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Abstract. We introduce a novel procedure for evaluating prediction of
protein-protein interactions. It takes into account fact that pairwise pro-
tein interactions form a larger interaction network. Our procedure guar-
antees that: a) true positives and true negatives of interacting proteins
are formed from the same elements (i.e. they have identical protein com-
position), b) there is strict separation of proteins between training and
test sets. This procedure was applied to previously developed MLPPI
(Multi-level machine learning prediction of protein-protein interactions)
method and established sequence-based methods. We performed evalu-
ation on high-quality small and medium size data sets containing pro-
tein interactions from Saccharomyces cerevisiae, Homo sapiens, and Es-
cherichia coli. Poor performance of all methods (AUC ROC below 0.6)
raises a question whether the goal of protein-protein interaction predic-
tion was correctly formulated.

Experimental code and data freely available at:
http://zubekj.github.io/mlppi/
(Python implementation, OS independent).

1 Introduction

Proteins are among the most important building blocks of living cells. They
are compound objects which can be described in multiple scales: protein pri-
mary structure is a linear (1D) sequence of amino acids residues, secondary
structure is a sequence of characteristic structural motifs formed along protein
chain, and tertiary structure is a full 3D structure of a protein molecule. Inter-
actions between proteins form complex signalling networks, which needs to be
reconstructed in as much details as possible in order to understand properties
of living organisms at the system level [12]. Various computational tools based
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on machine learning are being developed to facilitate this process. Most of these
tools focus on predicting binary interactions between pairs of proteins. Among
them methods using only 1D protein sequence have the widest applicability, since
this kind of information is available for all known proteins. Assessment and com-
parison of performance of such methods in a realistic setting is a non-trivial task
which requires special considerations.

In this work we focus on a thorough evaluation of a multi-level machine learn-
ing method for predicting protein-protein interactions, which was developed by
Zubek et al. [17]. It differs significantly from the established sequence-based
methods because it uses residue-residue interaction prediction as an intermedi-
ate step during protein-protein interaction prediction (hence it is called a multi-
level approach). In such fashion it introduces 3D structural information during
classifier training but utilises only 1D sequence during prediction. The impact
of this approach on prediction quality was not yet evaluated properly: so far
the method was tested only on a relatively small subset of proteins from Sac-
charomyces cerevisiae. The goal of this work is to compare the performance
of multi-level method by Zubek et al. [17] with that of classic sequence-based
methods [10] in a realistic setting using larger and more diverse sets of proteins
from different organisms: Saccharomyces cerevisiae (Yeast), Homo sapiens (Hu-
man), and Fscherichia coli (the organisms were chosen based on the availability
of the data). In order to meet our goal we develop a novel evaluation schema,
which measures predictive power in the context of detecting real compatibility
between previously unseen proteins. We construct a balanced set of true negative
interactions using interaction network properties. We calculate the performance
metrics using modified multi-level cross-validation schema, which takes into ac-
count internal structure of the classified objects. This approach allows to avoid a
common problem in the evaluation of classifiers operating on compound objects,
when the same components occur in different quantities in training and test set
[11]. Our hypotheses are that: a) introducing indirectly 3D information in the
multi-level classifier is beneficial for its performance, b) our evaluation schema
reflects the real difficulty of protein-protein interaction prediction better than a
néive approach which often overestimate classifier performance.

The decision to focus on prediction utilising protein primary structure and do
not include methods based on protein functions [14, 13] in our comparison needs
justification. We believe that those two types of prediction methods have differ-
ent areas of application. First, functional features are generally available only for
a subset of proteins from well studied organisms. Second, this kind of description
is strongly dependent on biological pathways, which may be highly specific for a
given organism. With functional features we are targeting high-level evolution-
ary designed mechanisms, while with sequence-based features we can hope to
uncover basic physical properties of proteins, which govern their interactions.
Knowing those properties it would be possible to predict protein interactions
across different organisms and include some specific cases which distort normal
protein interaction networks, such as host-patogen protein interactions.
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In our experiments we obtained performance estimates much lower than usu-
ally reported, which is in line with our hypothesis. The multi-level approach was
only marginally better than other methods. Our results raise the need to re-
evaluate the usefulness of sequence-based features for protein interaction predic-
tion. Lack of success of both standard methods aggregating global features of the
sequence and the multi-level approach, which looks at the individual residues,
suggests that protein interactions may be a phenomenon occurring primarily on
a higher level and involving whole protein structures.

