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Abstract.

Since 1990s the development of linguistic methods based on the distri-
butional hypothesis has lead to significant achievements in extraction of
word semantics from large corpora of texts in natural language. To date,
there was no attempt made to apply algorithms of distributional seman-
tics on biological data, despite many other successful method transfers
between linguistic engineering and bioinformatics. Therefore, we con-
structed a distributional word-context matrix based on protein sequence
data, making an analogy between words in natural language and single
amino acids in proteins as most basic carriers of information. Our com-
putational approach is inspired by the linguistic method of Correlated
Occurrence Analogue to Lexical Semantics. In order to achieve our goal
we also build a balanced set of protein sequences, as analogy to balanced
text corpora in linguistics. The matrices which we obtained achieve corre-
lations of up to 0.76 with amino acid substitution matrices. Substitution
matrices are a widely used model of amino acid relationships, built us-
ing multiple sequence alignments and evolutionary data and useful in
proteomics for sequence alignments. Our result suggests the potential to
extract information about amino acids by purely statistical analysis of
protein data. However, contrary to results in linguistic engineering, we
obtain slightly higher correlation scores for matrices modelling simple
tendency to co-occur than for matrices which model the more complex
relationship of amino acids based on context.

1 Introduction

1.1 Linguistic distributional semantics

Linguistic distributional semantics is a part of a broader domain referred to as
vector space models of semantics. This wide area aims at inferring word meaning
from the statistical patterns of word usage in language. The foundations of the
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field are build on theories like the bag of words hypothesis, the latent relation
hypothesis or the distributional hypothesis [1]. The last one of them lies within
the interest of our work. Distributional hypothesis states that the meaning of
a word can be discovered by observation of the contexts in which the word
occurs. Possibility of such inference is especially useful for detecting semantic
similarity of words. It was already in 1950s that the Distributional Hypothesis
was proposed [2]. However, it had to wait until the advent of computational
methods in linguistic engineering before it could be applied on a larger scale.

The first proposed algorithm which used this hypothesis is Hyperspace Ana-
logue to Language (HAL) [3]. It served its authors to construct some of the
first word semantic spaces, also called matrices of semantic relatedness [4]. HAL
method also established the four main steps which till now are the main ingre-
dients of distributional semantics procedures. These steps are:

1. Gathering and preparing the text corpus which will serve as the experimental
base. Linguists pay special attention to this stage and try to build balanced
corpora. A balanced corpus includes texts from diverse sources: spoken lan-
guage, books, newspapers, letters etc. An example of a balanced corpus is
the balanced version of the National Corpus of Polish [5].

2. Processing the text corpus with a sliding window in order to obtain a co-
occurrence count matrix. Sliding windows can vary in size, can be ramped
or flat.

3. Post-processing of the obtained co-occurrence matrix, which at least should
involve normalization, yet it may contain more advanced transformations or
dimensionality reduction.

4. Establishing a similarity measure between the word-vectors described in the
finally obtained matrix.

Soon after HAL appeared the better-known Latent Semantic Analysis (LSA)
[6], yet it was a move from word-context model to word-document model. On
the other hand, a continuation and extension of the HAL’s word-context ap-
proach was proposed in the Correlated Occurrence Analogue to Lexical Seman-
tics (COALS) model [7]. Concepts from the COALS algorithm were the most
inspirational for our work. Supplement A presents an extract of our previous
work: an example of word similarity results obtained with use of COALS method
in a study of word synonymy for Polish language.

Nowadays, vector space models of semantics are a well developed domain
with many successful applications. They are also easy to use, as there are many
available text corpora and dedicated software packages [8].

Our experience of work with linguistic distributional semantics lead us in our
daily bioinformatics research to an attempt to apply similar techniques in order
to model relationships (semantics) between amino acids.

