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Abstract. We consider selection procedure for high-dimensional logis-
tic regression problem which consists in choosing a subset of predictors
which minimizes Generalized Information Criterion (GIC) over all sub-
sets of variables of size not exceeding preset value kn which may depend
on a sample size. Nonasymptotic bound on probability of erroneous selec-
tion is proved which yields a range for GIC penalty parameter for which
the procedure is consistent under mild assumptions and thus generalizes
results of [1] and [2]. Various modifications of the procedure are analyzed
using numerical examples.

1 Introduction

Let n be the number of observations and Pn be the number of variables which
may depend on n. We consider a regression problem with matrix of experiment
X of dimension n× (Pn+1) and a binary response vector Y . Rows x′i,· of X are
thus transposed observations and its columns x·,j contain predictors’ values. The
first column of X consisting of ones corresponds to the intercept. We assume that
observations pertain to the standard logistic regression model with probability
of success given observation xi,· described by formula

P(Yi = 1|xi,·) =
1

1 + exp(−β0xi,·)

where β0 = (β0,0, β0,1, ..., β0,Pn
) is (Pn+1)-dimensional vector of true coefficients.

We denote by s0 the minimal true model {j : β0,j 6= 0}. The conditions we impose
later imply that s0 is identifiable. We assume that the minimal true model always
contains intercept i.e 0 ∈ s0.

We consider the problem of constructing selectors of s0 incorporating Gen-
eralized Information Criterion (cf [3]) with objective function

GIC(s) = −2ln(β̂(s), Y |X(s)) + an|s|,
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where s is a given submodel containing |s| explanatory variables and an intercept,
β̂(s) is a maximum likelihood estimator calculated for model s (augmented by
zeros to (Pn+1)-dimensional vector if necessary), X(s) is a matrix of experiment
restricted to columns from s and an is a chosen penalty. Specific values of penalty
term lead to popular selection criteria such as Bayesian Information Criterion
(BIC) with an = log(n) or Akaike Information Criterion (AIC) with an = 2.
It was established (cf [4]) that both of this criteria tend to choose too many
predictors in the case when number of potential predictors is large. Therefore,
in the last few years number of Information Criteria with penalty larger than
log(n) have been proposed. In [5] generalization of BIC called Extended BIC
(EBIC) with penalty an = log n + 2γ logPn for some γ ≥ 0 is considered. It
stems from putting a certain non-uniform prior on family of models. Note that
EBIC penalty depends on the number of potential predictors and is of order
logPn when Pn is of a higher order than n.

Selection procedure based on GIC involves looking for a subset ŝ0 which min-
imizes GIC objective function over predefined family of modelsM. We consider
M = {s : |s| ≤ kn} with threshold kn which may depend on n. This selec-
tion method in the case of kn = k was introduced in [5] for the linear models
and extended in [1] to the case of the generalized linear models (GLMs). In [2]
properties of this selection method restricted to the standard logistic regression
model were studied under two assumptions: Sparse Riesz Condition (SRC) for
both Hessian matrix of loglikelihood function and experimental matrix and as-
sumption of uniform continuity of the Hessian. Here we generalize and improve
these results. We prove a nonasymptotic bound on the probability of erroneous
selection from which selection consistency follows under certain relations be-
tween the minimal eigenvalue of a moment matrix, norms of observations and
GIC penalty.

The paper is organized as follows. In Section 2 we introduce preliminaries
and in Section 3 we state and prove the main results. In Section 4 numerical
experiments are discussed.

2 Preliminaries

We partition all models including intercept of size not exceeding kn into two
disjoint families

A0 = {s : |s| ≤ kn ∧ s ⊇ s0}

and its complement

A1 = {s : |s| ≤ kn ∧ s 6⊇ s0 ∧ 0 ∈ s}.

Let p(t) = 1/(1 + exp(−t)) and σ2(t) = p(t)(1− p(t)). For the standard logistic
regression with logit link function, conditional likelihood for a given model s ∈
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A0 ∪ A1 and parameter β ∈ R|s|+1 is

l(β, Y |X(s)) =
n∑
i=1

{yi log[p(x′i,·(s)β)] + (1− yi) log[1− p(x′i,·(s)β)]}

=
n∑
i=1

{yix′i,·(s)β − log[1 + exp(x′i,·(s)β)]},

where X(s) stands for the design matrix X restricted to the columns from s and
x′i,·(s) is the i-th row of this matrix.
We denote by β(s) |s|-dimensional vector augmented by zeros to higher-dimensional
vector when necessary. The maximum likelihood estimator (ML) β̂(s) of param-
eter β0(s) is defined as

β̂(s) = arg max
β∈R|s|+1

l(β, Y |X(s)).

