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Abstract. Predicting causal effects of actions taken was always one of
the most important aims of human reasoning. Every human action is
meant to increase probability of desired circumstances and reduce risks
of unwanted ones. Actually, people seem to reason in the following way:
if probability of desired outcome after a given action is high enough, it
is worth trying. Yet prior chances of success (if action not adopted) are
completely ignored, perhaps assumed to be negligibly small.
Unfortunately, this approach suffers from serious drawbacks. Consider
for example a typical marketing campaign. Conducted on small random
sample of customers, it is used to evaluate a probability of purchase (re-
sponding to a campaign) after the action was performed. Then a classifi-
cation model is built to pick a group of customers, to which the campaign
should be addressed. We achieve a model targeting customers most likely
to buy after the campaign. But this is not what a marketer wants. Some
of the customers would have bought regardless of the campaign, tar-
geting them brought unnecessary costs. Other customers were actually
going to make a purchase but were annoyed by the campaign. It is a well
known phenomenon in the marketing literature; the result is a loss of a
sale or even a complete loss of the customer (churn).

We should rather select customers who will buy because of the campaign,
that is, those who are likely to buy if targeted, but unlikely to buy
otherwise. Only then we actually can focus on performing the action to
increase our chances, not just act when these chances are relatively high
anyway. Notice also that similar problems arise in medicine where some
patients may recover without actually being treated and some may be
hurt by the therapy’s side effects more than by the disease itself.

Uplift modelling provides a solution to the described problem. The ap-
proach uses two separate training sets: treatment and control. Individuals
in the treatment group are subjected to the action, such as a medical
treatment or a marketing campaign. The control dataset contains objects
which are not subjected to the action and serve as a background against
which its effect can be assessed. Instead of modelling class probabilities,
uplift modelling attempts to model the difference between conditional
class probabilities in the treatment and control groups. This way, the
causal influence of the action can be modelled, and the method is able to
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predict the true gain (with respect to taking no action) from targeting a
given individual.

As the uplift approach is being developed and increasingly appears to
be a prospective methodology, the need for more sophisticated tools be-
comes natural. In the case of classification, apart from more and better
algorithms appearing, a hugely important milestone has been the inven-
tion of ensemble methods which strengthen existing classification algo-
rithms. This powerful procedures allow to improve performance of many
classifiers in a general way, often turning weak single models into highly
capable ensembles. It becomes clear then, that a search for an uplift
analogue of ensemble methods is needed.

We consider a few methods of applying an idea of the boosting pro-
cedure to an uplift approach. These are: a double (classifier) boosting
approach being a natural way of implementing uplift boosting; a class
variable transformation allowing for application of any ordinary classi-
fiers to uplift modelling, and Uplift AdaBoost being a new algorithm
for uplift modelling which realizes one of the basic assumptions of clas-
sic boosting: forgetting the last member added to the ensemble in each
iteration.

We focus on the mechanism, used in classical boosting, of updating record
weights such that its classification error is exactly 1/2 after each iteration,
which makes it likely for the next member to be very different from the
previous one, leading to a diverse ensemble.

Implementation of this feature, known as forgetting the last member of
the ensemble, is significantly more complex than in classification case.
Since we have two datasets, treatment and control, reweighting instances
can be done in infinite number of ways. Unlike the classification boosting,
we have now two classification accuracies in each iteration, which should
be used in establishing model weights; this makes the problem more
challenging.

We construct an uplift AdaBoost algorithm preserving the feature of
forgetting by setting weight update parameters for treatment and con-
trol datasets as well as model weights for each iteration in a way which
guarantees convergence. We discuss analogies and dissimilarities between
classification and uplift boosting algorithms, including theoretical prop-
erties and practical consequences.

We perform an experimental evaluation that demonstrate the usefulness
of the methods considered. We compare their performance and perfor-
mance of the base models on benchmark datasets. A proposed uplift
boosting methods often dramatically improve performance of the base
models and are thus new and powerful tools for uplift modelling.

