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Abstract. Sudden releases of harmful material into a densely-populated
area pose a significant risk to human health. The apparent problem of
determining the source of an emission in urban and industrialized areas
from the limited information provided by a set of released substance con-
centration measurements is an ill-posed inverse problem. When the only
information available is a set of measurements of the concentration of
released substances in urban and industrial areas it is difficult to deter-
mine the source of emission. However, the problem can be solved when
there is additional information available together with the appropriate
tools. A convenient choice is the Bayesian probability framework, which
provides a connection between model, observational and additional in-
formation about the source. The Bayesian approach was applied in this
study to find the posterior probability density function of the contamina-
tion source parameters (location and strength) given a set of concentra-
tion measurements. The posterior distribution of the source parameters
was sampled using an Approximate Bayesian Computation (ABC) algo-
rithm. The stochastic source determination method was validated against
the real data set acquired in a highly disturbed flow field in an urban
environment. The datasets used to validate the proposed methodology
include the dispersion of contaminant plumes in a full-scale field exper-
iment performed within the project ”Dispersion of Air Pollutants and
their Penetration into the Local Environment in London (DAPPLE)”. It
demonstrates the use of the proposed approach for the event reconstruc-
tion problem in a highly urbanized environment.

1 Introduction

In emergency response management it is important to know the extent of the
area that might become contaminated following the release of dangerous ma-
terial in cities and the subsequent movement of polluted air. The lack of per-
tinent experimental information means there is a gap in the understanding of
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short range dispersion behavior in highly urbanized areas. Given a gas source
and wind field, we can apply an appropriate atmospheric dispersion model to
calculate the expected gas concentration for any location. Conversely, given con-
centration measurements and knowledge of the arrangement of buildings, wind
field and other atmospheric air parameters, identifying the actual location of the
release source and its parameters is difficult. This problem has no unique solu-
tion and can be analyzed using probabilistic frameworks. In the framework of
Bayesian approach, all quantities included in the mathematical model are mod-
eled as random variables with joint probability distributions. This randomness
can be interpreted as lack of knowledge of parameter values, and is reflected in
the uncertainty of the true values as expressed in terms of probability distri-
butions. Bayesian methods reformulate the problem thusly: by comparing data,
and efficient sampling of a group of simulations, to find a solution.

The problem of source term estimation has been studied in literature, based
on both the deterministic and probabilistic approach. [1] implemented an algo-
rithm based on integrating the adjoint of a linear dispersion model backward
in time to solve a reconstruction problem. [2, 3] introduced dynamic Bayesian
modeling, and the Markov Chain Monte Carlo (MCMC) sampling approaches
to reconstruct a contaminant source for synthetic data. Source reconstruction
in an urban environment using building-resolving simulations was studied in [4]
and [5]. [4] used an adjoint representation of the source-receptor relationship.
They used a Bayesian inference methodology in conjunction with MCMC sam-
pling procedures. This approach was validated using data from water channel
simulations and a field experiment (Joint Urban 2003) in Oklahoma City. In [5]
the authors applied the methodology presented in [2] to the reconstruction of
the flow around an isolated building and the flow during IOP3 (third intensive
observation period) and IOP9 of the Joint Urban 2003 Oklahoma City experi-
ment. In these experiments they found the source location ∼ 70m from the true
location for IOP3 (within the domain ∼ 400m×400m) while for the IOP9 model
errors and other uncertainties limit the ability to pinpoint the source location.

Methods of approximate Bayesian computation (ABC) are especially useful
for problems in which the likelihood function is analytically intractable or too
expensive to compute. The original version of the approximate Bayesian compu-
tation with Sequential Monte Carlo (ABC SMC) algorithm was proposed in [6].
Applications of this algorithm have been presented in a variety of areas including
population biology [7], genetics [8] and psychology [9]. Also, there has been an
increased interest in extensions and improvements of this algorithm, as demon-
strated in ([10], [11], [12], [13]). The more advanced form of the algorithm, which
relies upon the new idea ”Sequential Monte Carlo with Adaptive Weights”, is
shown in Algorithm 1 section 4 and was originally presented in [14].

