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Abstract. A voice conversion system is presented that is based on an
original parametric vocoder that allows real time speech transcoding
with a minimal latency. The vocoder is based on the mixed excitation
paradigm. Instead of the error-prone voiced-unvoiced frame classifica-
tion, a continuous degree of voicing is employed, which is interpreted as
the ratio of harmonic to total signal energy. Subband-based estimation
is used for improved modeling of the degree of voicing across frequency.
A training set of parameters obtained from a parallel speech corpus was
used to obtain a conversion function by training neural network regres-
sion model. Processed speech signals were evaluated in formal listening
tests. Results indicate a successful conversion but also a significant loss
in quality.

1 Introduction

This article concerns real time implementation of voice conversion. Voice con-
version is a speech processing technique which changes the perceived identity of
voice to that of a target speaker, while preserving the structural content of the
utterance. The aim is to not only conceal the personality of the original speaker,
but to closely adapt characteristics of speech to the target voice, to make a
convincing impression that it was uttered by a designated speaker.

Speech signal can generally be considered to contain three types of informa-
tion : linguistic information, which is represented phonetically but could also be
conveyed in textual form; prosodic information, which carries additional non-
linguistic meaning and includes emphasis on words or phrases within sentences,
question or exclamation intonation patterns or the emotional state ; and personal
identity which enables the listener to recognize the speaker. Successful conversion
requires transformation of only speaker-specific features to reflect the identity of
the target and the reconstruction of speech signal having these modified prop-
erties. Unfortunately, no decomposition currently is in existence that would be
able to represent the three distinct types of information conveyed by speech as
orthogonal subspaces of parameters. It is consequently not possible to parame-
terize human voice using a vector of features, which could then be manipulated
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in isolation from phonetic and prosodic information. Rather, the three types of
information are tangled together in a manner which makes their separation in-
feasible. It is possible, however, to describe speech using a model of the process of
speech articulation. Such a model, representing perceptually relevant character-
istics of speech, comprises feature extraction from speech (analysis) and speech
reconstruction from features (synthesis) stages. The features can then be used to
determine, with the use of machine learning methods, certain statistical correla-
tions that depend on speaker identity, and create models that can subsequently
be used in the transformation of speech parameters toward the target voice.
We can thus distinguish two stages of operation: the adaptation stage whereby
the conversion function is determined, and transformation stage, in which an
existing function is applied to achieve actual conversion. The adaptation is per-
formed for each source-target speaker pair and is based on speech samples from
both speakers. Most commonly, parallel corpus approach is employed in which
utterances having the same content but spoken by different individuals are used
with proper time alignment to account for speaking rate differences between
speakers. Training sets, built by extracting features from time aligned phonetic
events, instantiate speaker-specific distrubutions of speech features in the pho-
netic parameter space. The effect of adaptation is the estimation of a regression
model mapping one space to anoter. During the conversion, the model is used
to transform features extracted from new speech material of the source speaker
toward the target, and the converted speech is subsequently reconstructed.

There are many prospective applications for voice conversion ; by far of great-
est importance is the ability to create new voices for text to speech synthesis
cheaply. For this, two conditions must be met : firstly, the quality of transformed
speech must reach the level attained by state of the art speech synthesisers,
and secondly, the system must be trainable from a limited amount of speech
data (smaller than the amount required by the synthesiser for this application
to make sense). Currently, however, voice conversion still does not come up
to quality expectations and good performance is obtained only when sizeable
speech corpora are given. Most of the recent research in the area of voice con-
version focusses on quality and data set reduction. Another long term aim is
to remove the parallel corpus requirement, which is an obstacle to practical ap-
plication, since acquisition of parallel samples and their alignment necessitate
expert knowledge. Ability to build conversion models from arbitrary utterances
would enable widespread adoption of the technique in entertainment industry
and is a prerequisite to cross-lingual conversion. Another long term goal is the
creation of systems operating in real time, i.e. able to directly transform speech
as it is spoken to a microphone, opening new application areas. This particular
goal is the interest of this work, in which the design of a new system for voice
conversion is presented.