1 Introduction

The main interest of machine learning is the problem of classification, where the
task is to predict, based on a number of attributes, the class to which an instance
belongs, or the conditional probability of it belonging to each of the classes.
Unfortunately, classification is not well suited to many problems in marketing
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or medicine to which it is applied. Let us discuss it on the example of a direct
marketing campaign where potential customers receive a mailing offer.

A typical application of machine learning techniques in this context involves
selecting a small pilot sample of customers who receive the campaign. Next,
a classifier is built based on the pilot campaign outcomes and used to select
customers to whom the offer should be mailed. As a result, the customers most
likely to buy after the campaign will be selected as targets.

Unfortunately this is not what a marketer wants! Some of the customers
would have bought regardless of the campaign; targeting them resulted in un-
necessary costs. Other customers were actually going to make a purchase but
were annoyed by the campaign. The result is a loss of a sale or even a complete
loss of the customer (churn). While the second case may seem unlikely, it is a
well known phenomenon in the marketing community [1,2].

In order to run a truly successful campaign, we need, instead, to be able
to select customers who will buy because of the campaign, i.e., those who are
likely to buy if targeted, but unlikely to buy otherwise. Similar problems arise in
medicine where some patients may recover without actually being treated and
some may be hurt by the therapy’s side effects more than by the disease itself.

Uplift modelling provides a solution to this problem. The approach employs
two separate training sets: treatment and control. The objects in the treatment
dataset have been subject to some action, such as a medical treatment or a
marketing campaign. The control dataset contains objects which have not been
subject to the action and serve as a background against which its effect can be
assessed. Instead of modelling class probabilities, uplift modelling attempts to
model the difference between conditional class probabilities in the treatment and
control groups. This way, the causal influence of the action can be modelled, and
the method is able to predict the true gain (with respect to taking no action)
from targeting a given individual.

While in described problems uplift modelling is a better alternative for stan-
dard classification, we should expect a dynamic development of the approach.
Yet, despite its practical appeal, uplift modelling has received surprisingly little
attention in the literature. There are, however, papers concerning uplift mod-
els and successful applications to practical problems, especially in marketing,
are reported. An American bank used uplift modelling to turn an unsuccessful
mailing campaign into a profitable one [3]. Applications have also been reported
in minimizing churn at mobile telecoms [4]. In [5] an approach to online adver-
tising has been proposed which combines uplift modelling with maximizing the
response rate in the treatment group to increase advertiser’s benefits.

Although there would not be any reservations to use an algorithm to choose
who should receive an advert or some marketing campaign, leaving a decision on
treatment to some statistical procedure may seem too controversial in medicine.
Still, doctors may be interested in factors indiated by the model to be responsible
for chances of recovery after the treatment was applied. What is more, uplift
modelling allows for any arbitrary number of factors, unlike typical medical
trials with control groups.



138 Michat Sottys, Szymon Jaroszewicz

As uplift approach is developed and seems to be a prospective methodol-
ogy, a need for more sophisticated tools become natural. As it was in the case
of classification, apart from more and better algorithms appearing, there was
a marvelous milestone done: ensemble methods were invented to strengthen all
existing classification algorithms. This powerful procedures allow to improve per-
formance of any classifier in a generic way, often turning weak single models into
highly capable ensembles. It becomes clear then, that search for uplift analogon
of ensemble methods is needed.

This paper presents an adaptation of AdaBoost algorithm to the uplift mod-
elling case. Boosting often dramatically improves performance of classification
models, and in this paper we demonstrate that it can bring similar benefits to
uplift modelling. We apply forgetting the last member of the ensemble to the
described problem, trying to repeat the success of the classical algorithm in the
uplift case. Experimental verification proves that the benefits of boosting extend
to the case of uplift modelling and shows relative merits of the new approach.

In the remaining part of this section we introduce a definition of an uplift
analogue of classification error and present two alternative ways to apply boost-
ing procedures to the uplift case: a class variable transformation and a double
classifier approach. We give an overview of the other related work and remind the
property of forgetting the last member of the ensemble in classification boost-
ing. But first we have to start with introducing a notation used throughout the

paper.