Previously [15], we have tested the methodology by combining Bayesian in-
ference with MCMC methods and applied these to the problem of dynamic,
data-driven contaminant source localization, based on data from the the syn-
thetic experiment. In [16] various modifications of the MCMC algorithm to es-
timate the probability distributions of searched parameters were examined. We
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have shown the advantages of several algorithms. These algorithms use, in a
variety of ways, the probability distributions of the source location parameters
obtained based on available measurements. Once the new concentration data
are received, the marginal probability distribution of the selected parameters is
updated. We have also presented the application of the Sequential Monte Carlo
(SMC) methods combined with the Bayesian inference to the problem of locat-
ing the atmospheric contamination source based on synthetic experiment data
[17].

We propose algorithms to locate the source of contamination based on the
data from the central London DAPPLE experiment that was performed in May
and June 2007 (see section 2) [18]. We used the fast running QUIC-URB [19]
model for computing mean flow fields around buildings and QUIC-PLUME [20]
as the forward model to predict the concentrations at the sensor locations (sec-
tion 3). As a sampling approach in the event reconstruction procedure we used
the modern algorithm from the class of likelihood-free Bayesian methods [14]
with some extension, described in section 4.

2 Dispersion Experiments in London - DAPPLE

The DAPPLE experiment took place in central London (see fig. 1). The two
major roads in the vicinity are Marylebone Road, which runs from west to east,
and Gloucester Place, which intersects perpendicularly with Marylebone Road
near the Westminster City Council building (the red star in fig. 1) [18]. The mean
building height in the study area is 21.6m (range 10 to 64m). The experimental
site was chosen so as to have a diameter of approximately 500m in order to
cover the whole dispersion field. There are over 50 experiment sets of dispersion
from point sources in the whole DAPPLE data, but to address the issue of source
reconstruction we selected a time-resolved contamination experiment. A selected
release was carried out on the fourth day, 28th June 2007, in which a sequence
of ten samples was taken over a 30 minute sampling period at each of the 18
receptor positions. The sampling process included the collection of ten 150s
samples at each of the 18 sites, each sample separated from the next by 30s. The
source locations (green X point) and monitoring sites (numbered yellow points)
are shown on the map included in fig. 1. The total mass emitted from point-
source release was 323mg of perfluoromethyl-cyclohexane (PMCH,C7F14), in
accordance with experimental requirements. The other source locations Y and
Z were chosen and fixed for the run of experiments conducted during each tracer
day. This choice was based on analysis of the weather forecast on the preceding
day and a reconstruction of these sources is not present in this publication. Two
sets of long-term reference measurements were taken to generate the wind data
sets: the rooftop Westminster City Council (WCC) (18m) and tower top (190m)
winds. In order to not increase the height of the domain in the calculations only
data from WCC has been taken into account. All aggregate information of the
analyzed experiments and wind condition are shown in table 1.
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Fig. 1: The map shows the DAPPLE area of central London and is centered
at the focal intersection, that of Marylebone Road and Gloucester Place (at
51.5218N 0.1597W). The sampling receptors are numbered 1-18 (yellow dots).
Three fixed-point tracer sources (green dots X,Y and Z); red star - Westminster
City Council (WCC). The white rectangle shows the computational domain.

In fig. 1 the rectangle area was separated as a computing domain (white
line). The positions of all the objects (sensors, source, buildings, wind direction,
etc.) have been rotated by 17o angle, in order to fix the main streets parallel
to the edges of the domain. The latitude − longitude geographic coordinate
system was changed to the metric system with a reference point (0, 0). This
reference point denotes the lower left corner of the white rectangle, both for the
convenience of creating a domain and the presentation of results. The domain
after the transformation is presented in fig. 2a. All the information presented
above (experiment setup - table 1 and the geometry of the domain fig. 2) have
been introduced into the Quick-URB environment, which is described in the next
section.
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DAPPLE experiment summary
Date and time 28 Jun 07 13:00
Number of tracers released experiment 3
Number of samples and sample duration experiment 10x3 mins
Number of sampling sites 18
Range of source-receptor separations(m) 22-437
Point-source release total mass (mg) 323
WCC Roof data summary
Wind speed m

s
2.6

Wind direction +19
Longitudinal turbulence u′/UH 0.80
Lateral turbulence v′/UH 0.59
Vertical turbulence w′/UH 0.27