2 Materials and methods

2.1 Protein interactomes

We evaluated prediction methods by building classifiers separately for three or-
ganisms: S. cerevisiae, H. sapiens, and E. coli. Interactomes of all these organisms
are relatively well studied, however reconstructed protein interaction networks
are still far from being complete. For all three organisms we extracted 3D pro-
tein crystal complexes from Protein Data Bank (PDB) [2]. We were interested
in complexes scanned with X-RAY with the resolution below 3 A. Homologous
structures were removed with 90% sequence identity threshold. The remaining
complexes were used as a reliable source of information on residue-residue inter-
actions (RRI) and protein-protein interactions (PPI). Residue-residue interac-
tion is defined as a pair of amino acid residues from two different protein chains
which are located within a close distance (4 A) in the crystal structure. Protein-
protein interaction is a pair of proteins for which at least one residue-residue
interaction occurs. Only pairwise heterogenous protein interactions involving
two different proteins were of interest to us.

In the work by Zubek et al. [17] a special procedure was used to filter RRIs
and keep only the strongest interactions. The sliding window was moved along
protein sequence and centred on each interacting residue. The window covered 21
residues — one central interacting residue, 10 residues to the left from it, and 10
residues to the right of it. Then the number of all interacting residues (including
the central one) within the window was counted. Only when this number exceed
certain threshold value the central residue was considered strongly interacting.
We replicated this procedure in this work and set the threshold value to 15 (this
value was reported as an optimal in the original publication).

Relatively small sets of PDB-derived PPIs were complemented with large
scale data curated by Saha et al. [14]. They provided PPIs for S. cerevisiae
and H. sapiens in two flavors: GOLD dataset contained only interactions which
were confirmed independently with two different experimental methods, SILVER
contained interactions reported by two different sources (possibly using the same
experimental method). For S. cerevisiae and H. sapiens we used the available
GOLD datasets. For E. coli we constructed our own SILVER dataset using
iRefWeb interface [16].

PDB-based data sets were split into training and test set on the protein level
(no protein occurred simultaneously in the two sets). Numbers of PPIs in each
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set are given by Table 1. Proteins occurring in S. cerevisiae PDB training were
removed from S. cerevisiae GOLD test, proteins occurring in H. sapiens PDB
training were removed from H. sapiens GOLD test, and proteins occurring in F.
coli PDB training were removed from E. coli SILVER. Because data available
in PDB for E. coli was less abundant than for the other organisms, we did not
construct a PDB-based test set, using F. coli SILVER as the only validation of
prediction performance.

Table 1. Number of interacting protein pairs in the collected data sets.

Data set Training RRI Training PPI Test PPI
S. cerevisiae GOLD - - 1284

S. cerevisiae PDB 5531 211 174

H. sapiens GOLD - - 1325

H. sapiens PDB 2774 195 204

E. coli SILVER - - 2763

E. coli PDB 1698 61 -

2.2 True negatives

The available experimental data identifies only positive interactions. True neg-
ative interactions for training machine learning classifier need to be artificially
generated. Generating high quality negatives is generally very difficult. For RRIs
we selected sequence fragments from known protein complexes such that not a
single RRI occurred on those fragments. As the data was abundant and the risk
of generating a false negative by chance was low, we generated 10 times more
RRI negatives than the collected positives. This was done to represent class
imbalance expected in real data.

The problem was more complicated for PPIs. Common methods for gener-
ating negatives include drawing random pairs of biomolecules from all known
proteins found in a specific organism [14], or from the subset of whole proteome
constituted by proteins occurring in positive examples [4]. We strongly believe
that such methods have their inherent drawbacks, because they ignore network
properties of the underlying protein interactome. Imagine that we have a set of
9 positive PPIs over 10 proteins which form a star subgraph in the interactome.
The central protein in this subgraph has 9 interactions, the rest of the proteins
have 1 interaction each. Then we generate negatives by drawing random pairs
of these 10 proteins with equal probability. For each protein the probability of
being included in a formed pair is equal to: % + 19—0 . % = 0.2. If we draw 9
pairs, the expected number of negative interactions for each protein is 1.8. In
such setting a classifier which recognises any pair containing the central protein
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as positive automatically reaches 0.83 precision score, even though it completely
ignores relative compatibility between two proteins. This scenario is biologically
realistic, in real interactomes occurrence of a significant number of hub proteins
is reported [15]. What is more, when the proteins are paired completely randomly
there is always a risk of generating a false negative, i.e. previously undiscovered
interaction. Because of this larger number negatives lower the quality of data.
As an alternative to uniform sampling we propose the following procedure:

— Let G; be a graph representing positive examples. Denote V' = vy,...,v,
as the set of its vertices. Each vertex in V represents a protein and each
edge v;,v; represents an interaction. Let [Deg(v1),...,Deg(vy,)] be a vec-
tor containing degrees of vertices from V. Let G5 be a graph of negative
interactions. At first it has vertices identical to G; and no edges.