1.2 Amino acid relationship modelling

Modelling differences between amino acids is an important task for proteomics.
Whether we want to extract features for machine learning from amino acid
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sequences or whether we attempt to align several proteins in order to reason
about their common traits, we need to be able to quantitatively compare amino
acids to each other. Several resources are available for such tasks. Many of them
are gathered in the AAIndex Database [9]. Two types of such resources which
we would like to cover are:

Amino acid indices - These are mostly physicochemical properties with spe-
cific values for each amino acid. They can relate to hydrophobicity, com-
positional properties, structural propensity, electric properties and others.
Indices are useful, for example, in the task of feature extraction from protein
sequences [10]. Their abundance might pose a challenge, yet this is often
addressed with clustering or feature selection methods [11].

amino acid indexr : AA — R

Equation 1: Amino acid indices - functions returning values of physicochemical
attributes for each amino acid. Below AA is the set of amino acids, and R is the
set of real values.

Substitution (or mutation) matrices - The idea behind them comes from
the need to align protein sequences with each other. Before their appear-
ance, alignment scoring algorithms counted sequence matches or mismatches
equally - not taking into account which particular amino acids are compared.
Later on, based on the observation that some amino acids are more likely to
mutate than others (and also mutate to specific targets), biologists started
to differently rate the proximity of protein sequences. To establish the sub-
stitution scores, scientist relied on analysis of multiple alignments. In PAM
aligned were evolutionary similar proteins [12], while in BLOSUM alignment
focused on very conserved regions in distant proteins [13]. Other methods
were also designed, yet these two substitution matrices are one of the most
popular and are commonly used in the popular BLAST program [14].

substitution matrixz : AAx AA— R

Equation 2: Substitution matrices - functions returning evolutionary/chemical
similarity/dissimilaity scores for pairs of amino acids. Below AA is the set of
amino acids, and R is the set of real values.

Substitution matrices in proteomics serve similar purpose as semantic spaces
in linguistic. They rate proximity of, respectively, amino acids and words. How-
ever, both methods are based on a very different approach. In our work we de-
cided to apply the methods of distributional semantics to proteins, thus building
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an amino acid semantic space. We base this approach on the analogy between
words and amino acids - both are the basic units carrying information in their
domains and both occur in large sequences that can be studied statistically.

2 Method and materials

2.1 Protein corpus preparation

As we mentioned in section 1.1, an important step of every linguistic engineering
experiment is careful preparation of a text corpus. Therefore, we decided to pay
special attention to this step in our biological experiment. Taking just a full
set of proteins from a database like UniProt might have biased the results, as
proteins in different domains are not equally well researched. For some types
of organisms or some functional types of proteins we have much more objects
sequenced than in other areas.

In order to obtain a balanced protein set we utilized UniProt20 database
which was developed in the HHblits package [15]. UniProt20 is a clustered set of
proteins from UniProt. It was constructed using similarity threshold of 20%. To
build our protein corpus we took at maximum one sequence from each cluster of
UniProt20. However, we only accepted sequences that are marked in the origi-
nal UniProt as having experimental evidence at protein or transcript level [16].
Therefore, some UniProt20 clusters are not at all represented in our dataset.
Statistics of the protein corpus which we obtained are displayed in Table 2.1.

Number of sequences 347 409
Number of amino acids 101 966 845
Mean sequence length 293.5
Median sequence length 193.0

Table 1. Statistics of the obtained protein corpus.

In order to make sure that short, medium and long sequences are relatively
equally represented in our dataset we looked in detail into its composition from
the perspective of elements’ length, what is displayed in Figures 1 and 2. More-
over, Figure 3 presents the amino acid composition of our dataset.

2.2 Amino acid distributional matrix construction

Procedure which we used to construct our amino acid distributional matrix is
highly inspired by the COALS algorithm [7]. However, many of steps in COALS
are appropriate only for linguistic domain, thus we eliminated:
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Fig. 3. Distribution of different amino acids in the protein corpus

— Dimensionality reduction, which is required in linguistics because of the huge
size of the matrix based on words and is also credited with performance
increase. Reduction of our 20 x 20 amino acid matrix does not seem to be
necessary, yet it might be worth checking in the future whether it would not
increase the final performance.