Define also the score function

Sn(β) =
∂l(β, Y |X)

∂β
=

n∑
i=1

[yi − p(x′i,·β)]xi,· = X ′(Y − p(β)), (1)

where p(β) = (p(x′1β), . . . , p(x
′
nβ))

′. The negative Hessian matrix will be de-
noted by

Hn(β) = −
∂2l(β, Y |X)

∂β∂β′
=

n∑
i=1

σ2(x′i,·β)xi,·x
′
i,· = X ′Π(β)X, (2)

where Π(β) = diag{σ2(x′1,·β), . . . , σ
2(x′n,·β)}.

Define
λ̃min = min

s∈A1

λmin(X
′(s ∪ s0)X(s ∪ s0)),

N = max
i=1,2,...,n

||xi,·(s0)||,

Ñ = max
s∈A1

max
i=1,2,...,n

||xi,·(s ∪ s0)||.

Results of the paper are proved under certain assumptions involving relations
between the three quantities above and penalty an.

3 Main results

We assume throughout that Pn > 2 for every n.

Lemma 1 Let Y = (y1, . . . , yn)
′ be a vector consisting of independent binary

variables having not necessarily the same distribution and

A(s) = X(s ∪ s0)[X
′(s ∪ s0)X(s ∪ s0)]

−1X ′(s ∪ s0)
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for s ∈ A0 ∪A1. Then for every ε > 0 and c(ε) = 0.5(4ε−
√
9 + 8ε+ 3) > 0 the

following inequalities hold for all n

P(max
s∈A1

||A(s)(Y − EY )||2 > (
5

4
+ ε)(kn + |s0|) logPn) ≤ P−c(ε)(kn+|s0|)

n . (3)

P(max
s∈A0

||A(s)(Y − EY )||2 > (
5

4
+ ε)(kn) logPn) ≤ P−c(ε)knn . (4)

P( max
s∈A0,s6=s0

[||A(s)(Y −EY )||2−(5
4
+ε)(|s|−|s0|) logPn] > 0) ≤ exp(P−c(ε)n )−1.

(5)

Proof

First we prove inequality (3). Since A(s) is an idempotent matrix for any s, we
have trA2(s) =trA(s) = |s ∪ s0| and λmax(A(s)) = 1. It follows from Theorem
2.1 in [6] that

P (||A(s)(Y − EY )||2 > 1

4
(tr(A(s)) + 2

√
tr(A2(s))t+ 2λmax(A(s))t)) < e−t.

Let t = (1+ c(ε))(kn+ |s0|) logPn. Note that
√

1 + c(ε) =
√
2ε+ 9/4−1/2. We

have

P(max
s∈A1

||A(s)(Y − EY )||2 > (
5

4
+ ε)(kn + |s0|) logPn)

= P(max
s∈A1

||A(s)(Y − EY )||2 > 1

4
(1 + 2

√
1 + c(ε) + 2(1 + c(ε)))(kn + |s0|) logPn)

≤
kn∑
j=1

(
Pn
j

)
max
s:|s|=j

P (||A(s)(Y − EY )||2

>
1

4
(kn + |s0|+ 2(kn + |s0|)

√
(1 + c(ε)) logPn + 2(1 + c(ε))(kn + |s0|) logPn))

≤ exp(−(1 + c(ε))(kn + |s0|) logPn)
kn∑
j=1

(
Pn
j

)

≤ exp(−(1 + c(ε))(kn + |s0|) logPn)
kn+|s0|∑
j=1

P jn
j!

≤ exp(−(1 + c(ε))(kn + |s0|) logPn)
P
kn+|s0|
n

(kn + |s0| − 1)!
≤ P−c(ε)(kn+|s0|)

n .

For the last two inequalities we use an
(
n
k

)
≤ nk/k! and the fact that sequence

nk/k! is non decreasing for fixed n and k = 1, 2, ..., n.



