAG that contains this node. As a result, this
game-theoretic approach, as opposed to the greedy approach in Chen et al. [8], is
particularly suitable for distributed systems which facilitate and accelerate the
computation of the most influential nodes. Unlike the game-theoretic approach,
the greedy method of Chen et al. would require more substantial communication
between the LDAGs after each iteration in order to see which node was the most
influential, and then pass on the message of which node was added to the seed
set. In Algorithm ?? we present a version of the LDAG Shapley value algorithm
in the Map-Reduce [13] schema — currently the most popular parallel and dis-
tributed programming model in the industry. The Banzhaf index calculations
are analogous, but can be further optimized using the structure of the LDAGs
to obtain even better approximation.

5 Experimental Results

In this section we compare the performance of the following algorithms for the
influence maximization problem:

(i) The algorithms from the literature:
e Fringe game — the Shapley-value based algorithm proposed by Narayanam
and Narahari [39] but calculated using the polynomial time algorithm
from Aadithya et al. [1] (see Section 3).
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Fig. 2. Comparison of algorithms performance (influence vs. seed size) on Dolphins
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Algorithm 2: The LDAG Shapley Value - the Map Reduce schema

1 Function map(headNode, 1dag(headNode))
forall the nodes in ldag(headNode) do
sv <— compute SV for node in ldag
EMIT (node, sv)
end
Function reduce (node, list of SVs in LDAGS)
‘ EMIT sum of nodes SVs in LDAGs

N = R WN

e Greedy LDAG — the algorithm by Chen et al. [8] (see Subsection 4.1).

e CELF++ — the algorithm by Goyal et al. [23]. This algorithm is an
improvement of the traditional greedy algorithm that drastically limits
the number of spread function calls by trying to look ahead and predict
next nodes that will be added to the resulting initial seed set.

e SPIN — the algorithm by Narayanam and Narahari [40]. In order to
perform our experiments we needed to reduce the MC repetitions param-
eters to 1000 for SV calculation and 4000 for spread function calculation.

e DDH - the Discount Degree heuristics by [9]. This algorithm works by
iteratively adding to the seed set the node that has most neighbors that
are neither already in the seed set nor neighbors of a node in a seed set.

¢ RANDOM — a random selection of the top k nodes (from the uniform
distribution).

e DSV — the Discounted Shapley Value algorithm [2].

(ii) The algorithms proposed in this article:

e LDAG-SV — the refinement of the LDAG algorithm based on the
Shapley Value (see Subsection 4.2).

¢ LDAG-BF — the refinement of the LDAG algorithm based on the
Banzhaf index (see Subsections 4.2.

We conduct the experiments on both IC and LT diffusion models. Both models
are described by means of a live graph?, where edge weights stand for activation
probabilities. In the case of Independent Cascade, each edge e is live (or open)
with some probability p. (drawn uniformly from the set (0, 1)) and blocked with
probability 1 — p.. As shown in Kempe et al. [29], the Linear Threshold model
can also be described by the live graph where only at most one incoming edge is
live and the sum of incoming probabilities is less than or equal to 1. The nodes
active at the end of the process are those reachable by live edges from the initial
seed set. In our experiments we use a diverse group of real-world networks:

(a) American College Football network of games between Division IA colleges
during the regular Fall 2000 season. The nodes are the teams and the edges
are the games between the teams and weights are sampled from uniform
distribution UJ0, 1].

4 A live graph is a subset of a graph, where every edge is taken with a given probability.
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Polbooks network, Linear Threshold Model
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(b) An undirected social network of frequent associations between 62 dolphins in
a community living off Doubtful Sound, New Zealand (with weights sampled
from a uniform distribution).

(¢) Nodes represent books about US politics sold by the on-line bookseller Ama-
zon.com. Edges represent frequent co-purchasing of books by the same buy-
ers, as indicated by the “customers who bought this book also bought these
other books” feature on Amazon [31].

(d) Co-appearance weighted network of characters in the novel Les Miserables.

(e) A collaboration network of scientists posting preprints on the high-energy
theory archive at www.arxiv.org, 1995-1999, as compiled by M. Newman.

(f) Nodes represent pages from Stanford University (stanford.edu) and directed
edges represent hyperlinks between them. The data was collected in 2002.

In order to compare algorithms on networks of similar size, we reduce the large
networks (d) and (e) to a fraction of their sizes (using BFS walk from a random
node and assuring that the obtained graph is not too small).