Table 1: DAPPLE and WCC summary [18]

3 Forward dispersion model - QUIC

The Quick Urban Industrial Complex (QUIC) Dispersion Modeling System is
intended for applications where dispersion of air pollutants released near build-
ings must be computed very quickly [20]. The QUIC system, comprises a wind
model - QUIC-URB, a dispersion model QUIC-PLUME, and a graphical user in-
terface. The modelling strategy adopted in QUIC-URB was originally developed
by Rockle [21] and uses a 3D mass-consistent wind model to combine properly
resolved time-averaged wind fields around buildings [22]. The mass-consistent
technique is based on a 3D complex terrain diagnostic wind model. The basic
methodology involves first generating an initial wind field that includes various
empirical parameterizations to account for the physics of flow around buildings.
Next, this velocity field is forced to be divergence free, subject to the weak con-
straint that the variance of the difference between the initial velocity field and
mass consistent final velocity field is minimized. The ability of the QUIC-URB
model to produce proper wind fields around buildings is dependent on the em-
pirical wind parameterizations. These parameterizations introduce rotation into
the flow field and without these parameterizations the method is essentially a
potential flow solver. QUIC-PLUME uses a stochastic Lagrangian random walk
approach to estimate concentrations in a gridded domain. The model is designed
to use averaged wind fields produced by the QUIC-URB system. Parcels, rep-
resenting substances, are transported with a vector sum of mean winds from
QUIC-URB plus turbulent fluctuating winds computed using the random walk
equations. Turbulence parameters required in the random walk equations are
estimated from vertical and horizontal gradients in the mean wind. A detailed
description of the theory is described in [23]. Fig. 2b shows a 3D domain model
of the part of London created in QUIC-GUI environment based on the extracted
most important buildings from fig. 2a. On the other hand, figs. 2c and 2d
present the output of subsystem QUIC-URB which is a wind flows map between
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the buildings obtained from WCC measurements. QUIC-PLUME is a ’forward’
model, that is run repeatedly for various parameter sets representing position
and sources based on the Bayesian inference tool presented in section 4.
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Fig. 2: a) The rotated DAPPLE area, with the selected buildings (black rectan-
gles) and greenery (green ellipses), created using the map from fig. 1 ; sampling
receptors are numbered 1-18 (yellow dots), three fixed-point tracer sources (green
dots X,Y and Z); red star - Westminster City Council (WCC) b) 3D model of
city buildings designed in QUIC-GUI base on the maps. c) map section present-
ing the wind vectors in the given points d) map presenting the strength of the
wind between the buildings in experimental area

4 ABC Methodology

Let θ be a parameter vector, with the prior distribution π(θ). The goal of
the Bayesian inference is to approximate the posterior distribution, π(θ|x) ∝
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π(x|θ)π(θ), where π(x|θ) is the conditional distribution of θ given the data x. The
main idea of Approximate Bayesian Computation (ABC) methods is to accept
θ as an approximate posterior draw if its associate data x is close enough to the
observed data xobs. Accepted parameters are a sample from π(θ|ρ(x, xobs) < ε)
where the ρ(x, xobs) is the chosen measure of discrepancy, and ε is a threshold
defining the ”closeness margin”. If ε is sufficiently small then the distribution
π(θ|ρ(x, xobs) < ε) will be a good approximation for the posterior distribution
π(θ|x). It is often difficult to define an adequate distance function ρ(x, xobs)
between the simulated and observed data, so in many cases it is replaced with
a distance defined by summary statistics, ρ(S(x), S(xobs)). However, as we are
considering values of concentrations in specific places at a set of time points, we
are able to compare those data directly without the use of summary statistics.