1.1 Notation

We will now introduce the notation used further in the article. We use the
superscript T for quantities related to the treatment group and the superscript
@ for quantities related to the control group. For example, the treatment training
dataset will be denoted with D7 and the control training dataset with D¢. Both
datasets together constitute the whole training dataset, D = DT UDC.

Each data record (z,y) consists of a vector of features © € X and a class
y € {0,1} with 1 assumed to be the successful outcome, for example patient
recovery or a positive response to a marketing campaign. Let N7 and N¢ denote
the number of records in the treatment and control datasets.

An uplift model is a function h : X — {0,1}. The value h(zx) = 1 means
the action is deemed beneficial for z by the model, h(z) = 0 means that its
impact is considered neutral or negative. By ‘positive outcome’ we mean that the
probability of success for a given individual z is higher if the action is performed
on her than if the action is not taken.

We will denote general probabilities related to the treatment and control
groups with PT and P, respectively. For example, PT(y = 1,h = 1) stands
for probability that a randomly selected case in the treatment set has a positive
outcome and taking the action on it is predicted to be beneficial by an uplift
model h. We can now state more formally when an individual x should be subject
to an action, namely, when PT(y = 1|z) — P (y = 1|z) > 0.
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In the m-th step of the boosting algorithm the i-th treatment group training
record is assumed to have a weight wy,, ; assigned to it. Likewise a weight w§,

is assigned to the i-th control training case. Further, denote by

NT N€
pT . Zi:l w?nz pc . Ei:l wr?“ (1)
m T NT NC 9 m NT NC
D1 w;Fn,i +2im1 wrcn,z‘ die1 wzm +2im1 wTCn1

the relative sizes of treatment and control datasets at step m. Notice that pl +
pS, =1 for every m.

1.2 An uplift analogue of classification error

We begin with mentioning a problem which is the biggest challenge of uplift
modelling as opposed to standard classification. The problem has been known
in statistical literature (see [6]) as the

Fundamental Problem of Causal Inference. For every individual,
only one of the outcomes is observed, after the individual has been sub-
ject to an action (treated) or when the individual has not been subject
to the action (was a control case), never both.

As a result we never know whether the action performed on a given individual
was truly beneficial. This is different from classification, where the true class of
each individual in the training set is known.

Due to the Fundamental Problem of Causal Inference we cannot tell whether
an uplift model correctly classified a given instance. We will, however, define an
approximate notion of classification error in the uplift case. A record (zI,y7)
is assumed to be classified correctly by an uplift model h if h(z]) = yI" and
(T, yT) € DT; arecord (z¢,y¢) is assumed to be classified correctly if h(z{) =
1—y¢ and (2%, y¢) € DC.

Intuitively, if a record (zI',y!) belongs to the treatment group and a model
h predicts that it should receive the treatment (h(zl) = 1) then the outcome
should be positive (y! = 1) if the recommendation is to be correct. Note that the
gain from the action might also be neutral if a success would have occurred also
without treatment, but at least the model’s recommendation is not in contradic-
tion with the observed outcome. If, on the contrary, the outcome for a record in
the treatment group is 0 and h(z?) = 1, the prediction is clearly wrong as the
true effect of the action can at best be neutral.

In the control group the situation is reversed. If the outcome was positive
(ylc = 1) but the model predicted that the treatment should be applied
(h(z¢) = 1), the prediction is clearly wrong, since the treatment cannot be

K3
truly beneficial, it can at best be neutral. To simplify notation we will introduce
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the following indicators:

0 ifz! € DT and h(z! y“
T(al) = { ) 2

1 if 27 € DT and h(zT) # y!,

.T? #yz7

if ¢ ¢ an
C(Ic)_{o f2CeD dhm;_y )

(
1 if 2¢ € DC and h(x¢
An index m will be added to indicate the m-th step of the algorithm. Let us
now define uplift analogues of classification error on the treatment and control
datasets and a combined error:

T C
T ZL T (z:)=1 Wm,i c Zz eC (z)=1 Wm,i T T C Oy
dim1 Wi i dic1 Wiy i

The sums above are a shorthand notation for summing over misclassified in-
stances in the treatment and control training sets, which will also be used later
in the paper.