— While there exist v such that Deg(v) > 0:

1. Find vertex v with the largest Deg(v).
2. Find vertex u if exist such that:
(a) There is no edge (v,u) in Gj.
(b) u has as large Deg(v) as possible.
(c) Distance d(u,v) in Gy is as large as possible.
3. If u exist:
(a) Add edge (u,v) to Gs.
(b) Deg(v) + Deg(v) —1
(¢) Deg(u) < Deg(u) — 1
4. else: Deg(v) + 0

Such schema of constructing the negatives is unbiased, i.e. the protein com-
position of the positives and the negatives remains identical. Every single protein
has the same number of positive and negative interactions. This forces the trained
classifier to predict meaningful biophysical interactions rather than predicting
general reactivity (the relative number of interactions) of a single protein. What
is also important, our algorithm favours protein pairs which are remote to each
other the interaction network, which reduces — but does not eliminate — the
risk of generating false negatives by chance. Using the described procedure we
generated the same number of negative PPIs as positive ones, thus obtaining a
balanced dataset.

2.3 Multi-level prediction of protein-protein interactions

We were interested in benchmarking the multi-level method developed by Zubek
et al. [17]. We will refer to it as MLPPI. It performs a two-stage prediction,
first predicting RRIs and then using the results to predict PPIs. RRI classifier
operates on sequence fragments of length 21 amino acid residues. Two frag-
ments sliced from two proteins sequences constitute a single observation. Sliding
window technique is used to extract fragments centred on each residue in a se-
quence. The result is a two dimensional matrix with dimensions corresponding
to proteins’ lengths. It can interpreted as a predicted potential contacts map.
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This matrix is processed with various feature extraction algorithms to produce a
fixed-length input for PPI classifier. General outline of this method is presented
as Figure 1.

RRI classifier

DQCIVISGESGAGKTESAHLE

Protein sequences Pairs of sequence
fragments

PPI classifier |[¢=——————— Image processing ¢———————

Predicted contact map

Fig. 1. Schematic depiction of the multi-level protein interaction prediction pipeline.

For classification on both levels we used Random Forest algorithm with 300
trees and maximum tree depth limited to 7 nodes. Sequence fragments which con-
stituted input for RRI classifier were encoded using secondary structure symbols
predicted from sequence by PSIPRED [8]. Features extracted from the predicted
contact map to form an input for PPI classifier included:

— the mean and variance of values over the matrix (2),

— the sums of values in 10 best rows and 10 best columns (20),

— the sums of values in 5 best diagonals of the original and the transposed
matrix (10),

— the sum of values on intersections of 10 best rows and 10 best columns (1),

— the histogram of scores distributed over 10 bins (10),

— features of the connection graph: fraction of nodes in the 3 largest connected
components (3).

Features of the connection graph require further explanation. Predicted con-
tacts between residues were represented as a bipartite graph. Nodes in the graph
represented residues and edges represented predicted contact. To make the graph
more consistent with the observed experimental data, for each node we left only
3 strongest outgoing edges. We set the value of this threshold (3) following the
observation that in our PDB structures the mean number of interactions of a
single interacting residue is between 2 and 3. In such trimmed graph we cal-
culated fractions of nodes contained in 3 largest connected components. Those
values were also appended to the feature vector.
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2.4 Sequence-based methods

We compared our ensemble method with various sequence feature aggregation
schemas that are commonly used to construct features for machine learning
classifiers of protein interactions. To make the benchmarking results comparable
between different algorithms, we used the same classification method (Random
Forest) as for the MLPPI classifier. We benchmarked the following feature ag-
gregation schemas:

1. AAC — Amino Acid Composition [10]. Feature set is the set of frequencies
of all amino acids in the sequence.

2. PseAAC — Pseudo Amino Acid Composition [5]. Feature set consists of the
standard AAC features with k-th tier correlation factors added. The k-th
tier correlation factor represent correlation for residues separated from each
other by k residues. We calculate those correlations on HQI8 indices.

3. 2-grams [10]. Feature set comprises of frequencies of all 400 ordered pairs of
amino acids in the sequence.

4. QRC — Quasiresidue Couples [7]. A set of AAIndices is chosen. For each index
d combined values of this property d for a given amino acid pair are summed
up for all the pair’s occurrences over the full protein sequence. Occurrences
for pairs of residues separated from each other by 0,1,2...m residues. In
effect, one obtains QRC? vectors of length 400 x m. In this model we also
use HQIS indices.