Section 2 discusses the basics of parametric speech representation. The ar-
ticulation process and its models are briefly reviewed and the four models of the
spectral envelope used in this work are introduced. Section 3 gives an overview
of the original speech analysis-synthesis system and describes its application in



Voice Conversion 81

voice conversion, which is its primary purpose. Experiments and preliminary
results are presented in Section 4. Finally, Section 5 summarizes and concludes
the paper.

2 Speech representation in voice conversion

2.1 The articulation process

Modelling speech is essentially modelling the process of its production, and thus
articulation must be referenced in any speech-oriented study. The theory of
speech production is now well understood [1, 2]. In most languages, speech arises
as a result of excitation of the speech organs in one of the three possible ways
(or a combination of these): by a periodic oscillation of the vocal folds forming
the glottis, by a turbulent noise produced by the air passing across narrow con-
strictions, or by impulsive release of air pressure due to momentary closure of
the vocal tract. The excitation propagates across the vocal tract acting as a res-
onant cavity, whose resonance characteristics are dependent on its geometry and
vary with the movements of the jaw, lips, tongue and the soft palatum. These
movements change the longitidunal and cross-sectional shape of the vocal tract,
and also switch the passage of air between the oral and nasal cavities. In effect,
the frequency spectrum of the original excitation is coloured by the instanta-
neous characteristics of the vocal tract acting as a filter, producing a variety of
sounds that build the phonetic system of any language. Additionally, because
of anatomical differences between individuals, the produced sounds differ in a
systematic way and this difference, which is out of articulatory control, is what
constitutes the speaker’s voice.

Glottal excitation, also referred to as phonation, is of special importance. It
produces voiced speech which is almost periodic and consequently has harmonic
structure of the spectrum (see Fig. 3). The fundamental period of oscillation in
voiced speech is the pitch period and its reciprocal, the pitch frequency, denoted
Fp, is the fundamental frequency common to all harmonic peaks in the spectrum.
Pitch does not affect phonetic value of speech sounds, however, it does contribute
to the perception of speech. The frequency of oscillation of the glottis depends on
individual dimensions and structure of the larynx and is typically twice higher
in female than in male voices. Additionally, it is controlled by muscle tension
and the subglottal pressure, and thus it can be consciously changed during ar-
iculation in order to give the utterance a desirable prosodic pattern. Prosody
includes word accent and sentence accent, and is achieved by means of modula-
tion of pitch frequency, amplitude and vowel duration. Unlike the word accent
which has a well-defined placement, sentence accent can be placed depending
on the context and the intended meaning, for example, by putting emphasis on
particular words or phrases within the sentence. Modulation of pitch is also used
for proper intonation, for example, an elevated tone indicates exclamation, and
a raising pitch at the end of a sentence distinguishes it as a question, as opposed
to declarative sentences having lowering pitch pattern. However, the exact way
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of effectuating accent and other prosodic cues is also speaker specific and thus
contributes to the perception of individuality.

2.2 Speech modeling

In practical speech processing, modelling all aspects of speech production is not
necessary and the following source-filter model [1] is sufficient to successfully
represent articulation.

source —> filter —> speech output

Fig. 1. The source-filter model of speech production

In the model of Fig. 1, the source represents the kind of excitation (voiced or
unvoiced) and is responsible for the harmonic structure of spectrum contributing
pitch in voiced speech. The excitation spectrum is always flat, i.e. it does not
account for the actual spectral shape of the glottal or fricative excitation, which
is combined with the vocal tract resonances, lip radiation and other effects in
the form of a single filter responsible for the spectral envelope of the obtained
output signal. The model assumes the excitation source and filter are indepen-
tent and thus lends itself for practical use in speech coding, since estimation
of instantaneous envelope and pitch is possible in short windows (typically 20—
50ms) in which the signal can be considered stationary. Purely voiced speech
can be aproximated as the output of a filter excited by a periodic impulse train,
whereas fricative sounds are obtained by using white gaussian noise as input.
In practice, many sounds exhibit both harmonic and noisy character, since the
glottal tone and fricative noise in a constriction above the larynx can coexist dur-
ing articulation, and the addition of noise in voiced exitation has been found to
produce more natural sounding synthetic speech [3]. Thus, the excitation should
be modeled a mixture of harmonic and noise components and is paremeterized
by their time varying amplitude envelope and the fundamental frequency. Since
the harmonic to noise proportion is related to the current phonemic value, it
should remain unchanged in voice conversion, whereas the fundamental should
be adapted to match the target speaker.

