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Abstract. Stepwise feature selection is one of the most popular vari-
able selection techniques for linear models. The procedure, however, is
computationally demanding, especially when the number of potential
variables is large. In our previous work we proposed a way to speed up
stepwise algorithm on large data, based on multidimensional indices and
a bound based on correlations between variables. This paper presents an
alternative proof of the bound and shows that it cannot be improved.

1 Introduction

Nowadays, many sophisticated methods for data analysis are available. However,
a very important issue is not only the modeling itself, but also finding relevant
variables to include in the model. Unfortunately, there are currently no methods
to assist the researcher (except his/her own intuition) in finding external sources
of relevant data such as public datasets available on the web.

Potentially, an answer to this problem could be Linked Open Data (LOD): a
project to make statistical data collected by various organizations, government
statistical offices, etc. publicly available on the internet in a way which is well
suited for automated access. The movement has recently gained momentum and
huge amounts of data became available online from sources such as Eurostat [1],
United Nations, International Monetary Fund, etc. The current state of Linked
Open Data can be seen in the diagram [2] which shows data sources and links
between them. More information on Linked Open Data can be found e.g. in [3–6].

We believe however, that in its current form Linked Open Data is not suitable
for statistical practice. Linking new datasets is based on purely syntactic criteria,
which can easily result in huge amount of unrelated data being downloaded to
researcher’s computer. Building models on such data would then be extremely
time consuming and prone to overfitting.

A solution, in our opinion, is a linking procedure based on statistical, not
syntactic properties. One example of such a solution (and at the same time the
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most relevant previous work) is Google Correlate [7–9], which given a query
dataset finds the most correlated Google query. The service has several limita-
tions: it is restricted to finding correlated Google queries and does not include
other publicly available datasets. Moreover it is only able to find single most
correlated variables, while in practice we are interested in building complete
statistical models.

In [10] we presented a method to build fast stepwise linear regression models
by using a multidimensional indexes to search for relevant variables. As the
multidimensional index we used FLANN (Fast Library for Approximate Nearest
Neighbors) [11, 12]. Since the indices only allow for finding single most correlated
variables, the stepwise procedure had to be rewritten using only this operation.
The method is based on forward stepwise regression (see e.g. [13]) but during
each step a spatial index is used to search for candidate variables; only those
candidates are then used for classical stepwise selection.

The paper is organized as follows. In Section 2 we give a brief summary
of [10], introduce the necessary notation, followed by a short introduction to
multidimensional indexing. Forward stepwise feature selection is explained in
Section 2.2 together with the theorem guaranteeing its correctness. Later, in
Section 3 a geometric proof of Theorem 1 is described, and a theorem is given
proving that the bound cannot be improved. Finally, in Section 4 we conclude
the paper.

2 Fast stepwise regression

The main idea of our approach to speed up the stepwise regression procedure is
based on Theorem 1, which was proved and discussed shortly in [10]. To present
this theorem let us start with introducing some notation and explaining the
stepwise regression procedure.

2.1 Notation

Lowercase letters will denote n-dimensional vectors. In particular, y ∈ Rn will
be the response variable of a linear model, r ∈ Rn a residual vector of the
currently considered model, and x ∈ Rn a predictor variable. The set of all
possible predictors will be denoted as X = {x1, . . . , xp}. Subsets of X will be
denoted as XI , where I ⊆ {1, . . . , p} is the set of indices of variables. So, if
I = {l1, . . . , lk}, then XI = {xl1 , . . . , xlk}.

In the paper we assume that each vector xi ∈ X as well as the response y are
normalized i.e. they have zero mean (x̄i = 0) and l2 norm equal to 1 (‖xi‖ = 1).

Let I = {l1, . . . , lk}. The projection of a vector y onto the space spanned
by XI = {xl1 , . . . , xln} will be denoted as ProjXI

y and by y ∼ xl1 + . . . + xlk
or y ∼ XI we will denote a linear model with y as response and xl1 , . . . , xlk as
predictors.

For brevity, correlations of specific vectors xi and xj will be written as ci,j =
cor(xi, xj) and correlation of the variable xi and current residual vector r as
cres,i = cor(r, xi).
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In Section 3 volumes of parallelotopes spanned by a set of vectors will be de-
noted as µk(·). For example, the volume of a k-dimensional parallelotope spanned
by {xl1 , . . . , xlk} is µk(xl1 , . . . , xlk).