1.3 Double classifiers

The most obvious approach to uplift modelling is to build two classification
models AT and h® on the treatment and control groups respectively and to
subtract their predicted probabilities:

hY (x) = hT(x) — hE(x).

We will call this approach the double classifier approach. Its obvious appeal is
simplicity; however in many cases the approach may perform poorly. The reason
is that both models can focus on predicting the class probabilities themselves,
instead of making the best effort to predict the (usually much weaker) ‘uplift
signal’, i.e., the difference between conditional class probabilities in the treatment
and control groups. See [2] for a detailed discussion and an illustrative example!.
Nevertheless, in some cases the approach is competitive. This is the case when
the amount of training data is large enough to accurately estimate conditional
class probabilities in both groups or when the net gain is correlated with the class
variable, e.g. when people likely to buy a product are also likely to positively
respond to a marketing offer related to that product.

1.4 Class variable transformation

In [7] a class variable transformation was presented which allows for converting
an arbitrary classification model (the paper used logistic regression) into an

! The example is based on artificial data with two attributes, one strongly affecting the
class probabilities independently from the treatment received, the other determining
the relatively small sensitivity to the treatment. A model based on two decision trees
uses only the first attribute.
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uplift model. The transformation simply replaces class values y¢ in the control
group with their reverses 1 — ¢ while keeping the treatment set class values
unchanged. As a result, a single classifier is built which directly models the
difference between success probabilities in the treatment and control groups. It
is easy to see that the errors defined in Equation 4 are equivalent to standard
classification errors for the transformed class.

1.5 Other related work

Despite its practical appeal, uplift modelling has seen relatively little attention
in the literature. Here we shortly discuss some other work not mentioned above.

Several algorithms have thus been proposed which directly model the differ-
ence between class probabilities in the treatment and control groups. Many of
them are based on modified decision trees. For example, [2] describe an uplift
tree learning algorithm which selects splits based on a statistical test of differ-
ences between treatment and control class probabilities. In [8, 9] uplift decision
trees based on information theoretical split criteria have been proposed.

Some work has also been published on using ensemble methods for uplift
modelling, although, to the best of our knowledge, none of them on boosting.
Bagging of uplift models has been mentioned in [2]. Uplift Random Forests have
been proposed by [10]; an extension, called causal conditional inference trees was
proposed by the same authors in [11]. A thorough experimental and theoretical
analysis of bagging and random forests in uplift modelling can be found in [12]
where it is argued that ensemble methods are especially well suited to this task
and that bagging performs surprisingly well.

Other uplift techniques have also been proposed. Regression based approaches
can be found in [13] or, in a medical context, in [14, 15].

[16] proposes a method for converting survival data such that uplift modelling
can, under certain assumptions, be directly applied to it.

Some variations on the uplift modelling theme have also been explored. [5]
proposed an approach in the context of online advertising, where it is necessary
to not only maximize the net gain, but also to increase advertiser’s benefits
through maximizing response rate in the treatment group. This type of problems
are beyond the scope of this paper.

1.6 Forgetting in classical AdaBoost

While many boosting algorithms are available, in this paper by ‘boosting’ we
mean the discrete AdaBoost algorithm [17]. Forgetting the last member added
to the ensemble means that after a new member is added, record weights are
updated such that its classification error is exactly 1/2. This makes it likely for
the next member to be very different from the previous one, leading to a diverse
ensemble. Full details can be found for example in [17-19]. This key property
will be important for adapting boosting to the uplift modelling case.

Now we can formulate an uplift analogon of AdaBoost algorithm.
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2 Uplift AdaBoost

In this section we present the proposed algorithm and the property of forgetting
the last ensemble member in the context of uplift modelling.

2.1 Algorithm

Algorithm 1 presents AdaBoost algorithm for uplift modelling.