Consistency of GIC for Logistic Model 157

Proof of inequality (4) is similar. In order to prove (5) change t in the reasoning
above to t = |s| logPn and note that

kn∑
j=|s0|

(
Pn
j

)(
exp(−(1+ c(ε)) logPn)

)j ≤ (1+
1

P
1+c(ε)
n

)Pn − 1 ≤ exp(P−c(ε)n )− 1.

Remark 1 If the number of variables Pn is constant, Lemma 1 does not give
a suitable bounds on considered probability. In such a case we use a slightly
modified version of the Lemma. For Pn = P we set kn = P . Let f = {0, 1..., P}
be a full model and 2f be a set of all possible models. In the considered setting
for n > P and any constant M ≥ P we have

P( max
s∈2f ,0∈s

||A(s)(Y − EY )||2 > 5

4
M) = P (||A(f)(Y − EY )||2 > 5

4
M)

≤ P(||A(f)(Y − EY )||2 > 1

4
(P + 2

√
PM + 2M)) < e−M

and

P( max
s∈A0,s6=s0

[||A(s)(Y − EY )||2 − 5

4
(|s| − |s0|)M ] ≥ 0)

≤ P(||A(F )(Y − EY )||2] ≥ 5

4
M) ≤ e−M .

In order to ensure that the minimal true model is selected with a large probability
we need to find conditions under which the behaviour of ln(β̂(s))− ln(β̂0(s)) can
be controlled uniformly over s ∈ A1 and s ∈ A0 \ {s0}. This will be done using
the following notion. For a given s ∈ A0 ∪ A1 define

B(s, r) = {β : ||X(s ∪ s0)(β(s)− β0(s))||2 ≤ r2}. (6)

Lemma 2 and Theorem 2 state conditions under which β̂(s) ∈ B(s, r) for s ∈ A0

whereas for s ∈ A1 we have β̂(s) 6∈ B(s, r). Define

B = {∀s ∈ A0 β̂(s) ∈ B(s,

√
λ̃min

Ñ
)}. (7)

Lemma 2 For all n such that inequality√
λ̃min

Ñ
exp(−N ||β0||) ≥ e

√
(80 + 64ε)kn logPn (8)

holds, we have
P (B) ≥ 1− exp(−c(ε)kn logPn).
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Proof

It is easily seen that β ∈ B(s, r) can be represented as β0(s)+γ(X
′(s)X(s))−

1
2u

where γ ∈ [0, r] and u is a vector with ||u|| = 1. For any index i, s ∈ A0 and
β ∈ B(s, r) we have

σ2(x′i,·β) = σ2(x′i,·β0 + γx′i,·(X(s)′X(s))−
1
2u)

≥ σ2(||x′i,·(s0)|| · ||β0||+ r
√
x′i,·(X(s)′X(s))−1xi,·)

≥ σ2(||x′i,·(s0)|| · ||β0||+ r||x′i,·(s)||/
√
λmin(X(s)′X(s)))

≥ σ2(N ||β0||+ rÑ/

√
λ̃min).

Let βu = β0 + r(X(s)′X(s))−
1
2u for some u such that ||u|| = 1. Note that βu is

a boundary point of B(s, r). Using concavity of ln(·) we have

P (∃s ∈ A0 β̂(s) /∈ B(s,

√
λ̃min

Ñ
)) ≤ P (∃u : ||u|| = 1,max

s∈A0

ln(βu) ≥ ln(β0))

and the bound above is in its turn not larger than

P (∃u : ||u|| = 1,max
s∈A0

[
u′(X(s)′X(s))−

1
2X(s)′(Y − EY )

−1

2
ru′(X(s)′X(s))−

1
2H(β∗)(X(s)′X(s))−

1
2u
]
≥ 0)

≤ P (max
s∈A0

||A(s)(Y − EY )|| ≥ 1

2
rσ2(N ||β0||+ rÑ/

√
λ̃min))

≤ P (max
s∈A0

||A(s)(Y − EY )|| ≥ 1

8
r exp(−N ||β0|| − rÑ/

√
λ̃min))

for some β∗ belonging to the line segment between βu and β0. We used the
fact that the scalar product u′v for a given vector v and ||u|| = 1 is maxi-
mized by u = v/||v||. The last inequality follows from the fact that σ2(t) =

e−|t|/(1 + e−|t|)2 ≥ 0.25e−|t|. For r =
√
λ̃min/Ñ by Lemma 1 the right hand

side is bounded from above by exp(−c(ε)kn logPn) if inequality (8) is satisfied.

