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Abstract. In this paper a construction of a similarity measure between
groups of rankings, based on a Bipolar OWA (BOWA) function is dis-
cussed. The measure possesses some interesting properties that make it
useful in cluster analysis performed as a part of collaborative filtering
process. An extended data representation model for consumer prefer-
ences and objects of their preferences is assumed. Practical issues of
conducting and evaluating the clustering procedure are discussed.
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1 Introduction

The most common web-based recommender systems predict what movies, books
or other goods a user would prefer, based on the historical ratings, views or
purchases of the user [1, 2]. Explicit user feedback once given continues to be
useful. The most popular setting in which preferences are represented in such
systems is a matrix (sometimes called a utility matrix ) with rows corresponding
to users, columns corresponding to items and cells containing values of ratings
given to items by the users. In [3] a more complicated setting of representing
user preferences was proposed. It is especially suited for recommending services,
e.g. vacation trips, cultural events, conferences, for which no explicit feedback
exists. The setting has a form of a matrix where the entries of the cells for each
user-attribute pair contain rankings. Each ranking expresses user preference for
items belonging to the domain of a given attribute.

Collaborative filtering approach is the most common technique successfully
applied in recommender systems [4, 5]. It creates item recommendations based
on similarity measures between users and/or items. An application of cluster
analysis and grouping the users based on their similarity was considered a natural
and interesting direction of inference about preferences.

In order to apply this approach for the assumed data representation, a sim-
ilarity measure between groups of rankings [3] coming from a pair of users was
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defined. The measure is based on a function that is a member of the family of
BOWA operators (Bipolar Ordered Weighted Averaging function) proposed in
[6], which are used to aggregate bipolar data.

In this paper a work on the similarity measure between groups of rankings is
summarized and the application of the measure in cluster analysis is proposed.
The clustering is assumed to be a part of a collaborative filtering process whose
purpose is to detect natural similarity groups of consumers, as opposed to a
possible segmentation approach [7], and to generate object recommendations for
the consumers.

The paper is organized as follows. An introductory example explaining the
difference between the classical situation considered in recommender systems and
the suggested setting is given in Section 2. In Section 3 a data representation
model for consumers is recalled. We also propose a data representation for objects
of consumer preferences, based on groups of vectors and referring to consumer
data representation model. A notion of a history of choices of a consumer is
introduced. Section 4 recalls definition of the chosen similarity measure between
groups of rankings and of the family of operators the measure is based on. In
Section 5 we propose to apply the defined similarity measure in cluster analysis
and describe example choice of existing methods to conduct and evaluate it.

2 Introductory example

Let us consider a travel agency, that gathers a history of vacation trips of its
clients. For every client a number of times he or she attended a certain trip is
known.

The agency stores data about trips in the following way. Every trip is de-
scribed by the same set of attributes. For each separate attribute the availability
of its all possible variants (which depend on a domain of the attribute) is marked.
An exemplary output of trips (or trip types) data set is given in Table 1, where
1 means a certain variant is available and 0 it is not.

Data about clients are stored in a form of rankings of choices made by the
clients. For each attribute of a trip, all available variants concerning this aspect
of a trip have the ranks assigned, according to historical preferences of the client.
In other words, for each client a ranking of variants of a given attribute from
the most preferred to the least preferred variant is obtained. Table 2 presents
an exemplary output of the clients data set, where numbers indicate the ranks
assigned.

Such data sets as shown in Table 1 and Table 2 are collected because the
agency plans to prepare new trip offers for each client. To maximize the possi-
bility of accepting a new offer it should be prepared in a way that guarantees
client’s satisfaction when chosen. To achieve this, the agency plans to create
recommendations based on similarity between clients and/or trip offers.
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Table 1. Exemplary data set of trips.

Accommodation Means of transport Activities

Trip T tent - 0
guesthouse - 1
hotel - 0

car - 1
bus - 0
train - 1
airplane - 0

sunbathing - 1
sightseeing - 0

Trip U tent - 1
guesthouse - 0
hotel - 0

car - 1
bus - 0
train - 0
airplane - 1

sunbathing - 1
sightseeing - 1

. . . . . . . . . . . .

Table 2. Exemplary data set of clients’ preferences.

Accommodation Means of transport Activities

Client A tent - 2
guesthouse - 1
hotel - 3

car - 1
bus - 4
train - 2
airplane - 3

sunbathing - 1
sightseeing - 2

Client B tent - 3
guesthouse - 2
hotel - 1

car - 3
bus - 4
train - 1
airplane - 2

sunbathing - 2
sightseeing - 1

. . . . . . . . . . . .