In contrast to the pitch which is a well-defined scalar quantity, the spec-
tral envelope, representing the colouring of sound or the timbre of voice, is not
uniquely defined. The representation of the spectral shape is a key problem in
voice conversion and several different models exist. In this work, three models
and four representations were considered, as described below.

Linear predictive envelope model. The linear predictive model is based on an
attempt to predict new speech sample as a linear combination of previous sam-
ples:
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In general, it is not possible to predict the evolution of the signal and hence
there remains a residual r,, = s, — §,,, given by

N N
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The signal r,, is then the excitation which perfectly reconstructs the signal :

N
Sy = — Zaisn_i + 7. (3)
i=1
The parameters a,,i = 1,..., N, where N is the order of prediction, are

obtained from the criterion of minimum residual norm [4] and fully specify the
model. However, due to the sensitivity of the characteristics of the synthesis filter
(3) to these coefficients, it can easily become unstable. Two other representations
are used instead : the log area ratios (LAR) [5] and the line spectral frequencies
(LSF) [6]. While the same spectral model can be described equivalently in both
domains, their interpolation properties differ.

Homomorphic deconvolution. The homomorphic theory [7] allows the estimation
of the envelope as the slowly-varying component of the logarithmic spectrum
treated as a regular signal. A basic result from control theory is that the discrete
Fourier spectrum Y,,, of the response of a filter with transfer function H,, to an
input having frequency characteristics X,, is Y, = X,,, - H,,,. Representing the
amplitude spectrum in logarithmic domain, we obtain and additive relation

log |Yy,| = log | Xm| + log |Hpy |, (4)

and thus the slowly varying envelope can be obtained from the so-called
”cepstrum”, or the Fourier transform of log |Y;,|:

M—1
Cr =Y log|Vy|e 25 (5)
m=0
The low-frequency components represented by Ci,k = 1,..., N account for

large-scale variation of the log spectrum. Higher coefficients represent spectral
detail and Cj corresponds to signal power.

Mel-frequency spectrum. The mel-frequency cepstral coefficients (MFCC) had
been initially introduced in speech recognition, but the underlying envelope
model lends itself for speech reconstruction and can thus also be considered
in voice conversion. The representation is based on the mel scale which approxi-
mates the frequency sensitivity of human auditory perception. The scale is given
by the function
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x(f) = 2595 - log,,(1 + f/700 Hz) [mel] (6)

and gradually changes shape from linear to logarithmic with growing frequency.
The mel-frequency filter bank is then defined as a set of P filters uniformly
spaced in the mel scale, corresponding to approximately equal sensitivity of the
human ear. The filtering is performed in the frequency domain using triangu-
lar frequency weighting masks F, shown in Fig. 2. Subband energy level E,
is calculated in each frequency band as a scalar product of the mask and the
spectrum amplitude. From these levels, a piecewise-linear envelope model can
be reconstructed. The envelope is then represented using [V initial coefficients of
the discrete cosine transform

Cr = ZEP COSM. (7)

amplitude

0 1000 2000 3000 4000 5000 6000 7000 8000
frequency [Hz|

Fig. 2. The mel filterbank spectrum defined by overlapping triangular masks

3 Realtime speech transcoding

In this work, a mixed-excitation type of vocoder is used, designed with low
latency and low computational cost as primary goals. The original idea presented
in [8] is extended here with new envelope representations.