5. VD — vector deviations, a variation of Liu’s protein pair features [9]. The
method starts from encoding each amino acid in a protein sequence with 7
chosen physicochemical properties, thus obtaining 7 feature vectors for each
sequence. For each feature vector its “deviation” is calculated:

n—d

> @i Xy j=1...,7d=1,...,L
=1

1
n—d

Vdj =

where z;; is the value of descriptor j for amino acid at position 7 in sequence
P, n is the length of protein sequence P, and d is the distance between
residues in the sequence. For the purpose of the comparison, we tested this
method with the original 7 amino acid indices used by Liu. We tested differ-
ent values of L from 5 to 30 in a quick cross-validation experiment on our
data and chose L =9 as yielding the best results.

2.5 Evaluation procedure

Created RRI training, PPI training, and PPI test data sets had their specific
purposes. RRI training and PPI training data was used only to train RRI clas-
sifier in MLPPI. It was not used by any other method. Then, all sequence-based
PPI classifiers and the PPI classifier of MLPII were trained and evaluated using
PPI test data.

Performance of PPI classifiers was evaluated through a repeated 2-fold cross-
validation (split between two folds of equal size). However, splitting data on
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the level of individual observations was unsatisfactory because training and test
sets could still overlap on the protein level, which introduced a huge bias into
evaluation results (similar observation was previously made by [11]). To fix this
problem we decided to perform split on the protein level. We used the following
algorithm:

1. Let X be a set of all observations (protein pairs), P set of all proteins, X4,
X p observations in the two splits, P4, Pg protein in the two splits.
2. Initialise set X4 < 0 to empty set, Xp < X.
3. While | X 4| < |X | repeat:
(a) Add a random observation x not included in X4 to X4.
(b) Complement X4 with all observations = (z',2?) such that x! € Py4
and z2 € Py.
(c) Let Xp = {(a',2%) : 2t ¢ P4 N2? ¢ Pa}.

The relations between all datasets used in the evaluation procedure are de-
picted by Figure 2.

Removing overlapping proteins

| GOLD JSILVER data |

’ PDB training‘ ’ PDB test ’7

----- {RRI classifier training } PPI classifier
Trained RRI cross-validation

classifier

Fig. 2. Schematic depiction of relations between different data sets in the evaluation
procedure.

The above described procedure differs from the standard cross-validation,
since the number of observations in constructed test sets vary slightly, but this
variance is small, and does not influence the estimated performance. Such eval-
uation schema does not allow for any information leak: the datasets are always
balanced, and the classifier is tested on previously unseen proteins.

Using this form of cross-validation reduced the effective size of training and
test data, because in each split some observations need to be dropped. Average
size of a single cross-validation fold for all data sets is given in Table 2.

3 Results and discussion

We repeated cross-validation split 5 times and calculated average AUC ROC
(area under the receiver operating characteristic curve) over splits and folds.
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Table 2. Average size of a single cross-validation fold with estimated standard devia-
tion.

Data set CV fold size

S. cerevisiae GOLD 723 +7
S. cerevisiae PDB 116 &3
H. sapiens GOLD 763 +9
H. sapiens PDB 139+ 3
E. coli SILVER 1591 £ 24

Results for different methods are presented as Table 3. As can be seen, AUC
ROC values are generally very low, never exceeding 0.6. This means that under
the conditions imposed by our strict evaluation procedure none of the methods
was especially successful. This is especially true for E. coli SILVER data set
for which the performance of all methods is at the level of a random baseline.
Because of this we excluded E. coli data set from further analyses.

Table 3. AUC ROC (Area under the receiver operating characteristic curve) score
for different methods. MLPPI — Multi-level Prediction of Protein Interactions, VD —
vector deviations, AAC — amino acid composition, PseudoAAC — pseudo amino acid
composition, 2-grams — bigram frequencies, QRC — quasiresidue couples.

Data set MLPPI VD AAC PseudoAAC 2-grams QRC
E. coli SILVER 0.50 0.51 0.51 0.50 0.49 0.48
S. cerevisiae GOLD 0.57  0.56 0.55 0.54 0.51 0.52
S. cerevisiae PDB  0.59  0.52 0.52 0.54 0.47 0.47
H. sapiens GOLD 0.56 0.53 0.53 0.54 0.51 0.52
H. sapiens PDB 0.56 0.49 0.53 0.53 0.52 0.53

To establish statistical differences between methods we employed combined
5x2cv F test proposed by Alpaydin [1]. It is a modified version of 5x2cv ¢ test
introduced by Dietterich [6]. It strives to exploit the benefits of multiple train-
test splits while minimising the bias introduced by lack of independence between
splits. Each split ¢ contains two cross-validation folds, which results in two values
pgl) and p§2) which are the differences between scores obtained by two methods.
They can be used to estimate mean and variance for each split separately:

5, = PLEPE
T

2= (00 -5) + (- 5)"
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The test statistic f has the following form:

N2
Z?:l 23:1 (pz(‘])>
- 2 Z?:1 H

Under the null hypothesis, when two methods have identical performance,
the f statistic is F' distributed with 10 and 5 degrees of freedom.

f

Table 4. f statistic values and p-values for tests comparing MLPPI against the best
performing sequence-based method.