3 Data representation

Let Y be a finite set of attributes of size n. Moreover, assume that Uj is a domain
of the attribute Yj ∈ Y which consists of lj variants, i.e. Uj is a finite set of size
lj , where j = 1, . . . n.

Let X denote a set of consumers. For each attribute consumer preferences
are expressed with respect to all available variants of that attribute. Hence, for
any consumer A ∈ X we get n rankings corresponding to successive attributes,
so the observation related to A might be perceived as a vector

RA = [RA1, RA2, . . . , RAn], (1)

where RAj is a ranking of variants belonging to the domain of the j-th attribute.
Consider now a ranking RAj . Since it reflects the consumer’s preferences on

variants belonging to the domain Uj of the attribute Yj ∈ Y, it is also a vector.
Namely,

RAj = (r
(1)
Aj , r

(2)
Aj , . . . , r

(lj)
Aj ), (2)
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where r(k)Aj , k = 1, . . . , lj is a rank assigned to k-th variant belonging to Uj and
where lj stands for the size of the domain Uj .

Next, let Z be a set of objects of preference (products, offers, events etc.).
Each object T ∈ Z is characterized by available variants of the attributes Y
already considered by consumers. Hence, object T ∈ Z is described by a vector

VT = [VT1, VT2 . . . , VTn] (3)

where VTj is an lj-element vector indicating available variants, i.e.

VTj = (v
(1)
Tj , v

(2)
Tj , . . . , v

(lj)
Tj ), (4)

where v(k)Tj ∈ {0, 1}, k = 1, . . . , lj , and v
(k)
Tj = 1 denotes that the k-th variant

in Uj is available (in offer T ), while p(k)Aj = 0 means that it is not available. In
general there is no restriction on the number of simultaneously available variants.

Given a finite set of considered objects {T (1), T (2), . . . , T (t)} ∈ Z and a con-
sumer A ∈ X , let

HA = [hA1, hA2, . . . , hAt] (5)

denote a consumer A’s history of choices, where hAi ∈ {0, 1, . . . , t} for i =
1, . . . , k, and hAi = 0 means the i-th object from the set {T (1), T (2), . . . , T (t)}
was never chosen by A, while hAi ∈ {1, . . . , t} denotes a rank assigned to the
i-th object. For the most often chosen object we obtain hA. = 1, the second most
often chosen object has rank 2, and so on till the least often chosen object.

We assume the client A’s representation (1) is linked to the history of choices
HA in the following way. Observation RA = [RA1, RA2 . . . , RAn] is generated
on the basis of: a history of choices HA and an additional information about
exact number of times each object from the history was chosen. For a given j-th
attribute we obtain a ranking RAj by summing up the number of times each
of the lj variants, if available, was chosen in the history and assigning ranks to
each of the lj obtained sums in the non-increasing order.

Example 1. Let {T,U, V } be a considered set of objects of preference, such that

VT = [(0, 1, 0), (1, 0, 1, 0), (1, 0)]

VU = [(1, 0, 0), (1, 0, 0, 1), (1, 1)]

VV = [(1, 0, 0), (1, 1, 1, 1), (0, 1)].

Given a client A, his or her history of choices HA = [1, 2, 0] and additional
information that the first object was chosen 13 times and the second object 4
times by the client A, we obtain the following vector of sums for each variant of
each attribute:

[(1 · 4, 1 · 13, 0), (1 · 4 + 1 · 13, 0, 1 · 13, 1 · 4), (1 · 13 + 1 · 4, 1 · 4)] =
= [(4, 13, 0), (17, 0, 13, 4), (17, 4)].
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After assigning ranks to the sums in the non-increasing order, we obtain client
A’s representation:

RA = [(2, 1, 3), (1, 4, 2, 3), (1, 2)].

�

4 Measure of association between groups of rankings

In order to group the consumers based on their similarity, for the assumed con-
sumer data representation (1), a measure of association between two groups of
rankings was searched for. A set of requirements which a measure should satisfy
was specified [3] and the form of the desired measure between two groups of
rankings corresponding to consumers A and B, A,B ∈ X , was stated as

S(A,B) = F (s1AB , s
2
AB , . . . , s

n
AB), (6)

where (s1AB , s
2
AB , . . . , s

n
AB) is a vector of pairwise correlations obtained for all

attributes under study for two consumers A,B ∈ X , i.e. sjAB = s(RAj , RBj),
j = 1, . . . , n, s denotes any pairwise correlation measure between two rankings,
taking values in [−1, 1] (e.g. Kendall’s τ or Spearman’s rS [8]) and F : [−1, 1]n →
[−1, 1] is a suitable function.

