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Abstract. In this work we focus on sensitivity analysis of biochemi-
cal models. The research includes both formal modelling of signalling
and metabolic pathways as well as developing theoretical methods for
model assessment. The aim of this study is to better understand a natu-
ral phenomenon in quantitative an qualitative manner by mathematical
modelling. To validate any model it is crucial to determine which factors
are most influential for a modelled system behaviour. Part of my study is
to develop a new sensitivity analysis method based on mutual informa-
tion that provides an efficient identification of parameters and group of
parameters that are crucial for a modelled system, providing additionally
information about interactions between parameters in accordance to the
model output.

In the first section of this paper we briefly present the motivation behind
formal modelling and its necessity in any experimental design.

The second section contains review of classical sensitivity analysis meth-
ods based on literature and in the second part of this section we recall two
recently invented SA methods: Stochastic Noise Decomposition (SND)
and Sensitivity Analysis (SA) based on Mutual Information (MI). We
tested and implemented the SND method in direct cooperation with au-
thors of this method (cf. Komorowski et al., 2013) the results of our
work were presented in application note - StochDecomp Matlab package
(Jetka et al., 2014). The second method SA based on MI was deeply
studied and developed by us with the application to continuous random
variables. We introduce a novel correction to the classical k-nn entropy
estimator to reduce the bias of estimation in finite sample size for highly
dimensional data.

The third section is devoted to a brief summary of biochemical models
of our interest. Some models were adopted from literature and used as
a test example for application of theoretical SA methods e.g. p53-Mdm?2
negative feedback loop model and other models were fully developed and
implemented by us e.g. sphingolipid metabolism model (Wronowska et
al., 2015). To all presented in this section models we applied several SA
methods.
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1 Motivation

Mathematical modelling of biological phenomena described e.g. by dynamical
systems, complements experimental technologies used to identify and compre-
hend a role of system components. The process in which a model is formulated
and refined helps to articulate hypotheses and thereby supports the design of
experiments to validate these hypotheses and the model itself. Once the model
is validated it is used to speculate about mechanisms underlying cell functions.
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Fig. 1. Scheme of experimental modelling life cycle

The standard approach to understand dynamics of biological system is to
observe the behaviour of as many as possible system components. An important
element of the model design is analysis and identification of most informative
and responsive to perturbations model elements (sensitivity analysis) to reveal
the spectrum of available dynamical regimes (validated by model checking). Ver-
ification of the model design together with parameters estimates is carried out
experimentally by comparing model predictions with experimental results for
stimulation profiles. Any necessary corrections in model structure and param-
eter estimates must be made. The experimental modelling life cycle scheme is
depicted in Fig. 1.
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The construction and analysis of mechanistic models of biological systems
is a part of recently established, highly interdisciplinary fields of systems and
computational biology. Computational modelling of signal transduction inte-
grates available knowledge about pathway regulation, and the general chemi-
cal and physical principles with experimental data from different biotechnology
platforms. Such approach constitutes a powerful solution for formalizing and
extending traditional molecular and cellular biology.

2 Sensitivity Analysis

Mathematical modelling of biological phenomena can be carried out in a de-
terministic, stochastic or hybrid manner. The first approach is based on the
Ordinary Differential Equations (ODEs), while the second one is based on the
stochastic processes or stochastic differential equations (SDEs) theory. Both
types of models are usually based on some simplifying assumptions i.e. that
the temperature of a chemical environment is constant, and that the diffusion
process occurs immediately, which ensures an even distribution of a substance
over a limited volume. Deterministic models describe changes in mean concen-
trations of reagents (species) over time, and they do not include the effect of
fluctuations which occur in reality. This means that for given initial conditions, a
deterministic model will always provide the same results. While stochastic mod-
els describe the evolution of the probability distribution of all possible system
states with respect to time. Both types of modelling requires proper verification
and analysis.

A biochemical model described by ODEs can be expressed in the matrix
form:

dS(t)

r7a Mv(S(t)),

where the system state is represented by the time dependent state vector S(t)
of species concentration, M denotes the stoichiometry matrix and v(S(¢)) de-
notes a vector of reaction fluxes (in simplest standard modelling according to
Mass Action Law (MAL) or Michaelis Menten (MM) kinetics possibly including
inhibition rates).