Theorem 1 For all n such that inequality (8) and

an ≥ (5 + 4ε)e logPne
N ||β0|| (9)

hold simultaneously, we have

P ( min
s∈A0,s6=s0

GIC(s) ≤ GIC(s0)) ≤ P−c(ε)knn + exp(P−c(ε)n )− 1
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Proof
Let s ∈ A0. For some β∗ being a vector belonging to the line segment with
endpoints β̂(s) and β0(s) we have

ln(β̂(s))− ln(β̂0(s)) ≤ ln(β̂(s))− ln(β0(s))

= [β̂(s)− β0(s)]
′Sn(β0(s))−

1

2
[β̂(s)− β0(s)]

′Hn(β
∗)[β̂(s)− β0(s)].

From convexity β∗ ∈ B(s, r) and on event B defined by (7) we have in view of
the proof of Lemma 2 that σ2(x′i,·β

∗) ≥ σ2(N ||β0||+ 1) for any i. On the event
B we also have

β̂(s)− β0 = γs(X
′(s)X(s))−

1
2u′s

for some γs ∈ [0, r] and vector us with ||us|| = 1. This implies that on B

ln(β̂(s))− ln(β̂0(s)) ≤ γs||(X ′(s)X(s))−
1
2X(s)′(Y − EY )|| − 1

2
γ2
sσ

2(N ||β0||+ 1)

≤ ||(X
′(s)X(s))−

1
2X(s)′(Y − EY )||2

2σ2(N ||β0||+ 1)
=
||A(s)(Y − EY )||2

2σ2(N ||β0||+ 1)

Therefore,

P ( min
s∈A0,s6=s0

GIC(s) ≤ GIC(s0))

= P( max
s∈A0,s6=s0

(ln(β̂(s))− ln(β̂(s0))−
(|s| − |s0|)an

2
) ≥ 0)

≤ P( max
s∈A0,s6=s0

[||A(s)(Y − EY )||2 − (|s| − |s0|)anσ2(N ||β0||+ 1))] ≥ 0)

≤ P( max
s∈A0,s6=s0

[||A(s)(Y − EY )||2 − (|s| − |s0|)an exp(−N ||β0||)
4e

] ≥ 0).

By Lemma 1 the last expression is bounded from above by exp(P
−c(ε)
n )−1 if con-

dition (9) is satisfied. Since it follows from Lemma 2 that P (B) ≤ exp(−c(ε)kn logPn)
the last step is to use inequality P (C) ≤ P (C ∩B) + P (B′) for
C = {mins∈A0,s6=s0 GIC(s) ≤ GIC(s0)}.

Theorem 2 Let βmin = mini∈s0 |β0,i|. Fix η ∈ (0, 1). For all n such the follow-
ing inequalities hold

Ñβmin > 1 (10)

η

4e

λ̃min

Ñ2
e−N ||β0|| ≥ an (11)

and

(1− η)
√
λ̃min

Ñ
e−N ||β0|| ≥ e

√
(80 + 64ε)(kn + |s0|) logPn (12)
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we have
P (min

s∈A1

GIC(s) ≤ GIC(s0)) ≤ P−c(ε)(kn+|s0|)
n

Proof

Consider set B(s, r) defined in (6) for r =
√
λ̃min/Ñ and s ∈ A1. Note that,

||X(s∪s0)(β(s)−β0(s))|| ≥
√
λmin(X ′(s ∪ s0)X(s ∪ s0))||β(s)−β0(s)|| ≥

√
λ̃minβmin.

Thus if r < βmin
√
λ̃min then β̂(s) 6∈ A1 and the last inequality is satisfied in

view of (10). Using concavity of ln(·) again we have

P (min
s∈A1

GIC(s) ≤ GIC(s0))

≤ P (max
s∈A1

ln(β̂(s))− ln(β0) ≥ −
an
2
)

≤ P (∃u : ||u|| = 1max
s∈A1

ln(βu)− ln(β0) ≥ −
an
2
)

≤ P (∃u : ||u|| = 1,max
s∈A1

(u′(X(s ∪ s0)
′X(s ∪ s0))

− 1
2X(s ∪ s0)

′(Y − EY )

−1

2
ru′(X(s ∪ s0)

′X(s ∪ s0))
− 1

2H(β∗)(X(s ∪ s0)
′X(s ∪ s0))