— Replacing negative correlation values with zeros. In linguistics this transfor-
mation step is explained by the fact that knowing a large set of words that
have negative correlation with a target word is not very helpful for infer-
ring the meaning of the target word. On the other hand, knowledge of just
a handful of words that correlate positively with the target word provides
a lot of insight into the target word’s semantics. For example, information
that an unknown word W has negative correlation with words: mountain,
swimming, colorful, multiple and clumsy is not very useful when we want to
infer the semantics of W. However, if we know that W correlates positively
with words: dog, lion and pet, than we know much more about its meaning.
Nevertheless, the world of amino acids is different. We cannot claim a priori
that negative correlation between amino acids is meaningless. Intuitively it’s
seems to be quite the opposite. Therefore, we keep negative correlation values
as equally valuable as positive correlations.

Therefore, our amino acid procedure consisted of the following steps:

1. Gathering co-occurrence counts in matrix of size 20 x 20 using a sliding
window. We used flat and ramped windows with radius 4,10 and 16, thus
obtaining 6 different matrices. Figure 2.2 shows how a ramped window of
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radius 4 counts co-occurrence scores. The size of our final matrix is 20 x 20
as we decided to ignore all the non-standard amino acids as their number
was not big enough.

2. Co-occurrence matrix normalization with use of formula from Figure 3. The
formula should not be confused with correlation of two co-occurrence rows,
as it is instead a correlation between the occurrences of two amino acids [7].

3. Obtaining similarity score for two amino acids by calculating correlation
between their row-vectors. This step shifts the final results from looking at
pure co-occurrence likelihood of amino acids towards the representation of
their context similarity.

focus amino acid

=

Amino acids: (..)HPATPP P K M VSVA(.)

Scores: --1234 - 4 3 21- -
window

Fig. 4. Co-occurrence scoring for a ramped window with radius 4 on an example protein
subsequence.
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Equation 3: Transforming raw co-occurrence counts (C matrix) into distribution-
based tendency to co-occur (D matrix) through normalization based on Pear-
son’s correlation coefficient. 20 is the number of basic amino acids, thus it de-
termines the dimensionality of matrices C and D.

2.3 Comparison with substitution matrices

The most intuitive idea for checking whether the information gathered in our
matrices does make biological sense is to compare them to substitution matrices.
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Following works on comparing biological matrix resources with each other, we
decided to use for this task a simple correlation of matrices flattened to rows, as
presented in Figure 4 [17]. For comparison we took all the 93 matrices available
in AAIndex2 Database [9]. It’s important to note, that substitution matrices
gathered in this resource are not all very different from each other, as this set
contains many variations of matrices built by the same algorithms. An example
of a substitution matrix is presented in Table 2.3.

For comparison with substitution matrices we did not only take our final
row similarity matrices, but we also performed calculations for matrices which
we obtain before performing step number 3 from procedure presented in section
2.2.

A5

R-27

N-106

D-2-127

C-1-3-2-312

E-1002-36

Q-1100-326

G0-20-1-3-2-27

H-2010-301-210
I1-13-2-4-3-3-2-4-35

L-1-2-3-3-2-2-2-3-2205

K-1300-311-2-1-3-35

M-1-1-2-3-2-20-20 2 2-16

F-2-2-2-4-2-3-4-3-201-308

P-12-2-1-40-1-2-2-2-3-1-2-39

S1-110-1000-1-2-3-1-2-2-14

T0-10-1-1-1-1-2-2-1-1-1-1-1-12 5

W-2-2-4-4-5-3-2-2-3-2-2-2-21-3-4-315

Y-2-1-2-2-3-2-1-3200-103-3-2-13 8

vo0-2-3-3-13-3-3-331-210-3-10-3-15
ARNDCEQGHILKMFPSTWYV

Table 2. Example of a substitution matrix: BLOSUM45 substitution matrix (Henikoff-
Henikoff, 1992). Missing values above the diagonal indicate that the matrix is symmet-
ric. Please note that not all substitution matrices are symmetric.