The most popular approach to describe discrete stochastic model of biochem-
ical pathway is Chemical Master Equation (Chapman-Kolmogorov equation of
Markov chain modelling the evolution of the system):

PEOSD) 5™ o my P~y )~ Y 0, (0P, ),

where the system state is denoted by the vector X(t) € NV of numbers of
molecules each row for one of N reacting species, m; denotes the j-th col-
umn of stoichiometry matrix M = (my,...,mg) and P(x,t) denotes the time-
and state-dependent distribution of system being in state X(¢) = x and fi-
nally a;(X(t)) denotes the propensity function associated with the j-th reaction
(Charzynska et al., 2012).
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2.1 Classification of SA Methods
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Fig. 2. Local and Global Sensitivity Analysis Methods

Sensitivity analysis is used to determine dependencies between input pa-
rameters and the results of the model. One can chose as input parameters for
example initial concentrations of modelled species or reaction rates. Result of
the biochemical model is most commonly defined as the density of species as a
function of time. SA is very useful in mathematical modelling, as it describes
dependencies between different elements of the model, it is also applicable to
empirical experiments planning and enables verification of theoretical model re-
sults together with numerical and empirical results. SA also enables recognition
of model’s conceptual and implementational omissions.

Sensitivity analysis investigates the relations between uncertain parameters
of a model, and a property of the observable outcome, which represents some
prototypic features of the modelled system (Saltelli et al., 2008) . SA has been
used in various parametrization tasks for models of biological systems, such as
finding essential and insignificant parameters for the prioritization (Yue et al.,
2008) , identifying parameters interactions or or parameters clustering (Mahdavi
et al., 2007).
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Classically, sensitivity of the model to the parameters is determined by the
partial derivation of the outcome variables with respect to parameters. SA meth-
ods based on such quantities are called local (LSA), as the derivative is taken
at a fixed point in the state space. Sensitivity indices are defined as partial
derivatives of system states with respect to parameters integrated by time:

T
Sn,i = /
0

where S, are different species concentrations, 6 is the vector of parameters and
0o is some fixed point in parameters space. One of disadvantage of this method
is the high dependence of sensitivity indices to arbitrary choice of time horizon
T that can influence the SA results.

Moreover, these methods belong to the class of one-factor-at-time (OAT)
methods, because the net effect of a parameter to the model outcome is taken
while assuming that all other factors are fixed. However, most of the biochemical
reactions networks yield models of a non-linear nature and for these models,
OAT methods can be of limited use if not outright misleading (Saltelli et al.,
2005) . Possible solution is to ingestive of the influence of simultaneous changes
in parameters values by assessing higher order partial derivatives (Mahdavi et
al., 2007), where the order depends on the non-linearity level of the model.
Nevertheless, it is still a local method, highly dependent on the given values of
parameters.

On the other hand, there are so-called global sensitivity analysis (GSA) meth-
ods, that simultaneously examine a whole range of input parameters values.
Exemplary implementations of the GSA indices are the model-free, global sensi-
tivity measures such as the variance decomposition (Saltelli et al., 2008), or the
parameters space mapping method of Monte Carlo filtering (MCF) such as the
multi-parameter sensitivity analysis (MPSA) (Hornberger and Spear, 1981).

In between, there are screening techniques which approximate the GSA in-
dices. Screening techniques, such as the weighted average of local sensitivities
(Bentele et al., 2004) or the elementary effects of Morris (1991), are global in
the sense that they scan a whole range of parameters values, but they use local
OAT methods for each analysed set of parameter values.

For a sake of clarity, if not explicitly stated otherwise, we will use a term local
method meaning the local and OAT method, as well as a term global method
meaning GSA method (Global and simultaneous).

Finally, there are SA methods tailored specifically to the stochastic models
(Gunawan et al., 2005). These methods recognize that the response is in form
of distribution rather than a single value corresponding, for instance, to the
mean value. Consequently, for systems where a parameter disruption does not
significantly influence the mean but significantly influences the distribution itself,
the model-free SA indices can incorrectly indicate a lack of sensitivity of the
model (cf. Degasperi and Gilmore, 2008).

To extend the range of available global sensitivity analysis methods we re-
call here new approaches: method based on information theoretic measure and

95 (t)
0
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stochastic noise decomposition. Both methods can be applied to dynamical sys-
tems whether formulated in deterministic or stochastic manner. Each method
has its specificity: noise decomposition method allows to track how the stochastic
noise distribute within the biochemical system in division into single reactions
noise compartments, whereas mutual information method based on entropy es-
timation provides sensitivity indices and interaction indices for any group of
parameters that represent model input.