Similar to other mixed-excitation vocoders, speech is synthesised from a flat
mixture of white noise and regular pulse train. However, it differs in the way the
proportion is estimated from speech. Most vocoders are based on classification
of speech frames into voiced or unvoiced and process each case differently. This
leads to problems e.g. in estimating weakly voiced cases. The mixed excitation
linear predictive (MELP) coder adressed this issue by allowing the voicing to
vary from strongly and weekly voiced, by estimating the strength of harmonicity
in the voiced case and changing the noise proportion in the mixture accordingly
[3]. However, it still relies on voiced/unvoiced decision. A different approach is
used in the harmonic-noise model (HNM) of [9], in which a maximum voiced
frequency is estimated from speech, allowing voiced and unvoiced frames to be
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Fig. 3. Frequency spectrum of voiced speech (left, phoneme /o/) and unvoiced speech
(right, phoneme /f/). Harmonic structure distinguishes voiced speech from unvoiced,
which resembles coloured noise.

handled uniformly. However, in this approach, the excitation is not a weighted
mixture of periodic pulse train and noise but obtained by combining the har-
monic band below the estimated threshold and stochastic above. As a result, it
cannot realistically reflect all kinds of phonation.

In an attempt to fill the gap between these vocoders, a new method of voicing
estimation was introduced which allows the synthesis of excitation by mixing
white gaussian noise and periodic pulse train in arbitrary proportion. The signal
is then fed into the synthesis filter to shape the spectrum and give is the desired
phonemic value and individual voice colouring. In order to be able to synthesise
the excitation, it is necessary to estimate three parameters: the pitch frequency,
the harmonic amplitude and the inharmonic (noise) amplitude.

Pitch tracking is done in autocorrelation domain. A distinguishing feature of
the proposed coding scheme is that it does not rely on classification into voiced
and unvoiced speech. Instead, a continuous degree of voicing is introduced which
takes value from interval [0, 1] and is interpreted as the ratio of harmonic to total
energy. The estimation of this parameter, illustrated in Fig. 6, is based on the pe-
riodicity of autocorrelation sequence of harmonic (voiced speech) signals and the
fact that the zeroth autocorrelation coefficient is the signal energy in the analysis
frame. Consequently, the degree of voicing serves as the basis for estimation of
the harmonic and noise energy levels from total frame energy, from which respec-
tive envelopes used in synthesis are generated. Since there is no voiced /unvoiced
distinction, the fundamental frequency is estimated in all frames and is used for
generating the periodic excitation. However, in unvoiced segments, its amplitude
is small and thus the periodic component does not appreciably affect the nature
of fricatives.
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Fig. 4. Spectral envelope models for the same voiced (left) and unvoiced (right) speech
spectra as in Fig. 3. From top to bottom : linear predictive (LPC) model, homomorphic
model, mel-frequency cepstral model.
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Fig. 5. Spectrograms of sample utterance ,,LLubi¢ czardaszowy plas” by female subject
(a) and fitted spectral envelopes : linear predictive model (b), homomorphic model (c),
mel-frequency cepstral model (d). All models are described using N = 18 parameters.
Phonetic boundaries and labels taken from CORPORA annotation information.

http://rbc.ipipan.waw.pl
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R, R,

Fig. 6. Estimation of the degree of voicing by regression in autocorrelation domain.
The degree of voicing is obtained as the intersection of the regression line (black), fitted
to peak points (dots) of the autocorrelation function (blue), with n = 0 and has the
interpretation of a ratio of harmonic to total energy. Left : voiced phoneme /o/, right :
unvoiced phoneme /f/.

In voiced speech, the degree of voicing is not constant across frequency but
typically decreases at higher frequencies because the envelope of glottal excita-
tion falls off with frequency [1] (it can readily be seen in Fig. 3 as a decreasing
dynamic range between harmonic peaks and valleys). To account for this, esti-
mation of the degree of voicing in selected frequency bands is possible. In this
work, four frequency bands are used (0-1kHz, 1-2kHz, 2-4kHz, 4-8 kHz). Since
the autocorrelation can be equivalently computed from the time and frequency
domain, subband filtering can efficiently be performed by masking selected fre-
quency regions of the spectrum. Fig. 7 illustrates the voicing estimation on real
examples (which include stop /t/ and trill /r/ consonants), both in the full band
and subband cases. It can be observed that both fricative and plosive phonemes
cause the estimate to drop. When the energy envelope grows while the voicing
is low, a noise impulse is generated in synthesis which is used to obtain plosive
sounds. It can be observed that voicing also drops around phoneme transitions
which is an undesirable effect. The subband estimates are more noisy, but as
a rule the lower frequency bands have higher voicing than the high frequency
bands in voiced segments which agrees with what is observed in the spectra.