In ABC methods, Sequential Monte Carlo (SMC) is used in order to au-
tomatically, sequentially ”clean” the posterior distribution used to generate
proposals for further steps. In ABCSMC methods, the set of samples with
weights, called particles, sampled from the population with the prior distribution
π(θ), are propagated through a sequence of intermediate posterior distributions
π(θ|ρ(x, xobs) < εt), t = 1, ..., T , until it represents a sample from the target
distribution π(θ|ρ(x, xobs) < εT ). These methods aim to generate draws from
p(θ|ρ(x, xobs) < εt), at each of a series of sequential steps t, where εt defines a
series of thresholds. One of the most important issues in ABCSMC is the defin-
ing of the particle weights formula correctly. In [14] the authors propose strate-
gies called ABCSMC with Adaptive Weights (ABCSMCAW ). This method
includes a new step where the weights are modified according to the respective
values of x. Algorithm 1 shows the description of ABCSMCAW presented in
[14].

After initialization of the threshold schedule, first N samples are simulated
based on the predefined a priori distribution π(θ) and the corresponding accep-
tance condition ρ(x, xobs) < ε1. In time step t = 2 simple uniform weights are
changed based on additional kernel Kx,t(xobs|xt−1i ) proposed in [14]. Samples,
denoted by a tilde are drawn from the previous generation with probabilities
vt−1j . Using perturbation kernel Kθ,t(θ

t
i |θ̃i) new ”fresh” samples θti are obtained,

with the veracity of the condition ρ(x, xobs) < εt. The weights are calculated
according to the formula in step (11); in step (12) the weights are normalized
and the time step is increased - t = t+1. The procedure is repeated until t ≤ T .
In the section 4.1 the details are discussed, along with the motivation for choos-
ing specific components of the Algorithm 1 for the problem of stochastic event
reconstruction. More information and also theoretical aspects can be found in
[14].

4.1 Data and distance measure

In the problem of stochastic event reconstruction all observed data can be split
into two types of information: 1) concentration data from the sensor network,
and 2) background information. The background information consists of all of
the data included in the dispersion model e.g. strength and direction of the wind,
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Algorithm 0.1 ABC SMC AW
1. Initialize threshold schedule ε1 > ε2 > ... > εT
2. Set t = 1
for i = 1 to N do

3. Simulate θti ∼ π(θ) and x ∼ π(x|θti)
4. Until ρ(x, xobs) < εt
5. Set wti = 1

N

end for
for t = 2 to T do

6. Compute new weights vt−1
i ∝ wt−1

i Kx,t(xobs|xt−1
i ) for i = 1, ..., N

7. Normalize weights vt−1
i for i = 1, ..., N

for i = 1 to N do
8. Pick θ̃i from the set {θt−1

j }1≤j≤N with probabilities {vt−1
j }1≤j≤N

9. Draw θti ∼ Kθ,t(θ
t
i |θ̃i) and x ∼ π(x|θti)

10. Until ρ(x, xobs) < εt
11. Compute new weights as
wti ∝

π(θti)∑
j v
t−1
j Kθ,t(θ

t
i |θ

(t−1)
j )

12. Normalize weights wti for i = 1, ..., N
end for

end for

temperature and so on. To compute the ρ(x, xobs) value we use only data from
the sensor network which measures gas concentration ĈSji where i corresponds
to the time step and Sj is the sensor identifier. In this test case we have 18
sensors (S1, S2, ..., S18), whose positions are given in fig. 1 and fig. 2a as yellow
dots. We assume that the substance concentrations registered by the sensors
arrive subsequently at time intervals, hereafter referred to as ’time steps’. It is
important to know that for time step t only data ĈSj1 ĈSj2 . . . ĈSjt are available
and finally we have ten time steps (t = 10). The reconstruction algorithm starts
to search a source location (x, y) and release rate (q) just after the first 6 min-
utes (t = 2). To get the predicted concentration a QUIC-PLUME forward model
is running and it refers to the procedure x ∼ π(x|θti) in Algorithm 1. To run
a dispersion model and obtain data x we use source parameter vector θti and
the information obtained from the QUIC-URB subsystem. The simulated data
also have a form of concentration value CSji where Sj corresponds to the known
locations of j sensor.