Since the goal of F is to aggregate several correlations to a single value,
one may expect that it should be an appropriate aggregation function. The
preservation of bounds property of any aggregation function coincides with the
specified requirement that the measure should take its maximal (minimal) value
when all rankings are pairwise perfectly concordant (discordant). One of the
other requirements was to reward higher correlations, hence an OWA operator
[9] might seem a good choice. However, the reward was postulated to be given
regardless of the correlation signs. Hence, F cannot be monotone on the whole
interval [−1, 1] and cannot fulfill the monotonicity condition (see, e.g., [10–12])
of any aggregation function.

A new family of semi-aggregation operators was therefore proposed [6]. It
is a generalization of OWA operators for the case of bipolar data and, most
importantly, was shown to be monotone for absolute values of arguments while
still keeping track of signs.

Definition 1. Let w = [w1, . . . , wn] be a vector of weights such that wj ≥ 0
for j = 1, . . . , n and

∑n
j=1 wj = 1. Suppose that x1, . . . , xn are realizations

of the continuous random variable defined on the interval [−1, 1]. A function
F : [−1, 1]n → [−1, 1] defined as

F (x1, . . . , xn) =
n∑

j=1

wj · x∗(j) (7)

is called the Bipolar OWA function (BOWA), where x∗(j) denotes the j-th largest
absolute value of element in the collection of aggregated objects x1, . . . , xn mul-
tiplied by the original sign of that element.
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Alternative notation to express BOWA operator is

F (x1, . . . , xn) = 〈w,x∗ ↘B〉 , (8)

where 〈·, ·〉 is the scalar product of vectors and the symbol ↘B indicates a non-
increasing ordering (proposed to be called bipolar) of elements obtained for their
absolute values and thus ignoring their signs.

The BOWA operator definition in the presence of ties in the bipolar ordering
of arguments was separately defined in [6]. Arguments having the same absolute
values are given identical weights, which are computed as the average of weights
that would be gathered if the arguments had not been tied.

The basic BOWA operator properties [3] include idempotence, symmetry
and homogeneity. Moreover, each BOWA function for absolute values of its ar-
guments is an OWA operator. Similarly as OWA functions, BOWA operators do
not have neutral or absorbing elements, except for the special cases. They are
however not shift-invariant. BOWA operator with adequately chosen weights,
such that higher correlations are rewarded whatever are their signs, is a suitable
function F that satisfies all postulates required by the measure of association
(6) searched for. An example of such vector of weights was suggested in [3] and
is also recalled below.

Example 2. Consider two consumers A and B. Assume that the pairise correla-
tion between their preferences for each of the three attributes under study was
calculated using Spearman’s coefficient. As a result we received the following
three numbers: s1AB = 0.5, s2AB = 0.4 and s3AB = −1.

To aggregate these three coefficients the following operator FLG : [−1, 1]n →
[−1, 1] was suggested in [3]

FLG(xi, . . . , xn) =
2

n(n+ 1)

n∑
j=1

r(|xj |) · xj , (9)

where r : [0, 1]→ R+ is a function such that

r(z) =
1

2
+

n∑
i=1

c(z − |xi|) (10)

and where c is defined as

c(u) =


0 if u < 0
1
2 if u = 0

1 if u > 0.

(11)

The suggested operator is a member of a family of BOWA operators (7). Let
us consider given correlation coefficients as a vector x = [0.5, 0.4,−1]. Hence we
get a vector of argument values x∗ ↘B= [−1, 0.5, 0.4] in the bipolar order. Using
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ranks given by (10), we may compute a vector of weights w = [0.5, 0.(3), 0.1(6)]
and therefore, by (8) we get

F (0.5, 0.4,−1) = 0.5 · (−1) + 0.(3) · 0.5 + 0.1(6) · 0.4 = −0.2(6).

�

5 Using BOWA-based similarity measure in cluster
analysis for collaborative filtering

The constructed similarity measure (6) between a pair of consumers based on
BOWA operator, allows us to conduct cluster analysis for a set of consumers
represented as in (1). We assume the goal of such clustering proccess is to find
natural similarity groups among consumers and characterize the groups.