The four different spectral shape representations (linear prediction repre-
sented in LAR or in LSF domain, homomorphic envelope and the mel-frequency
cepstral envelope) have been built into the system as different modes of oper-
ation. A comparison of the different envelope models for a sample utterance is
presented on Fig. 5. The spectrograms represent time-frequency pattern of a
sample utterance and the corresponding spectral envelopes obtained using the
different models.

Speech coding requires the estimation of the pitch period, the degree of voic-
ing in four frequency bands and N envelope parameters (typically not exceeding
20 at 16kHz sampling frequency) for a total number of up to 25 parameters
per frame. The same window length of 30 ms is used for estimating envelope
for each envelope model, as well as for pitch estimation. This translates into
a minimum buffering delay of 30 ms. Envelope smoothing filter contributes an
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Fig. 7. Dynamic behaviour of voicing estimator for a sample utterance ,Florentyna”.
From top to bottom: spectrogram image with phonetic segmentation and labels from
CORPORA annotation files, fullband voicing estimate, subband voicing estimates in
four frequency bands. Left : male voice, right : female voice.
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additional delay of 10 ms and the synthesis filter delay can be neglected. As a
result, conversion with a latency below 50 ms is possible.

The computational cost depends on the envelope model used. It is lowest in
case of LAR, where parameters are estimated in the efficient Levinson-Durbin
recursion. Its complexity is bounded by the square of the prediction order, which
is typically not greater than 20. LSF require root finding, but because of special
properties of the roots, efficient search procedures exist (see e.g. [10]). The high-
est cost is incurred by spectral representations (cepstral coeflicients and MFCC)
but their execution below real time on ordinary PC machines is not a problem.

4 Voice conversion experiments

The speech analysis-synthesis system described in the previous section served
as a basis for building a voice conversion system. Speech data were taken from
CORPORA parallel corpus of spoken Polish [11]. For adaptation phase, data sets
were derived that were composed of the envelope parameters of selected kind and
the pitch frequency profiles. The degrees of voicing were not transformed.

Pitch modification was based on a simple scaling which is a standard ap-
proach comonly found in voice conversion literature ; in this method, the mean
and variance of the source speaker’s pitch are adjusted to that of the tar-
get speaker. This method preserves the prosody of the source utternace which
may affect conversion performance, since pitch is known to carry some speaker-
dependent information (e.g. learned manners of articulation). However, it is also
known that when one speaker attempts to vocally impersonate another, the
speaking style changes are the easiest to achieve. It is much harder to change
the timbre of voice, since it is determined by anatomical conditions and thus
spectral envelope transformation has traditionally received the greatest research
focus.

For envelope modification, simple linear transformation is not adequate since
the coupling between speaker’s individuality and the phonetic content is gener-
ally nonlinear. The properties of voice reside in details of formant positions,
bandwidths and envelopes in each phoneme. Through a careful time alignment
of the data such that parameter vector pairs are obtained from analogous pho-
netic events, the phonetic variability in the data set is minimized, leaving mainly
voice-induced differences, making it possible to obtain the appropriate transfor-
mation function by using machine learning methods. In this work, time alignment
was based on phonetic annotation which accompanies the CORPORA corpus of
speech. Three speakers were selected (a man, a woman and a boy) to cover both
low and high-pitched voices. Only utterances with identical phonetic annotation
across the selected pair of speakers were included into the data set. Additionally,
the training data were generated from isolated single word utterances only, in
order to minimize prosodic differences between speakers which can arise in longer
utterances due to different understanding of the meaning of spoken sentences.
Within each phonetic segment, ten equidistant frames were extracted along the
segment and the corresponding frames were used to extract envelope param-
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eters. The constructed training sets contained around 14000 vectors (varying
depending on source-target pair).

After the construction of the training set, artificial neural network was trained
using backpropagation algorithm. The network was a standard multilayer per-
ceptron topology with bipolar sigmoidal (tanh) activation function in the hidden
layer and linear output layer. The input and output layers were of size equal to
the number of features, while the hidden layer size was set to 50 units. A valida-
tion subset was set aside to prevent the network from overfitting. An adaptively
varying step size was used and the maximum number of iterations was 3000.