The choice of distance measure or summary statistics is a crucial step in
ABC. Since distance measures are not sufficient in many cases, this choice in-
volves a trade-off between loss of information and reduction of dimensionality.
In those cases we chose to normalize approximation error between all the data
obtained to the current time step t which is also called Fractional Bias (FB) [24]
. The FB is used to indicate a bias towards underprediction or overprediction of
concentration data by the model. Due to the data type for all sensors in time
step t the ρ(xt, xtobs) measure is as follows:
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ρ(xt, xtobs) =
1

18

18∑
j=1

(
1

t

t∑
i=1

|CSji − Ĉ
Sj
i |

CSji + ĈSji
), (1)

under additional definition, that |C
Sj
i −Ĉ

Sj
i |

CSji +ĈSji
= 0 when CSji = 0 and ĈSji = 0.

Given that the concentration CSji ≥ 0, the value of ρ(xt, xtobs) is always between
0 and 1 . Let us notice that ρ(xt, xtobs) = 0 is the situation when our prediction
is perfect. In the opposite case, when ρ(xt, xtobs) = 1 the prediction is wrong. In
finding source parameters one of the most important areas is the detection time
window, when there is a measurement in the current sensor. The measure (1)
supports this approach, because when we have non-zero concentration in some
time steps but our model shows that there should be 0 concentration value, the
penalty value for this step will be 1. The situation is the same, if the observed
value is equal to 0 and the model shows a positive value of the concentration.
On the other hand, if CSji > 0 and ĈSji > 0 then the absolute difference also
has an impact on the value of ρ(xt, xtobs) measure. Finally, the contributions
of all time steps are averaged for one sensor. Because ρ(xt, xtobs) ∈< 0, 1 > one
sensor cannot corrupt the overall ρ(xt, xtobs) value. Also, each sensor has an equal
contribution to the ρ(xt, xtobs) measure, regardless of the level of concentration,
which is of course smaller in sensors located further from the source.

4.2 Threshold schedule and weights

The most commonly used adaptive scheme for threshold choice is based on the
quantile of the empirical distribution of the distances between the simulated
data and observations from the previous population, (see [8], [13]). The method
determines εt at the beginning of the t time-iteration by sorting the measure
ρ(xt−1i , xt−1obs )1<i≤N and setting εt such that αt percent of the simulated data
ρ(xt−1i , xt−1obs )1<i≤N are below it, for some predetermined αt. In [12] the authors
show a new strategy based on an acceptance rate curve but also discuss a cu-
mulative number of simulation versus different threshold schedules. In this, and
many other cases, quantile-based methods seem to be an easy and appropri-
ate solution of estimating εt. Based on our own preprocessing experience we
set quantile α2 = 0.7 in the second time step, that subsequently decreases to
α10 = 0.3 for t = 10 [12]. The additional kernel Kx,t(xobs|xt−1i ), which is used in
calculating the weights, depends on observed and simulated data. Since weights
are normalized in step (7), in Algorithm 1 we can simply use the ρ(xt, xtobs)
measure as the proposed kernel. Due to the restriction 0 ≤ ρ(xt, xtobs) ≤ 1 we
can define Kx,t(xobs|xt−1i ) ≡ 1−ρ(xt−1i , xobs), because the greater weight should
correspond to a better solution.

4.3 Transition kernel

We chose transition kernel Kθ,t(·|·) to be a Gaussian kernel. Unfortunately in
this type of inverse problems the parameters are often highly correlated and
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Fig. 3: a) all samples - grey point, selected samples - green and magenta crosses;
b) M-nearest samples to selected green point are marked by blue circles, for
magenta green circles; c) multivariate normal perturbation kernels evaluated
from a set of M − neighbors samples for two selected points.

multimodality is very common. Especially when the (x, y) domain contains a lot
of prohibited regions, like buildings. Samples may tend to split in a disjointed
group by filling out different street canyons. In such cases it is interesting to
consider the use of a local mean and covariance matrix. Instead of computing
the covariance matrix based on all the samples from (t−1), a better idea is to use
only limited information about the local correlation. In [11] one of the proposed
methods is to use the multivariate normal kernel based on the M neighbours.
Application of that procedure is presented below:

After the procedure of drawing a new sample from local multivariate normal
perturbation kernel, if a new sample is accepted, new weights are also computed
using this empirical kernel. The authors in [11] pay attention to the disadvantages
of choosing this perturbation kernel. First, the parameter M typically has to be
fixed before any of the information about the posterior are known (too small a
value of M may lead to a lack of exploration of parameter space, while too large
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Algorithm 0.2 ABC SMC AW Step 8

8. Pick θ̃i from the set {θt−1
j }1≤j≤N with the probabilities {vt−1

j }1≤j≤N .
8.1 Select M-nearest samples to θ̃i from the set {θt−1

j } by using Nearest Neighbors
Algorithm.
8.2 Compute the empirical covariance

∑t
θ̃i,M

and mean θ̄ from the M nearest neigh-

bours samples of θ̃i.
8.4 Set local perturbation kernel Kθ,t(θ

t
i |θ̃i)asN(θ̄,

∑t
θ̃i,M

).

would offer little or no advantage compared to the standard multivariate normal
kernel). In our case the number of samples allocated to one time step is N = 1000
samples for each time step. Based on pre-processed experiments we determined
the number of neighbors M = 70. This kind of procedure may seem to be compu-
tationally expensive. However, in experiments the M −NearestNeighbors mul-
tivariate normal perturbation kernel minimizes the number of samples needed
to be generated, which in the case of stochastic event reconstruction problems
is highly preferred. Furthermore, the computation time of running the forward
model is much longer than the start-up procedure for finding the nearest neigh-
bors and computing covariance estimation. It is worth mentioning that the choice
of the correct determination of the NearestNeighborsAlgorithms is important
and depends on the problem.

In the experiment presented in this publication we use classical M-Nearest
Neighbors algorithm with Mahalanobis distance due to the differences between
the various dimensions of the parameters. Results of an experiment using this
procedure are presented in fig. 3. This experiment refers to the source location
(x, y) but the samples are three-dimensional vectors. We can see that the set
of possible solutions is spread among the buildings. Sub-optimal solutions are
related to two cases, where the first involves possible sources located in the cen-
ter of the domain, as contrasted with the north-east location. In fig. 3 a) the
selected sample is illustrated by a green and magenta cross surrounded by all the
samples - i.e. grey points. In fig. 3 b) the M nearest samples are marked by blue
circles relative to green points and green circles relative to magenta samples.
Finally, in c) the subplot shows empirical multivariate normal kernel evaluated
from the set of M − neighbors samples for two sets of samples. The shapes
of kernel correspond to the correlation between x and y parameters and also
support only a single candidate solution. It is worth noting that the locations
inside buildings are permitted although the launch dispersion model for these
sites is impossible. Consequently, if the drawn sample in step 3) θti ∼ π(θ) and
step 9) θti ∼ Kθ,t(θ

t
i |θ̃i) in Algorithm 1 does not satisfy the assumptions then

there is a re-drawing of the θti sample. The next section presents the results for
the stochastic parameters reconstruction for the setup described above and the
experimental data presented in section 2.
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Fig. 4: A scatter plot of all samples generated in the subsequent time steps t =
2, 3, ..., 10 in (x, y) space of source location. The red cross marks the true source
position

5 Results of DAPPLE reconstruction experiment

Fig. 4 shows the locations of the buildings in the DAPPLE London area, together
with all the samples generated in subsequent time steps t = 2, 3, .., 10 which are
decomposed directly to 6, 9, .., 30 experimental minutes. As we can see, samples
after the 4th time step converge from all possible (x, y) space to the vicinity
of the actual source location. Using these samples, we construct the marginal
probability distributions for the source location and release rate, as shown in
fig. 5 for all time intervals. As time goes on, the mass of probability distribution
is concentrating in the vicinity of the proper values of x and y. This looks quite
different for emissions amounts, where posterior distribution for the parameter
q looks like a bimodal distribution. This is better shown in figure fig. 6 where
all samples are included.