2.2 Stepwise regression

The idea of stepwise regression was introduced in 1960 by Efroymson [14]. Here,
by stepwise procedure we mean forward stepwise selection (see e.g. [13]). The
algorithm works as follows. First we start with an empty model (y ∼ 1) and find
a variable (say xl1) which gives the lowest residual sum of squares (RSS) when
added to the model. The variable is then included in the model which becomes:
y ∼ xl1 . Then we check all two-variable models which include the variable xl1 ,
that is y ∼ xl1 +xi, for all xi ∈ X \{xl1}, select a variable xl2 for which the RSS
was lowest and add it to the model. We continue this procedure until the model
no longer improves according to an appropriate criterion (such as AIC [15] or
BIC [16]) or the maximum number of variables allowed in the model is reached.
The algorithm is presented in Table 1.

Algorithm: Stepwise

1) r := y
I := ∅

2) For k = 1, . . . , kmax:
1. For each i ∈ {1, . . . , p} \ I:

compute the residual of the model obtained
by adding xi to the current model: ri = y − ProjXI∪{i}y

2. Find lk = arg mini∈{1,...,p}\I ri
T ri,

3. If the model: y ∼ XI∪{lk} is better than y ∼ XI :
Add lk to I: I := I ∪ {lk} and goto 2)

else break.

Fig. 1. The stepwise regression algorithm

The main problem with the stepwise algorithm is that in each iteration it
requires building as many models as there are possible predictors (although some
work can be shared between all models in some circumstances) and, as a result,
becomes very inefficient for datasets with a large number of variables, such as
the ones that may be obtained using Linked Open Data.

2.3 Multidimensional indices and correlations

To speed up the stepwise procedure described in Section 2.2 we proposed [10]
an algorithm which limits the number of models built in each iteration, by using
multidimensional indexing. We will now summarize the results of that paper.

A multidimensional index can be used to store a large number of points from
an n-dimensional Euclidean space. Afterwards, we can use the index to quickly
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answer two types of queries: (1) nearest neighbor queries, where given a query
vector, find k nearest vectors in the index, and (2) range queries, where given
a query vector and a radius, find all points within the given radius from the
query. As a multidimensional index we used the FLANN library [11] which is
very fast but gives approximate results and Ball Trees (see e.g. [17]) which are
much slower, but give exact results.

A key observation is that, for appropriately normalized vectors, searching for
a nearest neighbor corresponds to looking for the most correlated vector. Let
xi, xj be vectors with zero mean and l2 norm equal to 1 (i.e. x̄i = x̄j = 0 and
‖xi‖ = ‖xj‖ = 1), then

‖xi − xj‖ =
√

2− 2〈xi, xj〉 =
√

2− 2cor(xi, xj).

Due to the above, in order to search for a vector most correlated with a given
query vector x we need to normalize it

x′ =
x− x̄
‖x− x̄‖

, (1)

and perform a nearest neighbor search for both x′ and −x′.

2.4 Fast stepwise regression

The main result of the paper [10] was to show how to quickly build a stepwise
model on data with a large number of indexed variables. Here we restate this
result briefly, starting with the following theorem.

Theorem 1. Assume that the variables xl1 , . . . , xlk−1
currently in the model are

orthogonal, let r = y−Proj{xl1
,...,xlk−1

}y denote the residual vector of the current

model and take two variables xlk , xl′k . Then

‖y − Proj{xl1
,...,xlk−1

,xl′
k
}y‖ 6 ‖y − Proj{xl1

,...,xlk−1
,xlk
}y‖ (2)

implies

max {|cl1,l′k |, . . . , |clk−1,l′k
|, |cres,l′k |} >

|cres,lk |√
1−

k−1∑
i=1

c2li,lk + (k − 1)c2res,lk

. (3)

Suppose we considered xlk as a candidate for the model and computed the
residual sum of squares for it. Theorem 1 states that if any variable is better
than xlk , then it must be correlated to a sufficient degree either with the current
residual vector or one of the predictors already in the model. This condition
can easily be translated into a series of range queries to the index. The query
points are ±r, where r is the current residual and ±xli , where xli are variables
currently in the model. The query radius is given by the right hand side of (3).
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The algorithm for fast stepwise regression is given in Figure 2. Lines 2 and
3.2 use a nearest neighbor query to the index, and lines 3.5 and 3.6 use range
queries. The speed up comes from using the stepwise procedure only on the
candidate set C which can be efficiently obtained using the multidimensional
index.