− 1
2u) ≥ −an

2r
)

≤ P (max
s∈A1

||A(s)(Y − EY )|| ≥ 1

2
rσ2(N ||β0||+

Ñ√
λ̃min

r)− an
2r

)

≤ P (max
s∈A1

||A(s)(Y − EY )|| ≥ 1

8e
r exp(−N ||β0||)−

an
2r

)

≤ P (max
s∈A1

||A(s)(Y − EY )|| ≥ 1− η
8e

r exp(−N ||β0||))

where (11) is used for the last inequality. By Lemma 1 the last probability is
bounded from above by exp(−c(ε)(kn + |s0| logPn) if

1− η
8e

r exp(−N ||β0||) ≥
√
(
5

4
+ ε)(kn + |s0|) logPn

which is equivalent to (12).

Corollary 1 It follows from Theorems 1 and 2 that for all n such that inequal-
ities (9) (10), (11),(12) hold for some η ∈ (0, 1) and ε > 0, we have

P ( min
s∈A0∪A1,s6=s0

GIC(s) ≤ GIC(s0)) ≤ 2P−c(ε)(kn+|s0|)
n + exp(P−c(ε)n )− 1.
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Remark 2 Write wn << zn if wn = o(zn) for n → ∞. It follows from Theo-
rems 1 and 2 that if

1 << Ñ (13)

kn logPn <<
λ̃min

Ñ2
e−2N ||β0|| (14)

and

eN ||β0|| logPn << an <<
λ̃min

Ñ2
e−N ||β0|| (15)

we have
P ( min

s∈A0∪A1,s6=s0
GIC(s) ≤ GIC(s0))→ 0

when n tends to infinity.

Remark 3 If number of variables P is constant we use in Lemma 2 and Theo-
rems 1 and 2 inequalities from Remark 1. This leads to the following conditions
for consistency of GIC. If condition (13) is satisfied and

eN ||β0|| << an <<
λ̃min

Ñ2
e−N ||β0|| (16)

we have
P ( min

s∈2f ,s6=s0
GIC(s) ≤ GIC(s0))→ 0

where f and 2f are defined in Remark 1. Note that in considered case we have
λ̃min = λmin(X

′(f)X(f)) and Ñ = maxi=1,...,n ||xi,·||.
If condition (13) does not hold, then in the proof of Theorem 2 we take r =

A
√
λ̃min with A < βmin. This leads to the following conditions on consistency

of GIC. If

1 << an << λ̃min (17)

we have
P ( min

s∈2f ,0∈s,s6=s0
GIC(s) ≤ GIC(s0))→ 0.

4 Discussion of the assumptions

In this section we examine behavior of λ̃min, Ñ and N when design matrix has
some specific structure. We find the following lemma useful. It is a version of
Preposition 1 in [7] for unnormalized predictors.

Lemma 3 Let ρij = x′·,ix·,j. The following inequality holds

λ̃min ≥ min
j
ρjj − max

|s|=kn
inf
α>1

[ ∑
i∈s∪s0

( ∑
j∈s∪s0\{i}

|ρij |α/(α−1)

)α−1]1/α

. (18)
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Since all the matrices X ′(s ∪ s0)X(s ∪ s0) are positively defined, the lemma is
nontrivial if the right hand side of (18) is positive.

Proof

Fix s such that |s| ≤ kn and denote by j1, j2, ..., j|s∪s0| elements of s ∪ s0. Let
b(s ∪ s0) = b = (bj1 , ..., bj|s∪s0|)

′ be an eigenvector of X ′(s ∪ s0)X(s ∪ s0) corre-
sponding to its minimal eigenvalue λmin(s ∪ s0) = λmin. From the definition of
eigenvector for any j ∈ s ∪ s0 we have∑

i∈s∪s0

ρjibi = λminbj .

Therefore by Hölder’s inequality

min
j=1,...,p

|λmin − ρjj |α
∑

j∈s∪s0

|bj |α ≤
∑

j∈s∪s0

|(λmin − ρjj)bj |α

=
∑

j∈s∪s0

∣∣∣∣ ∑
i∈s∪s0\{j}

ρjibi

∣∣∣∣α ≤ ∑
j∈s∪s0

( ∑
i∈s∪s0\{i}

|ρij |α/(α−1)

)α−1 ∑
i∈s∪s0

|bi|α.