2.2 Stochastic Noise Decomposition Method

The question which molecular species or parts of a network contribute most to
the variability of a system or are responsible for most of the information loss has
attracted much attention in recent years. Stochasticity is an indispensable aspect
of biochemical processes not only but especially at the cellular level. Studies on
how the noise enters and propagates in biochemical systems provides a non-
trivial insights into the origins of noise in a model. Numerous studies focus on
analysis of noise in signalling networks in detail and decomposition of the noise
into contributions attributable to fluctuations in species concentration.

Recently developed StochDecomp (Jetka et al., 2014) is a flexible and widely
applicable noise decomposition tool that allows to calculate contributions of
individual reactions to the total variability of a system output. The method
allows to quantify how the noise enters and propagates in biochemical systems.
It is based on recently developed method (Komorowski et al., 2013) that allows
to analyse how the structure of biochemical networks gives rise to noise in its
outputs. In principle, this allows to efficiently calculate the contribution each
reaction makes to the variability in all concentrations for any network, which can
be modelled within the Linear Noise Approximation (LNA) framework. LNA is
one of the possible simplification of the Chemical Master Equation , with the
system dynamic modelled as Poisson process:

R t
X(t) =X(0) + > _m;N, / £ (X(7), 7)dr
j=1 0

where N;(X(t),t) denotes Poisson process dependent on time and a system state
X(t), corresponding to occurrence of j-th reaction. The probability that j-th
reaction occur during the time interval [t;¢ + dt) equals f;(x,t)dt, where the
fj(z,t) is called the transition rate.

It is more efficient to transit from discrete to continuous process, as accu-
rate discrete models describe the exact evolution of probability distribution of
the system state counted in molecules number. Discrete biochemical models are
computationally not efficient, as simulations require significant resources. Con-
sequently by use of deterministic approximation:

R t

o(t) = d(0) + ij / £i(@(s), s)ds
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where @(t) is the mean system state being the solution of the ODEs, one can de-
scribe the system state evolution by dividing it into deterministic and stochastic
part:

(t) = £(t) + (1)

where @(t) is the deterministic part and £(¢) is the Weiner process describing
stochastic noise of a system state (Komorowski et al. 2009). The next step of
stochastic noise decomposition is to divided noise linearly into noise steaming
from separate reactions. The total variance:

2(t) = ((=(t) = (x()))(@(t) = (=(O)T)

is described by the differential equation

% —A()E + SAW)T + D), (1)
where r
{A(@, 1)}, = me‘%ﬁi’ﬂ

and D(t) denotes diffusion matrix. The fact, that the variance can be represented
as the sum of individual contributions,

2 =200 + .. +ZO@). (2)

results directly from the decomposition of the diffusion matrix D(t) = Z;Zl DU)(t)
and the linearity of the equation for X(t).

The Stochastic Noise Decomposition method is based on the LNA, which
is assumed to provide a reasonable representation of analysed systems even in
case of priori deterministic formulation. Origins of variability can be therefore
assigned to individual reactions and arbitrarily defined network components.

Contrary to most available methods Stochastic Noise Decomposition is tai-
lored for biochemical dynamical systems and provides an insight in time evolu-
tion of noise decomposition into reaction network. The tool is computationally
effective even for vast biochemical models (compare Fig. 11) and can successfully
provide a required information, see Fig. 3.

2.3 Sensitivity Analysis Based on Mutual Information

Another recently developed method for sensitivity analysis of multi-variables
system has been oryginaly proposed by Liidtke (Liidtke et al. 2008). One of the
biggest advantage of this method is its applicability to investigation of a model
sensitivity to groups of parameters, and not only to single parameters, so it is
not OAT method. Moreover this method provides an insight into interactions
between parameters.

However, the approach proposed by Liidtke is based on discrete variables and
discrete entropy estimator. Consequently it requires computationally inefficient



3

=~

Agata Charzynska

‘OuterMembrane CER InnerMembrane CER EndoplasmaticReticulum CER

1 15 2 25 3

e e G RamamaTAAMaTAIAN

Fig. 3. Stochastic Noise Decomposition into single reactions vs. time for the Ceramide
Metabolism Model - Scheme in Fig. 11

variable discretization procedure, that is highly biased and inefficient in high-
dimensional space (i.e. in many parameters case). Having this concern in mind
and due to fact that biochemical models deal with continuous measurements we
propose to amend the method to continuous variables case.