Input: set of treatment training records, DT = {(wlT, le) . (a:%T , ygT)},
set of control training records, D¢ = {(xlc, ylc) e (:rf]c,yf]c)},

base uplift algorithm to be boosted,
integer M specifying the number of iterations

1. Initialize weights w{i,wlc,i
2. Form«+«1,....M

T C

T Win,i . C Win,i
(&) wmi PORTEANES SRR LU SIS ShT A
(b) Build a base model h,, on D with wﬁyi,wg,i
(c) Compute the treatment and control errors e, €5,
(d) C te Bm = P PG

OMPWLE Pm = 1T T —pC e
(e) If B = 1 or €, ¢ (0, Hor €S ¢ (0,1):

i. choose random weights wfm-, Wiy i
ii. continue with next boosting iteration
Ty _ T
() w77;z+1,i « wzw. . (Bm)l[hm<a7i )=y; |
Cy_ C
g) w1§1+1,i — wg,i - (B )M F)=1 7w
(h) Add h,, with coefficient 5., to the ensemble

Output: The final hypothesis

hy(z) = { Lif SN (log 2 ) (@) > £ 300 log L, 5

0 otherwise.

Algorithm 1: AdaBoost algorithm for uplift.

Note that the algorithm is a discrete boosting algorithm [17,19], that is, the
base learners are assumed to return a discrete decision on whether the action
should be taken (1) or not (0). Algorithm 1, as presented in the figure, also
returns a decision. However, it can also return a numerical score,

s(z) = ]zwj (log Bl) hon (@),

m=1 m

indicating how likely it is that the effect of the action is positive on a given case.
In the experimental Section 3 we will use this variant of the algorithm.
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AdaBoost can suffer from premature stops when the sum of weights of mis-
classified cases becomes 0 or is greater than 1/2. This problem turns to be even
more troublesome in the uplift modelling case. Hence, in step 2e of Algorithm 1
we restart the algorithm by assigning random weights drawn from the exponen-
tial distribution to records in both training datasets. The technique has been
suggested for classification boosting in [20].

2.2 Properties

Let us now examine what the property of forgetting the last model added to the
ensemble means in the context of uplift error defined in Equation 4. To forget
the member h,, added in step m we need to choose weights in step m + 1 such
that the combined error of h,, is exactly one half, ¢, = % From steps 2f and 2g
of Algorithm 1 we get that to ensure the condition holds at step m + 1, the
following equation for ,, must be true:

B Z Wi + Bm Z wh i = Z wp i + Z whi» (6)

i el (x;)=0 i eS (z4)=0 i el (z5)=1 i eG (z4)=1
that is, the total new weights of correctly classified examples need to be equal
to total new weights of incorrectly classified examples. After dividing both sides

N LT N ,C -
by > imy Wy, ; + D i1 Wy, ,; the equation becomes

Pi(L—€b)Bm + PS5 (1 — €5)Bm = pheb, + pSeS. (7)

Note that unlike classical boosting, this condition does not uniquely determine
record weights.

Let us now give a justification of this condition in terms of performance of
an uplift model.

Theorem 1. Let h be an uplift model. If the balance condition holds and the
assignment of cases to the treatment and control groups is random then the
condition that the combined uplift error € be equal to % 18 equivalent to

Ph=1)[PT(y=1h=1)— P9y =1|h = 1)]
+P(h=0)[P°(y=1h=0)—PT(y=1h=0)] =0. (8)

Proof. Note that the assumption of random group assignment implies P7 (h =
1) = P¢(h = 1) P(h = 1) since both groups are scored with the same
model and have the same distributions of predictor variables. Using the balance
condition, the error € of h, defined in Equation 4, can be expressed as (the second
equality follows from p” = p® = 1)

2¢ =2PT(h=1—-y)p” +2P°(h=9y)p® = PT(h=1—y) + P°(h=1)
=PT(h=1,y=0)+P'(h=0,y=1)+P’h=y=0)+P°(h=y=1)
=Pl y=0h=1)P"(h=1)+ P (y=1h=0)PT(h=0)
+ Py =1h =1)P°(h = 1) + P“(y = 0|h = 0)P° (h = 0).
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Using the assumption of random treatment assignment and rearranging:

=P(h=1)[P"(y=0h=1)+P°(y=1h=1)]

+P(h=0) [PT(y =1|h = 0) + P(y = 0|h = 0)]
=Ph=1)[1-PT(y=1h=1)+P%y=1h=1)]

+P(h=0)[PT(y=1h=0)+1-P%y=1]h=0)]
=1+Ph=1)[-(PT(y=1h=1)-P°y=1h=1))]

+ P(h=0)[P'(y=1h=0)— P%(y = 1|h = 0)] .