After limiting the (x, y) domain to the area surrounding the real source, we
can see that the distribution is divided into two areas, which suggests two dif-
ferent solutions of the problem. One location is closer to the main intersection
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Fig. 5: Evolution of the marginal posteriori probability distribution for x, y and
q parameters for time steps t = 2, 3, .., 10. The red vertical line represents target
value of parameters.
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and the second is around the true source. These results can be also noticed in
the marginal distributions for x where we note two picks of probabilities. The
results from all time steps are summarized in a so-called trellis plot presented
in fig. 6, where the parameters reconstruction was started after 6 minutes. A
color pattern reflected in fig. 6 was used to show empirical 2D probability dis-
tribution of all parameters combinations. The colored contour lines are envelop-
ing higher probability at the joint posterior distributions. The diagonal plots
are marginal empirical posterior distributions of the forward model parame-
ters. The real parameter values from the field experiment are highlighted with
vertical red lines in diagonal plots and black cross markers on the other sub-
plot, which are successfully captured by the high posterior probability region.
The correct position obtained after the transformation of the relative domain
is x = 243m, y = 282m and q = 323mg, where the most probable parameters
values are P (x = 223.0 ± 7.6m) = 0.0632 , P (y = 291.4 ± 6.7m) = 0.1990 and
P (q = 144.9±5.3mg) = 0.0218. To accurately analyze the results for release rate
parameter in fig. 7 a) we split the samples into two groups supported by two sep-
arate probability masses. After this assumption, two different groups of samples
are presented in fig. 7 b). One can see that the green samples corresponding to
q < 250mg are distributed closer to the center, while the blue points are closer
to the true source (red cross) and the corresponding estimates of q = 323mg
group closer to the real value (see fig. 7 a) red vertical line). Fig. 7 c) shows two
histograms of weights 1− ρ(x10, x10obs) for the green and blue points. As we can
see, more points from the blue subset have higher weights (better model fit).
As it means that the points have higher probability to be drawn in the next
step, we can conclude that with the extension of the reconstruction procedure
the ”green” solutions should be slowly converging to the other (blue solution)
which is close to the true value of the source parameters.

6 Conclusion

A stochastic event reconstruction method for atmospheric contaminant disper-
sion in an urban environment has been presented. The method described in
section 4 is based on Bayesian inference with the Approximate Bayesian Com-
putation (ABC) tool with an extension. Fast-running QUIC-PLUME dispersion
models have been adopted as the forward model in the Bayesian framework. The
dispersion model has been uniquely enhanced by taking into account empirical
wind turbulence between buildings obtained from the QUIC-URB tool. Addi-
tional attention was given to the formulation of the distance function to take into
account concentration measurements provided in successive time steps that can
be available from a sensor network. The event reconstruction method has been
successfully validated against the real DAPPLE experiment. In particular, the
modeling of a priori distribution based on the threshold schedule substantially
improved the results. Also the transition kernel set treated as a local empirical
distribution, conformable to the non-standard domain, had an impact on conver-
gence. In the event reconstruction of the DAPPLE tracer experiment, up to three
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Fig. 6: Bivariate and marginal posterior distributions for all parameters θ ≡
(x, y, q). The plot is colored according to probability density, where the most
probable regions are colored the deepest red (i.e., a heatmap). The vertical red
lines in diagonal plots (black cross in bivariate) show the real value of each
parameter. The distributions are built based on all the samples generated in the
reconstruction procedure.
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Fig. 7: a) Marginal posteriori distribution of q split into two sample sets b) Scatter
plot of all samples in the (x, y) space - the sample colors correspond to the sample
sets in a) c) The histogram of weights, which was obtained from the two groups
of samples - green and blue.

parameters were estimated. From a practical point of view, release location and
emission rates are of the greatest significance to the emergency responders. The
present study has shown that the event reconstruction problem can be solved
for the urban area without using the time-consuming Computational Fluid Me-
chanic model. Posterior probability distributions of model parameters were also
used to build priori distribution when new concentration data became available.
Although the ABC framework is general, a comprehensive operational event re-
construction tool needs to address various release scenarios. The present study
focused on steady point source releases in a highly urbanized area. However, pos-
sible release scenarios may include moving sources. Furthermore, the scale of the
event may range from local sites to areas of greater size. Future work will concen-
trate on adding new possible hazardous scenarios to the present stochastic event
reconstruction tool, not necessarily the release of gases into the atmosphere.
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