Algorithm: Fast stepwise

1) r := y
I := ∅

2) Find a variable xl1 ∈ X most correlated with r
and add its index l1 to the active index set I := I ∪ {l1}

3) For k = 1, . . . , kmax:
1. Compute the new residual vector r = y − ProjXI y
2. Find a candidate variable index uk ∈ {1, . . . , p} \ I

such that xuk is most correlated with r
3. Initialize the candidate index set C := {uk}
4. η :=

|cor(r,xuk
)|√

1−
∑

li∈I
cor(xli

,xuk
)2+|I|cor(r,xuk

)2

5. C := C ∪ {i ∈ {1, . . . , p} \ I : ‖xi − r‖2 6 2− 2η}
6. For j = 1, . . . , k − 1:

C := C ∪ {i ∈ {1, . . . , p} \ I : ‖xi − xlj‖
2 6 2− 2η}

7. Find the best variable xlk in XC using an iteration
of stepwise procedure

8. Add lk to the current active index set: I := I ∪ {lk}

Fig. 2. The fast stepwise regression algorithm based on a multidimensional index.

3 Geometric approach

In [10] a proof of Theorem 3 was given, which was based on linear algebra tech-
niques. In this paper we would like to show a different approach concentrating on
a geometric structure of variables and correlations between them. The geometric
proof is based on the following lemma.

Lemma 1. If adding the variable xl′k to the model decreases the residual sum of
squares more than adding xlk , i.e.

‖y − Proj{xl1
,...,xl′

k
}y‖ 6 ‖y − Proj{xl1

,...,xlk
}y‖, (4)

then the following inequality is satisfied

c2res,lk

1−
k−1∑
i=1

c2li,lk

6
c2res,l′k

1−
k−1∑
i=1

c2li,l′k

.
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To prove Lemma 1 let us first state two facts:

FACT 31
For any x1, . . . , xn ∈ Rn and matrix X = [x1| . . . |xn] we can find a rotation

matrix R such that RX is upper triangular.

FACT 32
The volume of a parallelotope spanned by vectors x1, . . . , xn ∈ Rn is equal to

µn(x1, . . . , xn) = det([x1| . . . |xn]).

Let us now back to the proof of lemma 1.

Proof (Proof of lemma 1). First let us notice that

‖y − Proj{xl1
,...,xlk

}y‖ =
µk+1(r, xl1 , . . . , xlk)

µk(xl1 , . . . , xlk)
. (5)

Due to Fact 31 and the fact that without loss of generality we may assume
the vectors xl1 , . . . , xlk−1

already added to the model to be orthogonal, we can
rotate matrices [r|xl1 | . . . |xlk ] and [xl1 | . . . |xlk ] such that matrices M1 and M2

are obtained with respectively only k + 1 and k nonzero rows.

M1 =



z 0 · · · 0
cres,lk

z
0 1 · · · 0 cl1,lk
...

...
. . .

...
...

0 0 · · · 1 clk−1,lk

0 0 · · · 0

√
1−

c2res,lk
z2 −

k−1∑
i=1

c2li,lk

0 0 · · · 0 0
...

...
...

...
...


,M2 =



1 · · · 0 cl1,lk
...

. . .
...

...
0 · · · 1 clk−1,lk

0 · · · 0

√
1−

k−1∑
i=1

c2li,lk

0 · · · 0 0
...

...
...

...


,

where z = ‖r‖. Due to Fact 32 the volumes in Equation 5 can be calculated as
follows

µk+1(z, xl1 , . . . , xlk) = detM1 =

√√√√z2(1−
k−1∑
i=1

c2li,lk)− c2res,lk ,

µk(xl1 , . . . , xlk) = detM2 =

√√√√1−
k−1∑
i=1

c2li,lk .

And then equation (5) can be written as

‖y − Proj{xl1
,...,xlk

}y‖ =

z2(1−
k−1∑
i=1

c2li,lk)− c2res,lk

1−
k−1∑
i=1

c2li,lk

,
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which combined with (4) leads to

c2res,lk

1−
k−1∑
i=1

c2li,lk

6
c2res,l′k

1−
k−1∑
i=1

c2li,l′k

.

As we can see the above proof is based on the geometric structure of the variables
of a linear model. The rest of the proof of theorem 1 is the same as in [10]. We
restate it below for the sake of completeness.