After taking ¢ = % the result follows.

Note that the left term in (8) is the total gain in success probability due
to the action being taken on cases selected by the model and the right term is
the gain from not taking the action on cases not selected by the model. A good
uplift model tries to maximize both quantities, so the sum being equal to zero
corresponds to a model giving no overall gain over the controls.

When the balance condition holds, the forgetting property thus has a clear
interpretation in terms of uplift model performance. When the balance condition
does not hold, the interpretation is, at least partially, lost.

Note that 3,, we choose:

phel +p5es
L — (pLel, + pSeS,)

Bm = (9)
is identical to the result in classical boosting with the classification error being
replaced by its uplift analogue.

3 Experimental evaluation

In this section we present an experimental evaluation of the three proposed al-
gorithms and compare their performance with performance of the base models.
We begin by describing the test datasets we are going to use, then review the
approaches to evaluating uplift models and finally present the experimental re-
sults.

3.1 Benchmark datasets

A significant problem one encounters while working on uplift modelling is the
lack of publicly available datasets. Even though control groups are ubiquitous in
medicine and their use in marketing is growing, there are relatively few publicly
available datasets which include a control group and a reasonable number of
predictive attributes. In our experiments we are going to use datasets from the
UCI repository artificially split into treatment and control groups. We describe
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Table 1. Conversion of UCI datasets into treatment and control groups.

dataset treatment/control #removed attributes /
split condition # original attributes

breast-cancer |menopause = ‘PREMENO’ 2/9

credit-a a7 # Vv’ 3/15

dermatology |exocytosis < 1 16/34

liver-disorders|drinks < 2 2/6

splice attributel € {*A’,‘G’} 2/61

winequal-red [sulfur dioxide < 46.47 2/11

here the procedure used to split standard UCI datasets in a way suitable for
uplift modelling. The details of the approach can be found in [8,9].

The conversion is performed by first picking one of the data attributes which
splits the data evenly into two groups. Details are given in Table 1. The first
column contains the dataset name and the second provides the condition used to
select records for the treatment group. The remaining records formed the control.
A further postprocessing step removed attributes strongly correlated with the
split itself; ideally, the division into treatment and control groups should be
independent from all predictive attributes, but this is possible only in a controlled
experiment. A simple heuristic was used for this purpose:

1. A numerical attribute was removed if its means in the treatment and control
datasets differed by more than 25%.

2. A categorical attribute was removed if the probability of one of its categories
differed between the treatment and control datasets by more than 0.25.

The number of removed attributes vs. the total number of attributes is shown
in the third column of Table 1.

Further, multiclass problems were converted into binary problems with the
majority class assumed to be class 1 (the desired outcome) and the remaining
classes merged into class 0. We note that it is possible to use all analyzed uplift
methods in the multiclass setting, however, we chose to use binarization in order
to make the analysis (e.g. drawing curves) easier.

3.2 Methodology

Building uplift models requires two training sets. Consequently, we also have two
test sets: treatment and control. A typical approach to assessing uplift models [2,
1] is to score both test datasets using the same uplift model and assume that
objects in the treatment and control groups which have received similar scores
are similar and can be compared with each other. In [1] the authors grouped
treatment and control test cases by deciles of their scores and estimated net
gains by subtracting success rates within each decile.
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A more practical modification of this approach is to visualize model per-
formance using uplift curves [8,2]. Recall that one of the tools for assessing
performance of standard classification models are lift curves?, where the z axis
corresponds to the number of cases subjected to an action and the y axis to the
number of successes captured by the model.

In order to obtain an uplift curve we score both test sets using the uplift model
and subtract the lift curve generated on the control test set from the lift curve
generated on the treatment test set. The number of successes for both curves
is expressed as percentage of the total population such that the subtraction is
meaningful.