The fundamental concept for sensitivity indices is mutual information Eq. (3)
between random variables defined by parameters and random variables being
model output. Let us denote by variable X ~ g(x) model parameters and by
variable Y ~ f(y) model output, then the mutual information between this
continuous random variables is defined by

h(z,y)
X;Y) / / log ——~ 9@ ) h(:v y)dydzx (3)

h(z,y) | _
‘Eb%gu»<w}‘ Y)+ HX) - HXLY),

where g(z) and f(y) denotes probabilities densities functions and h(z,y) is the
joint probability density function of joint random variable (X,Y).

Measurements of MI is based on entropy estimation. In our approach to SA
based on MI we use differential entropy Eq. (4), so there is no need of variables
discretization.

1(X) = [ ~logg(a)ds = B[~ logg(o)] (4)

As a starting point for differential entropy estimation we used the k-th nearest
neighbour entropy estimator. In order to achieve more reliable results we intro-
duced more efficient k-nn differential entropy estimator for multivariate random
variables. We have noticed the biased behaviour of the k-nn entropy estimator



Review on Sensitivity Analysis in Biochemical Models 35

Eq. in higher dimension and propose bias correction, which yields more accu-
rate k-nn entropy estimates especially in higher dimensions. Our improved k-nn
entropy estimator explore the idea of correcting the density function evaluation
near to the boundary of random variable support.

Definition 1 Assume that X; are the parameters of the model and Y is the
model output, then sensitivity indices are defined as:

I(Xi;Y)=H(Y)+ H(X;) - HX;,Y) = HY) - HY|X)).
Analogously, sensitivity indices for pairs of parameters are defined as:
IX, X3 Y)=HY)+ H(X,;,X;) -HY, X;,X;) =H(Y) - HY|X;, Xj).

The sensitivity indices reflect the impact of parameters on the model output,
in other words this definition indicates correlations between parameters and the
output. Definition 1 can be extended for any subset of parameters.

The group sensitivity index for a pair of parameters may have high value
indicating the significant influence of these parameters to the model output,
while two sensitivity indices for these two single parameters may in the same
time have low value. We interpret such case as opposite -negative interaction
between this pair of parameters, compare Fig. 4.

Definition 2 Let X; denote parameters of a model and'Y denote model output,
then interactions indices within pair of parameters are defined by:

p(xi)p(z;)p(y)p(wi, 75, 9)

p(@i, x;)p(xi, y)p(zj,y)
— H(X;))+H(X;)+H(Y) - H(X,;,Y)— H(X;,Y) — H(X;, X;) + H(X;, X;,Y)
=I(X;Y)+ [(X;Y) - I(X3, Xj3Y),

I(X;;X;;Y) =Ex, x,,v |—log

3 Biochemical Models

Within our research we concentrate on investigation and development of formal
sensitivity analysis methods and also we implement and test the methods on
various dynamical biochemical models. The complexity of a model depends on
the number of variables and parameters and the kinetics defined in ODEs or
SDEs, compare Fig. 5. In order to better understand and capture model features
we test different standard and novel approaches.

3.1 Ligand-induced receptor model

In paper (Charzyniska et al., 2012) we focus on recently available methods of sen-
sitivity analysis for dynamic biochemical models, such as local sensitivity analy-
sis based on derivatives with regards to single parameters, and global sensitivity
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Fig. 4. Sensitivity analysis based on MI for the p53-Mdm2 negative feedback loop
model - scheme of the model in Fig. 8. (Submitted to Entropy)
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Fig. 5. Examined biochemical models
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analysis methods i.e. variance decomposition, Fourier Amplitude Sensitivity Test
(FAST), screening methods or stochastic methods. As an illustrative example of
the presented ideas we consider the mathematical model of ligand-induced re-
ceptor system (Shankaran et al. 2007), see Fig. 6.

We transformed the classical deterministic version into a stochastic model.
For both approaches, appropriate SA were applied. The model reflects a sys-
tem of cell surface receptors in a single cell and describes the time evolution
of three different species: ligands in the inter-cellular space, free receptors on a
cell membrane and ligand-receptor complexes, see Fig. 6. The set of the model
parameters contain also the volume of the inter-cellular space that falls for a
single cell V' and the level of receptors concentration in the steady state Rp. We
investigate four types of receptors:

— epidermal growth factor receptor, (EGFR), which stimulates cell division
and plays an important role in the process of tumour formation,

— transferrin receptor (TfR), responsible for the transport of iron into cells,

— low-density lipoprotein receptor (LDLR), transporting cholesterol into cells,

— vitellogenin receptor (VtgR), which mediates the uptake of vitellogenin (Vtg)
in oocyte development.