Let δ = max|s|=kn infα>1

[∑
i∈s∪s0

(∑
j∈s∪s0\{i} |ρij |

α/(α−1)

)α−1]1/α

. After

dividing both sides by
∑
i∈s∪s0 |bi|

α we obtain minj |λmin − ρjj | ≤ δ which im-
plies that λmin ≥ minj ρjj − δ. Since the right hand side does not depend on
choice of s the lemma is proved.

Let
ρn = max

i6=j
|ρij |, τn = min

j
||x·,j ||, Mn = max

i=1,...,n;j=1,...,Pn

|xij |.

Then (18) and Schwarz inequality implies√
λ̃min

Ñ
exp(−N ||β0||) >

√
τ2
n − (kn + |s0|)ρn√
kn + |s0|Mn

exp(−
√
s0Mn||β0||).

The lower bound is positive if ρn < τ2
n/kn and the inequality (8) holds if

τ2
n − (kn + |s0|)ρn > e2(80 + 64ε)(kn + |s0|)2 logPnM2

n exp(2
√
s0Mn||β0||).

The assumption frequently used in the literature is Sparse Riesz Condition (SRC)
see e.g. [7]. We say that the design matrix X satisfies left-sided SRC with rank
kn and a spectrum bound 0 < C1 < +∞ if

∀s : |s| ≤ kn ∀v ∈ R|s| C1 ≤
||X(s)v||2

n||v||2

which is equivalent to

min
s:|s|≤kn

λmin(X
′(s)X(s)) ≥ C1n
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Corollary 2 Assume that matrix X satisfies left-sided SRC with rank kn + |s0|
and constant C1. For all n such that

e2(80 + 64ε)M2
n(kn + |s0|)2 logPn exp(2

√
s0Mn||β0||) < C1(1− η)2n (19)

1 < C1knβ
2
min (20)

(5 + 4ε) exp(Mn
√
s0||β0||) logPn < an <

ηC1n

4e(kn + |s0|)M2
n

exp(−Mn
√
s0||β0||)

(21)
hold for some η ∈ (0, 1), we have

P ( min
s∈A0∪A1,s6=s0

GIC(s) ≤ GIC(s0)) ≤ 2P−c(ε)(kn+|s0|)
n + P−c(ε)n .

Note that if Mn ≤M , inequality (19) reduces to

n > A(kn + |s0|)2 logPn with A =
e2(80 + 64ε)M2 exp(

√
s0M ||β0||)

C1(1− η)2

and inequality (21) reduces to

B1 logPn < an < B2
n

kn + |s0|

with B1 = (5 + 4ε) exp(M
√
s0||β0||) and B2 =

ηC1

4eM2
exp(−M

√
s0||β0||).

Proof

We show that conditions (19)-(21) imply assumptions of Corollary 1. Left-sided
SRC with rank kn + |s0| implies that for fixed s with |s| ≤ kn, we have

C1n ≤ λmin(X ′(s ∪ s0)X(s ∪ s0)) ≤
1

|s ∪ s0|
tr(X ′(s ∪ s0)X(s ∪ s0))

=
1

|s ∪ s0|

n∑
i=1

||xi,·(s ∪ s0)||2 ≤
n

|s ∪ s0|
max

i=1,...,n
||xı,·(s ∪ s0)||2.

Thus, when left-sided SRC is satisfied and all absolute values of design entries
xij are bounded from above by Mn the inequality (12) holds for some η ∈ (0, 1)
if

n > AM2
n(kn + |s0|)2 logPn exp(2

√
s0Mn||β0||) with A =

e2(80 + 64ε)

C1(1− η)2
.

Analogously, inequality (19) implies (12). Moreover, the string of the inequalities
above implies that√

kn + |s0|Mn ≥ Ñ ≥ C1

√
kn + |s0| and

√
|s0|Mn ≥ N ≥ C1

√
|s0|

which shows that (9) and (12) follow from (21) and (20) implies (10).
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5 Simulation study

In this section we compare different methods of variable selection for high-
dimensional logistic regression. We give detailed description of the experiment,
its results and conclusions.