The experiments consist of two steps. In the first step, we employ the al-
gorithms to find the seed set consisting of k nodes. This is the set of the most
influential nodes according to each algorithm. We vary k& between 2% and 30% of
the total number of the nodes in the network. The second part tests the perfor-
mance of the seed set by means of Monte Carlo simulations. As far as the quality
of the seed set is concerned, the Greedy LDAG performs consistently best across
all data sets, seed sizes and in both models (Chen et al. [7] only test it on the LT
model). The performance of the CELF++ and Shapley value LDAG approaches
is similar in the IC model (Figure ??), where CELF++ performs slightly better
for a smaller seed size and the roles reverse for a larger seed size (see Figure 77).
LDAG-SV performs better in the LT model, which makes sense since LDAG is
designed for the LT model. DSV and fringe perform similarly in the IC model
and DSV is slightly better in the LT model. SPIN algorithm performs worse
than LDAG-SV and in most experiments better than LDAG-BF. We also note
the weak performance of the Aadithya et al. [1] threshold model and very unsta-
ble performance of the Banzhaf index LDAG method across different datasets
(compare Figure ?? and Figure 77).

In larger networks, with thousands of nodes, the performance of the Shap-
ley value LDAG is only preceded by the greedy LDAG. The three algorithms
perform substantially better than the Degree Discount algorithm. It is also
worth mentioning that all the Shapley value based heuristics perform better
in the LT model than all fast heuristics (Degree Discount and degree), whilst
we did not note significant differences in running times (see Figure ??). The
practicality of the heuristics when comparing the running times of the algo-
rithms becomes more visible with the increasing size of the datasets. When only
considering graphs with 100 nodes, CELF++ is about 400 times slower than
fringe and DSV. The times of greedy approaches (excluding greedy LDAG) are
prohibitively large. For large networks, the heuristics run in tens of millisec-
onds, while the longest LDAG-SV takes hours. Although greedy LDAG main-
tains competitive running time (a few seconds) for networks with a few thou-
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sands nodes, LDAG-SV obtaining similar results has theoretical underpinnings
for Map-Reduce distribution. We were unable to conduct experiments for the
SPIN algorithm on bigger networks in a reasonable time (on day per dataset).
We present only part of the data gathered in the experiments. However, the
complete code of the experiments can be found in a repository available at
https://github. com/szymonm/CGMethodsForInfluence.

6 Conclusions

We proposed a new game-theoretic method to the problem of influence maximization—
refinement of the Local DAG algorithm by Chen et al. [8] based on the Shapley
value and the Banzhaf index. We also verified the performance of the Shapley
value-based centralities proposed earlier in the literature. The experimental re-

sults show that the greedy LDAG approach finds the highest quality seed set.

Yet, our proposed heuristic based on the Shapley value performs almost as well

as the greedy algorithm in terms of solution quality, and it can be easy adopted

to the Map-Reduce or other parallel programming scheme.
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APPENDIX A: The algorithm from Aadithya et al. [1]

Aadithya et al. considered the following characteristic function:

Vfringe(c) — {

where the fringe of a coalition is the set of all nodes in this coalition and its out-
neighbours. Formally, fringe(C) is a set {v € V : v € C or Ju € C such that
(u,v) € E}. Tt is easy to observe that both characteristic functions, the one pre-
sented in Equations (9) and the one (3), are very similar. The only difference is
that the characteristic function in formula (9), in addition to the out-neighbors,
also takes into account the number of nodes within the coalition. It is easy to
check that this difference has no qualitative bearings on the rankings of the
nodes. That is, both rankings will always be the same and both functions can
be used interchangeably for the top k-nodes problem. Algorithm ?7, reproduced
from Aadithya et al. [1, Algorithm 1], implements formula (4). Note that it has
polynomial complexity in the size of the network. We use this positive result
in our simulations in Section 5 in order to compute the Shapley value-based
centrality defined by Equation (9) exactly. In other words, we present the first
evaluation of Narayanam and Narahari’s (2008) approach using the exact algo-
rithm and not an approximate one.

0 ifC =10
size(fringe(C)) otherwise,

(9)
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Algorithm 3: The Shapley Value for the fringe characteristic function (9)

Data: Diffusion network
Result: Shapley values of all nodes
1 for i+ 1tondo

2 foreach v; € outneighbor(v;) do
3 ‘ shapleyi]+ = m;

4 end

5 shapleyli]+ = m;

6 end

APPENDIX B: Main notation Used in the Article

Cooperative games

N Set of players.
n Cardinality of set V.
a,a; Player in V.
C Coalition C' C N.
v(C) Characteristic function of a coalition C.
p(a,C)  Marginal contribution of player a to coalition C'.
SV(a)  Shapley value of player a.
BI(a) Banzhaf index of player a.

Graph theory

|4 Set of nodes.
E Set of edges, E C (V x V).
G(V,E) Graph with vertices V' and edges F
v, U Node is a graph.
deg(u)  Degree of node w.
w(u,v)  Weight of an edge from node u to node v.

Influence
S Seed set.
M Influence model, either LT (Linear threshold) or IC (Independent
Cascade).

) Spread from set S under model M.
ap§;(v,S) Activation probability of node v when S is the seed set under
model M in graph G.
) Probability that v is infected in G when S is the initial seed.
ldag(v)  Local Directed Acyclic Graph (LDAG) for node v.
ldag ., (v) Ancestors of node v in LDAG for node v.
ldag_,,(v) Predecessors of node u in LDAG for node v.
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