Proof (Proof of Theorem 1). If for any i = 1, . . . , k − 1:

|cli,l′k | >
|cres,lk |√

1−
k−1∑
i=1

c2li,lk + (k − 1)c2res,lk

then the inequality is true. Otherwise for all i = 1, . . . , k − 1:

|cli,l′k | <
|cres,lk |√

1−
k−1∑
i=1

c2li,lk + (k − 1)c2res,lk

(6)

and we need to show that this implies |cres,l′k | >
|cres,lk |√

1−
k−1∑
i=1

c2li,lk
+(k−1)c2res,lk

. Notice

first that the inequalities (6) imply

1−
k−1∑
i=1

c2li,l′k
>

1−
k−1∑
i=1

c2li,lk

1−
k−1∑
i=1

c2li,lk + (k − 1)c2res,lk

. (7)

Using inequality (7) and Lemma 1 we get the desired result:

c2res,l′k
> c2res,lk

1−
k−1∑
i=1

c2li,l′k

1−
k−1∑
i=1

c2li,lk

>
c2res,lk

1−
k−1∑
i=1

c2li,lk + (k − 1)c2res,lk

.

3.1 Optimality of the constraint

We will now show that the inequality (3) in Theorem 1 cannot be improved.
This is illustrated graphically in Figures 3 and 4 and proved in Theorem 2.

Figures 3 and 4 present results on simulated data illustrating Theorem 1.
Each point in each figure corresponds to a single simulation run, where random
vectors were drawn, normalized and values of both sides of the bound calculated.
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Fig. 3. Illustration of theorem 1 for adding 2nd variable for n = 4. Presented points
correspond to vectors satisfying theorem assumptions and dashed red line is identity.

The first simulation (Figure 3) was performed as follows. The first predic-
tor xl1 was sampled as a normally distributed vector of a given length n = 4,
then the response variable y was built as a sum of the vector xl1 and some nor-
mally distributed noise. Two other vectors were then sampled similarly to xl1 .
The better of them (in the sense of lower RSS) was chosen as xl′2 , the worse

as xl2 and the values max{|cl1,l′2 |, |cres,l′2 |} and |cres,l2 |/
√

1− c2l1,l2 + c2res,l2 were

calculated. Then results were plotted as a scatterplot. The red dashed line corre-
sponds to identity, so all vectors for which the inequality max{|cl1,l′2 |, |cres,l′2 |} >
|cres,l2 |/

√
1− c2l1,l2 + c2res,l2 is satisfied lie above that line. As we can see, vectors

tend to get arbitrarily close to the line, suggesting that the inequality is tight.

The second simulation (Figure 4 ) is very similar, but instead of adding the
second variable we add the third one. Moreover n = 5 was chosen. First, two
variables xl1 and xl2 ware sampled and orthogonalized, then y was calculated as
the sum of xl1 , xl2 and a normally distributed noise. Then two more variables
were sampled, and the better one was used as xl′3 and the worse as xl3 . Again,
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Fig. 4. Illustration of theorem 1 for adding 3rd variable for n = 5. Presented points
correspond to vectors satisfying theorem assumptions and dashed red line is identity.

the values max{|cl1,l′3 |, |cl2,l′3 |, |cres,l′3 |} and |cres,l3 |/
√

1− c2l1,l2 − c
2
l1,l3

+ c2res,l3
were calculated and plotted in the figure. Again, points get arbitrarily close to
the line, suggesting tightness of the bound. The theorem below proves that this
is indeed the case.
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Theorem 2. The inequality

max {|cl1,l′k |, . . . , |clk−1,l′k
|, |cres,l′k |} >

|cres,lk |√
1−

k−1∑
i=1

c2li,lk + (k − 1)c2res,lk

form theorem 1 cannot be improved.

Proof. To prove the theorem it is enough to find vectors xlk and xl′k such that

max {|cl1,l′k |, . . . , |clk−1,l′k
|, |cres,l′k |} =

|cres,lk |√
1−

k−1∑
i=1

c2li,lk + (k − 1)c2res,lk

Let xlk = 1√
k

r
‖r‖ + 1√

k
xl1 + . . . + 1√

k
xlk−1

and xl′k = xlk , then xlk is prop-

erly normalized (x̄lk = 0, ‖xlk‖ = 1). Due to the fact that r, xl1 , . . . , xlk are
uncorrelated, the following correlations are equal to

cres,lk = cres,l′k =
1√
k
,

cli,lk = cli,l′k =
1√
k
,

thus

max {|cl1,l′k |, . . . , |clk−1,l′k
|, |cres,l′k |} =

1√
k

=
|cres,lk |√

1−
k−1∑
i=1

c2li,lk + (k − 1)c2res,lk

.

4 Conclusions

The paper presents an alternative, geometric proof of theorem enabling finding
stepwise regression model faster on large data sets, presented in paper [10]. It
also shows that the bound in this theorem cannot be improved. Paper discusses
stepwise regression with no penalties, which is left for the future research.
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