3 Results and discussion

Our amino acid distributional matrices obtain surprisingly high correlations with
the substitution matrices, e.g. 0.76 with matrix built by Koshi et al, 0.64 with
BLOSUM45 or 0.51 with PAM120. It’s especially interesting as our matrices
are built using a very different paradigm. Distributional amino acid matrices
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Equation 4: Matrix correlation by flattening matrices to vectors. D - distribu-
tional amino acid matrix. S - substitution matrix.

are based on vertical analysis of protein sequences and they do not use any
external knowledge about evolutionary relationships between proteins. On the
other hand, most of the substitution matrices rely on horizontal analysis of
protein multiple alignments and incorporate evolutionary information into their
methodology. Also notable is the result of 0.73 correlation with a substitution
matrix based on amino acid chemical properties [18]. These results show that
it is possible to extract meaningful knowledge about amino acids from pure
statistical analysis of protein sequences.

However, it’s important to note that, contrary to the results in linguistic
applications, better ”performance” is achieved by distributional matrix built
without the step 3 presented in method from section 2.2. This means that more
related to substitution matrices is the pure likelihood of amino acid co-occurrence
rather than semantic similarity driven by the context relationship.
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A Supplement: Example distributional semantics results
for Polish language

Tables in Figure A present an example of distributional semantics results for
Polish language. Usually, most valued and useful outcomes of these methods are
lists of words’ nearest neighbors, i.e. words having most similar vectors in the
semantic space to a given word. In the case of Figure A we see nearest neighbors
lists from space produced with COALS algorithm [7] run on the National Corpus
of Polish [5]. Results were produced for the project APPROVAL!, which was
aimed at analysis of synonym pairs. This is why we present neighbors lists for
two synonymous words [28].

! http://www.approval.uw.edu.pl/start
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Substitution |Correlation |Correlation [Substitution matrix description

matrix AAIn-|with matrix|with matrix

dex code built without|built includ-

step 3. from|ing step 3.
section 2.2 from section
2.2

KOSJ950102 |0.76 0.58 Context-dependent optimal substitution
matrices for exposed beta [19]

OVEJ920105 [0.75 0.58 Environment-specific amino acid substitu-
tion matrix for inaccessible residues [20]

LINKO010101 [0.75 0.58 Substitution matrices from a neural net-
work model [21]

MCLA720101 (0.73 0.68 Chemical similarity scores [18]

CSEM940101 |0.67 0.65 Residue replace ability matrix [22]

HENS920101 |0.64 0.58 BLOSUMA45 substitution matrix [13]

ALTS910101 |0.51 0.47 The PAM-120 matrix [23]

AZAE970102 |0.45 0.4 The substitution matrix derived from spa-
tially conserved motifs [24]

GEOD900101 |0.33 0.33 Hydrophobicity scoring matrix [25]

RUSR970101 |-0.01 0.04 Substitution matrix based on structural
alignments of analogous proteins [26]

GRAR740104 |-0.43 - 0.41 Chemical distance [27]

Table 3. Correlation results (calculated according to Figure 4) of chosen substitution
matrices with amino acid distributional matrices based on co-occurrences calculated
by flat sliding window of radius 16.
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Kolarz Cyklista
Similarity Neighbor Similarity | Neighbor
0.859 biegacz 0.767 motocyklista
0.783 kolarski 0.761 rowerzysta
0.775 maratonczyk 0.715 pieszy
0.766 kajakarz 0.705 rajdowiec
0.762 peleton 0.704 rOWerowy
0.761 lekkoatleta 0.688 kolarz
0.758 plywak 0.683 jednoslad
0.755 wyscig 0.668 rower
0.744 zawodnik 0.667 zmotoryzowany
0.736 rajdowiec 0.661 rajd
0.727 SZOSOWY 0.647 motocyklowy
0.726 szachista 0.641 biegacz
0.719 zapasnik 0.638 quad
0.717 kolarstwo 0.624 kolarski
0.716 jaskuta 0.624 motocykl
0.707 olimpijczyk 0.621 spacerowicz

Fig.5. Example nearest neighbors lists from a COALS [7] semantic space con-
structed over National Corpus of Polish [5] in the course of project APPROVAL
(http://www.approval.uw.edu.pl/start).
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