The interpretation of the uplift curve is as follows: on the x axis we select
the percentage of the population on which the action is performed, and on the
y axis we read the net gain achieved on the targeted group (the net gain on the
remaining cases is zero since no action was performed on them). The point at
x = 100% gives the gain in success probability we would obtain if the action
was applied to the whole population. A diagonal uplift curve corresponds to
performing the action on a randomly selected percentage of the population.
More details can be found in [8, 2].

As with ROC curves, we can use the Area Under the Uplift Curve (AUUC) to
summarize model performance with a single number. We subtract the area under
the diagonal from this value in order to obtain more meaningful numbers. Note
that the area under the uplift curve can be less than zero; this happens when
the model gives high scores to cases for which the action has a predominantly
negative effect.

All experiments have been performed by randomly splitting each dataset into
training (80% of the data) and test (the remaining 20%) parts. Each experiment
was repeated 128 times, and the resulting uplift curves have been averaged. The
reason for this choice was to make the results repeatable and less sensitive to
the random seed used. However, the disadvantage of such an approach is that
it hides the variance of the predictions. To address this issue we also compute
standard deviations of AUUCs computed over the 128 test sets in a manner
similar to bootstrap estimates.

3.3 Experiments

As base models to be boosted we use two types of decision trees: unpruned J4.8

trees and decision stumps implemented in Weka package. We apply to them the

three methods of boosting in the uplift approach: double (classical) boosting,

class variable transformation and uplift AdaBoost algorithm proposed by us.
Thus we obtain two base models:

— a double classifier,
— a classifier with the class variable transformation

and four boosted models:

2 Also known as cumulative gains curves or cumulative accuracy profiles.
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a doubled classical boosting ensemble,

— uplift AdaBoost ensemble with doubled classifiers,

— a classical boosting ensemble of classifiers with class variable transformation,
uplift AdaBoost ensemble of classifiers with class variable transformation.

The class variable transformation is named shortly Z model, e.g. a decision tree
with class variable transformation is named ”Z decision tree”. Note that ”dou-
bling” and ”Z transformation” are two different ways of achieving uplift models,
which than can be boosted with Uplift AdaBoost. Alternatively, we can double
(classically) boosted classifiers or classically boost Z models.

In each ensemble we build B = 101 base models being members of the en-
semble. This choice of the ensemble size is justified by the trade off: the B large
enough to get a fully developed ensemble and not too big for practical applica-
tions.

Figures 1 to 6 present the uplift curves for chosen UCI datasets and the
algorithms applied to J4.8 unpruned decision tree as a base model. In most
cases boosting generally improves the base double model and often the proposed
uplift model is superior to the ordinary double boosted model. In some cases
the latter can eventually fail, which did not happen with the new algorithm (see
Figure 2). Note also that the class variable transformation usually does not work
properly with uplift AdaBoost.

For decision stumps the results are not so impressive. In fact, this base model
sometimes works fine with classical boosting on the data with the class variable
transormation, but not for the uplift AdaBoost with variable transformation
(not presented on Figures).

4 Conclusions

In this paper we have developed a new boosting algorithm for the uplift mod-
elling problem. We discuss some of its properties in relation to the classification
AdaBoost algorithm and present the two other approaches to boosting in the
uplift case.

Experimental evaluation showed that boosting has a potential to dramati-
cally improve the performance of uplift models and the proposed algorithm often
outperform the other two approaches. Our experiments demonstrate that ensem-
ble methods often bring dramatic improvements in performance, turning useless
single trees into highly capable ensembles. In some cases the Area Under the
Uplift Curve of an ensemble was over double that of the base learner.

We conclude that further investigation of the designed algorithm is very
promising and should be continued for various types of base models, as for some
of them a possible improvement of model accuracy may be very remarkable.
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Fig. 1. Uplift curves for breast-cancer dataset.
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Fig. 2. Uplift curves for credit-a dataset.
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Fig. 4. Uplift curves for liver-disorders dataset.
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Fig. 6. Uplift curves for winequal-red dataset.
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