The trained neural network was subsequently used in actual conversion. In
this mode, the same analysis procedure as during training set construction was
applied. The envelope parameters were transformed using the neural network and
the modified parameters were used to reconstruct the target speaker’s envelope.
The new filter was used with the excitation generated using transformed pitch
to yield transformed speech samples.

The obtained samples were used in a formal listening test to evaluate the
performance and quality of the method using subjective opinions of indepen-
dent listeners. Performance was measured in ABX-type of test, in which the
participants were presented two reference samples A and B of the same utter-
ance from source and target speaker, in random order. Then the tested sample
X was presented and the task was to decide if X was closer to A or to B. In the
case the tested sample was judged closer to the target, a success was counted,
and the percentage of successful speaker identity conversions was used as the
perforance metric. A second test was the speech quality evaluation based on
mean opinion score (MOS) test. A standard 5-point scale was used according to
ITU recommendation [12] and the answers were averaged to give a quality score.

Table 1. ABX and MOS results for different spectral envelope representations and
feature vector dimensions in regular voice conversion

ABX MOS
feature dimension W[ 15 [ 18 |15 [ 18
LAR[80,0%| 62,5% [2,53] 2,50
delta LSF|70,0%| 66,7% | 2,20 |2,42
cepstral| 66,7% |75,0%| 1,93 (2,08
MFCC| 66,7% |87,5%] 2,13 |2,42

As a baseline for judging the quality of conversion, pure analysis/synthesis
results (without parameter modification) were evaluated in a separate listening
test representing the maximum achievable quality level. The average MOS scores
obtained were 3,3 — 3,5 for LAR, 2,8 — 3,1 for MFCC, and 2,5 — 2,8 in LSF, de-
pending on the feature vector dimension, demonstrating room for improvement.
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5 Discussion

While ABX performance results indicate that the conversion was successful, the
quality scores are too low for practical use. The quality degradation comes from
two sources: firstly, parametric speech coders are always lossy and their quality
is known to be lower compared to waveform coders at comparable baud rates.
This is because waveform coders can represent also speech features which do
not fit into models. For example, CELP coders (e.g. the GSM EFR) encode the
most perceptually important part of LPC residual in a compact form, allowing to
account for antiformants or transients, which are difficult to properly represent
and estimate. On the other hand, in voice conversion, where baud rate reduction
is not the aim, parameter quantization is not necessary and thus this source of
distortion is eliminated. The quality achieved in the direct transcoding scenario
(analysis followed by synthesis, with no feature transformation) is lower but still
comparable to most speech coders used in the industry (for a survey see e.g. [13])
and could be acceptable for some applications. The main reason for quality loss is
the limited expressive power of the excitation model, which cannot adequately
represent some effects such as aperiodicity in voice onset. Underestimation of
voicing around phoneme transitions also impacts quality, since it results in ex-
cessive noise in these time instants. By increasing the number of features, the
quality could be improved within certain limits but that in turn would necessi-
tate more training data for a reliable estimation of the conversion function. As
a tradeoff, the dimension of envelope feature vectors should be confined to the
range 15-20.

The second source of distortion is the transformation function learned from
sample speech data. As can be seen from Table 1, the quality with conversion
function is almost 1 MOS degree lower than the direct coding baseline, indicating
a significant impact of the conversion function. The negative effect of the con-
version function comes from several sources. One of them are the speaking style
differences and other discrepencies in the training data, leading to errors in the
conversion function. A remedy can be the creation of a dedicated corpus, where
speaking style differences are minimized by the speakers following a reference
prosodic pattern, as proposed by Kain and Macon [14]. This, however, would
also necessitate additional annotation work since the training data are aligned
based on phoneme boundaries; the special corpus requirement is also not prac-
tical and research is now aimed at learning from general non-parallel corpora.
The second notable problem is the class imbalance due to unequal occurrence of
phonemes, which may cause the less frequent ones to be underrepresented and
suffer more distortion upon transformation.