Consider a finite set of consumers X ⊂ X and the K-medoids [7] as a cluster
analysis method to be conducted on X. K-medoids is a combinatorial cluster
analysis [7], a generalization of a popular K-means algorithm for observations
with arbitrary attributes. It admits arbitrary dissimilarity measure instead of a
squared Euclidean distance. The center of each cluster, the medoid, is the cluster
member that minimizes a total dissimilarity to all other members of the cluster.
The BOWA based S similarity measure (6) can be easily adopted to be used as
a dissimilarity S′ in K-medoids method, i.e. S′ = −S.

Dissimilarity S′ can then also be used for several distance-based clustering
quality measures, as Silhouette coefficient [13], Gamma index [14], C-index [15]
or Caliński and Harabasz index generalised for dissimilairites [16]. Another pro-
posed way to assess clustering quality is to measure the averaged agreement
among consumers belonging to the same cluster in relation to the agreement
among medoids. To compute an overall agreement of a group of consumers we
can use the analogy to how the BOWA based similarity measure between two
groups of rankings is constructed (6). First, we measure the agreement for each
attribute separately, i.e. concordance of a set of rankings, using e.g. the Kendall’s
coefficient of concordance [8] which ranges between 0 (no agreement) to 1 (per-
fect agreement). Then using OWA operator with a proper weight vector that
rewards higher correlations, e.g. obtained by (10), we aggregate the coefficients
to obtain single value agreement indicator.

Now, consider a certain resulting cluster and assume that the history of object
choices (5) of each cluster member is known. Let {T (1), T (2), . . . , T (t)} be a set of
all considered objects that the histories are based on. The following procedures
of obtaining a meaningful cluster description are suggested:

P1. Picking or creating a representative consumer. Obvious way of repre-
senting a cluster is to pick the consumer that serves as the medoid. However,
an equivalent of a centroid [7] known from the K-means procedure could also
be computed, i.e. the averaged member of the cluster having the form of a
vector (1), such that its each element is obtained as a result of aggregating
corresponding elements of vectors representing all cluster members.
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P2. Creating a representative object. A single object T (rep) ∈ Z of the
form VT (rep) = [V

T
(rep)
1

, V
T

(rep)
2

. . . , V
T

(rep)
n

] is created such that for the j-
th attribute each element of the vector V

T
(rep)
j

is obtained as a result of

aggregating corresponding elements of vectors V
T

(i)
j

, i = 1, . . . , t, if the i-th

object is among the ones most often chosen by the cluster members.

P3. Creating a representative history of object choices. A vector having
the form of the history of choices (5) is created, such that its each element
is obtained as a result of aggregating corresponding elements of vectors rep-
resenting histories of choices of all cluster members.

Keeping in mind the introductory example discussed in Section 2, we observe
that cluster analysis can be especially beneficial also for recommendation cre-
ation purpose, for the assumed data representation model.

Firstly, we notice that history of consumer choices (5) can serve as a ground
truth for algorithms that learn to predict a preferred order of a given set of
objects for a given consumer, i.e. object ranking [17] or preference-based [4]
algorithms. In practice, histories of choices can vary a lot between consumers
regarding the number and the types of objects chosen. Notice that it applies
even to very similar consumers (where similarity is understood as defined in
Section 4). Big differences in the types of objects chosen result in sparse history
vectors. Here, the cluster analysis can be helpful in dealing with the sparsity.
Any consumer A to be used in the learning or testing phase of the object ranking
procedure can be replaced with his or her cluster’s representative consumer (see
P1.). Ground truth history of choices of the cluster’s representant is enriched
with the history of A, reducing the sparsity problem.

On the other hand, the fact that a given consumer is assigned to a certain
cluster, can be used as additional information (a feature in the input vector)
about the consumer, possibly improving the prediction quality of object ranking
procedure.

6 Conclusions

In this paper an extended data representation model of consumer preferences
and objects of their preferences was proposed. A construction of the similarity
measure between groups of rankings coming from a pair of consumers, based on a
family of semi-aggregation BOWA operators, was summarized. It was shown how
the measure can be applied in cluster analysis performed as a part of collabora-
tive filtering process and what are the motivations behind it. Practical issues of
conducting and evaluating the clustering process were discussed. Further work
assumes experimental verification of the proposed consumer clustering proce-
dure, including the defined similarity measure, performed on real and generated
data.
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