Data set Test f p-value

S. cerevisiae GOLD MLPPI vs VD 1.637 0.250
S. cerevisiae PDB  MLPPI vs PseudoAAC 4.873 0.020
H. sapiens GOLD MLPPI vs PseudoAAC 2.074 0.160
H. sapiens PDB MLPPI vs AAC 2.604 0.097

We wanted to check whether our multi-level method performed better than
methods aggregating global characteristics of protein sequence. On each data
set separately we tested MLPPI against the best performing sequence-based
method. Test statistic values and p-values are given by Table 4. Although MLPPI
had the best AUC score on all four data sets, the difference was significant at
a = 0.05 level only for S. cerevisiae PDB — the data set on which MLPPI method
was initially devised and calibrated.

The difference between E. coli and other data sets needs special attention.
The performance of all predictors on E. coli was equal to a random baseline.
The number of examples from PDB complexes was smaller than for the other
organisms, while the number of examples from high-throughput experiments
was larger, albeit of possibly lower quality (see Table 1). To assess whether
the differences were also present in interaction network structure, we calculated
mean node degree for PPI networks of the three organisms. For H. sapiens
GOLD we obtained mean degree 2.01, for S. cerevisiae GOLD 2.05, and for
E. coli SILVER 4.76. Such difference in numbers suggests a possibility that
the data contained more gaps and false positives, making it impossible for a
classifier to learn any relations. On the other hand, E. coli is the only prokaryotic
organism among the three and its proteins may have different characteristics.
Brocchieri and Karlin [3] showed that median protein length in prokaryotes is
significantly smaller than in eukaryotes. They speculated that the difference may
be due to eukaryotic proteins being composed of multiple functional units and
additional sequence motifs acting as function regulators. This would definitely
affect interaction landscape, however it is difficult to state in what way. Further
research into this matter is needed before drawing conclusions.
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Results obtained in our study were much lower than usually reported for
methods concerning protein interaction prediction, even lower than in Park and
Marcotte [11] suggesting that the performance may be routinely overestimated.
Those differences are striking, for instance VD representation introduced by Liu
[9] was reported to obtain 0.86 AUC ROC on large yeast proteins interactions
data set. In the study of Nanni et al. [10] simple AAC representation achieved
0.72 AUC ROC on human PPI data set. Such differences were the result of
a different evaluation strategies which, implicitly, led to different problem for-
mulations. We believe that two conditions must be satisfied for an evaluation
procedure to correctly represent the problem of predicting meaningful interac-
tions between unknown proteins: a) proteins occurring in training and test sets
must be strictly separated, b) protein composition of true positives and true
negatives must be as close as possible (including characteristics such as node
degree). To our knowledge, ours is the only procedure so far satisfying these
conditions.

In the light of our strict evaluation schema and high-quality datasets the
problem of predicting meaningful interactions between proteins occurs to be very
hard, possibly even harder than generally expected. Success of simple sequence-
based methods was limited and introduction of local structural information in
our multi-level method yielded only minor and not statistically significant im-
provement. This raise a question as to how biological information regulating
interactions is encoded? We know that protein sequences describe and identify
proteins unambiguously, but is it sufficient to know proteins’ sequences to fully
characterise their behaviour? Our results suggests that the situation is more com-
plex than that. While contacts between single residues of two different proteins
occur only in interfaces, whole protein structures may be involved in mediating
those interactions.

4 Conclusions

In this work we evaluated some sequenced-based approaches to protein interac-
tion prediction. The main focus was put on the previously developed multi-level
predictor (MLPPI). While MLPPI predictor was not worse than global sequence
methods, obtained results are far from satisfactory. We believe that making a
real breakthrough in protein-protein interaction prediction requires exploiting
3D structural information.

Further research is needed to develop evaluation strategies for multi-level
biological input data and fully understand their properties. As our work demon-
strates, the impact of evaluation procedure on the results is never overempha-
sized. We showed that unbalanced train-test splits may be the source of false
results in previously published works. We believe that methodological unification
and futher discussion is needed for the development of the field.
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