A separate issue is the perceptual relevance of the particular representation
of the spectral envelope. As can be seen from Fig. 4, the linear predictive model
gives a very close approximation. However, detailed analysis revealed that inter-
polation of envelopes in both LAR and LSF domains has important shortcom-
ings. Intuitively, a perceptually correct average of two tones of different frequency
and amplitude should be a single tone having average frequency and average am-
plitude, not a mixture of two tones with half their original amplitude. In both
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LSF and LAR representations, it was found that interpolation causes broadening
of formant peaks, resulting in a muffled quality of reconstructed signal. While
interpolation is not explicitly used in the conversion system, machine learning
is inherently based on averaging over learning examples and thus causes loss of
spectral detail. The homomorphic envelope model, on the other hand, can be
seen to systematically underestimate the real envelope which due to the fact
that it is a low-frequency fit to the spectrum and thus passes midway between
peaks and valleys. As a result, this representation gave the worst results even
in pure coding case. The mel-cepstral representation appears to be a promising
alternative to LPC representations, however, MFCC did not outperform LAR
representation in listening tests. Supposedly, the resolution of the filter bank is
too high in the low frequency region, causing original pitch to affect the fitted
model, which then interferes with the generated excitation with a modified pitch.

Acknowledgements

The study is cofounded by the European Union from resources of the European
Social Fund. Project PO KL “Information technologies: Research and their in-
terdisciplinary applications”, Agreement UDA-POKL.04.01.01-00-051/10-00.

References

1. Fant, G.: Acoustic theory of speech production, with calcultions based on X-ray
studies of russian articulations. I edn. Description and analysis of contemporary
standard Russian. Mouton & co, The Hague (1960)

2. Flanagan, J.: Speech Analysis Synthesis and Perception. Kommunikation und
Kybernetik in Einzeldarstellungen. Springer-Verlag Berlin Heidelberg (1965)

3. McCree, A., Barnwell, T.P., I.: A new mixed excitation LPC vocoder. In: Acoustics,
Speech, and Signal Processing, 1991. ICASSP-91., 1991 International Conference
on. (Apr 1991) 593-596 vol.1

4. Makhoul, J.: Linear prediction: A tutorial review. Proceedings of the IEEE 63(4)
(April 1975) 561-580

5. Viswanathan, R., Makhoul, J.: Quantization properties of transmission parame-
ters in linear predictive systems. Acoustics, Speech and Signal Processing, IEEE
Transactions on 23(3) (Jun 1975) 309-321

6. Itakura, F.: Line spectrum representation of linear predictor coefficients of speech
signals. The Journal of the Acoustical Society of America 57(S1) (1975) S35-S35

7. Oppenheim, A.: Superposition in a class of nonlinear systems. PhD thesis, Mas-
sachusetts Institute of Technology (1965)

8. Lenarczyk, M.: Parametric speech coding framework for voice conversion based
on mixed excitation model. In Sojka, P., Hordk, A., Kopecek, I., Pala, K., eds.:
Text, Speech and Dialogue. Volume 8655 of Lecture Notes in Computer Science.
Springer International Publishing (2014) 507-514

9. Stylianou, Y.: Modeling speech based on harmonic plus noise models. In Chol-
let, G., Esposito, A., Faundez-Zanuy, M., Marinaro, M., eds.: Nonlinear Speech
Modeling and Applications. Volume 3445 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg (2005) 244-260



94

10.

11.

12.

13.

14.

Michat Lenarczyk

Lenarczyk, M.: Robust and accurate Isf location with laguerre method. In: Inter-
speech 2015, Dresden, ISCA (September 2015) 423-427

Grocholewski, S.: Corpora - speech database for polish diphones. In: Proceedings
of Interspeech, Rodos (1997) 1735-1738

ITU-T: Recommendation P.800, Methods for subjective determination of trans-
mission quality (1996)

Ramo, A., Toukomaa, H.: On comparing speech quality of various narrow- and
wideband speech codecs. In: Signal Processing and Its Applications, 2005. Proceed-
ings of the Eighth International Symposium on. Volume 2. (August 2005) 603-606
Kain, A., Macon, M.: Design and evaluation of a voice conversion algorithm based
on spectral envelope mapping and residual prediction. In: Acoustics, Speech, and
Signal Processing, 2001. Proceedings. (ICASSP ’01). 2001 IEEE International Con-
ference on. Volume 2. (2001) 813-816 vol.2