We perform simulations for 4 artificially generated data sets described in
Table 1. Number of observations is equal to 100 for the first data set and it is
increased by 80 for every subsequent data set. Number of variables is a function
of n given by

⌊
exp((n− 20)0.37)

⌋
and number of relevant variables vary from 3

for the first data set to 6 for the last one. Vector of true coefficients β0 is equal
to (−3.5, 1.5,−2) for the first data set and is augmented alternately by -2 or 2
for each new relevant variable. The same setting is considered in [8].

For each data set we consider three different dependence structures be-
tween variables, namely observations are generated independently from mul-
tivariate normal distribution with zero mean and covariance matrix Σ with
Σ(i, j) = ρ|i−j| for ρ = −0.5, 0, 0.5.

Due to computational burden we cannot directly optimize GIC for all subsets
of variables containing no more than kn variables even if kn is relatively small.
Hence, we perform two-stage procedure to find minimal true model. In the first
stage we screen moderate number of valuable variables and in the second one we
optimize GIC on some subfamily of models consisting of this chosen variables
only. There are many statistical procedures such as LASSO, SCAD, Dantzig Se-
lector or Random Forests, which results in ordering variables according to some
measure of importance and so can be used as screening methods. In the exper-
iment we order variables according to LASSO for GLM. The most important
variable is the one for which corresponding coefficient became nonzero for the
largest value of penalty parameter in the LASSO objective function.

We compare three searching procedures: hierarchical (denoted by hier), ex-
haustive (exh) and semi-exhaustive (semexh). Hierarchical procedure involves
minimization of GIC objective function on the nested family of 40 variables cho-
sen in the first step. Since we take into account an empty model- intercept only
model- the number of fitted models is 41. In exhaustive procedure we minimize
GIC objective function on the family of all submodels of 10 variables chosen
by LASSO. The number of fitted models is 1024. Semi-exhaustive method is a
version of step forward algorithm with different stop condition. First we fit 40
models, one for each variable chosen by LASSO. Then we choose the best one,
so the one witch minimize GIC. Next step is to fit 39 models with two variables-
the one chosen previously and each remaining one. We chose the best pair of
variables and proceed. The last fitted model is a full model. Including an empty
model, we fit

(
41
2

)
+ 1 = 821 models.

In the first part of the experiment we examine quality of LASSO for GLM
as a screening method in considered scenarios. Figure 1 shows estimated proba-
bility that after initial screening relevant variables are separated from spurious
ones for given values of ρ. This is equivalent to saying that minimal true model
s0 belongs to the nested family of 40 most important variables. We see that
values differ significantly. In the easiest case, for ρ = −0.5 estimated probability
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is nearly equal to 1 whereas in the most difficult case, for ρ = 0.5 it occurs to
be nearly 0.

In the second part we compare searching procedures by taking into account
probability of selecting s0 and selection error. We use EBIC penalty with γ = 1
which was chosen as the best value in preliminary simulations. The estimated
probability of selecting s0 is shown in Figure 2. In the easiest case for ρ = −0.5
hierarchical method works significantly better than remaining two. However, for
independent predictors when ordering after first step is of lower quality, exhaus-
tive and semi exhaustive methods are superior to hierarchical one. The tendency
is even stronger for positively correlated variables. When LASSO fails in ordering
variables semi exhaustive method appears to be the best. In this case probability
of selecting s0 by hierarchical method is close to 0.

We measure error of each searching procedure by mean sum of false positives
(FP) and false negatives (FN). Let sj a set of features chosen in the j-th run.
The measure is given by

FP + FN =

∑N
j=1 |(sj ∪ s0) \ (sj ∩ s0)|

N
.

Figure (3) shows the result. Conclusions are in line with those from Figure (2).
The case of independent variables is the only one when with growth of n error
systematically decreases. For negative ρ we see again dominance of hierarchical
method with error varying from 0.6 to 0.8. For positive ρ all methods work worse,
with error close to the number of relevant variables. Although in this case the
best method is semi exhaustive one.

Model |s0| n p =
⌊
exp((n− 20)0.37)

⌋
β0(s0)

1 3 100 158 (-3,1.5,-2)
2 4 180 692 (-3,1.5,-2,2)
3 5 260 1993 (-3,1.5,-2,2,-2)
4 6 340 4680 (-3,1.5,-2,2,-2,2)

Table 1: Model specifications.
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Fig. 1: Estimated probability that all relevant variables proceed the spurious ones
after screening for ρ = −0.5, 0, 0.5.
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Fig. 2: Estimated probability of selecting true model.
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