The results for sensitivity analysis based on Morris method were presented in
Fig. 7. In three of four analysed receptors types the crucial parameters were
kofs and ko, corresponding respectively to rate of complexes disintegration and
complexes binding, as well Ry corresponding to concentration of receptor in
stationary state.

|

«— Q

igand Receptor 20l omplex
0 %)

Fig. 6. Ligand-induced Receptor Activation Model

3.2 Negative feedback model of p53-Mdm?2

To validate new approach of the global sensitivity analysis based on mutual
information measure we tested the method on a well known and widely studied



38 Agata Charzynska

EGFR LDLR
0.80 — 12.8
g he £ 8 3
S o8 ! 104 4 : N
5 — B_
?BE 086 - | . e 80 I E E ==
S 044 ~ & & < 56 | L4 =
= ' : i ' & ’
X 032 [————] = 32 -
€ gy =~ 0.8 - =
’ T T T T ] : T T T T ]
Ko Rt Kon v Ke Kt Kkon  Rr v Ke
TR VtgR
o 2001 0.04
e - - & 2
o 1824 ! ' i - — '
5 [ : : 003 1 =
= —_
5 1244 E E =
c ' ! - 0.02 o —
2 8.6 4 -
E 0.01 |
& 48 ) —
[7]
5 2 ===
1.0 - == 0.00 - - — =
I T T T 1 I T T T 1
Korr Ry Kon \% ke Korr ke Rr \ Kon

Fig. 7. SA based on Morris method for Ligand-induced Receptor Activation Model
(Figure previously published in Biotechnologia by Charzyniska at al., 2012)
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example of negative feedback loop of p53 protein and Mdm2 ligase (Zatorsky et
al. 2006) for the model scheme see Fig. 8.

Tumour suppressor p53 protein also known as TP53 transcription protein 53
is a transcription factor determining the fate of a cell in case of DNA damage;
p53 indirectly, via activation of transcription of the p21 gene encoding, can block
cell cycle to repair DNA or activate a process of programmed cell death called
apoptosis. The main regulator of the concentration of p53 protein is ligase Mdm2
/ Hdm2 (double minute 2 mouse / human double minute 2), which through
ubiquitination leads to degradation of p53 in the proteasome. In more than
half of the cases of human cancers pb3 is inactivated or absent, which allows the
mutated tumor cells to replicate and determines their immortality. Consequently,
this protein is under investigation due to its property to lead to self-destruction
of cancer cells, which could be successfully used as therapy in many types of
cancer.

By use of SA method based on MI we were able to capture the negative
interactions between parameters 3, and o, corresponding respectively to p53
inflow and Mdm2 negative loop, for the results of SA see Fig. 4.

Fig. 8. Negative Feedback p53-Mdm2 Model

3.3 Heat shock response model

One of the most important questions in cell biology is how cells cope with rapid
changes in their environment. The range of molecular responses includes a dra-
matic change in gene expression pattern and higher synthesis of so-called heat
shock (or stress) proteins (HSPs). Induction of HSPs increases cell survival un-
der stress conditions (Morimoto 1993). To test hypothesis about heat shock
treatment we implemented and verify a mathematical model of heat shock pro-
tein synthesis induced by an external temperature stimulus (see Fig. 9), both
in deterministic and stochastic meaner. The deterministic model consists of a
system of nine non-linear ordinary differential equations describing the tempo-
ral evolution of the key variables involved in the regulation of HSP synthesis.
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Computational simulations of the model were carried out for different external
temperature stimuli. Stochastic version of the model was implemented by use of
Chemical Master Equation. To validate the stochastic model output we used the
indices of variance to mean ratio for all modelled species. The greatest variance
to mean ratio both in homoeostasis and in heat shock case was scored by HSP
indicating highest sensitivity to stimuli of rapid substrate concentration raise.

L ==

: HSF,f—»*—~HSE

[HSF,[HSE

Fig. 9. Heat Shock Response Model

3.4 JAK-STAT feedback model

The paper (Gambin et al., 2013) is a review of computational models of JAK1/2-
STAT1 signalling pathway. Despite conceptually simple mechanism of JAK-
STAT signalling pathway it has highly complex behaviour. This model describes
a control mechanism and factors influencing kinetics of the JAK-STAT pathway
with increased IFN-vy activity. The model is relatively complex as it captures
all essential elements in the JAK1/2-STAT1 signaling. Scheme of the model is
depicted in Fig. 10. The model can be informally divided into three modules:
receptor module, transcription factor module (the STAT life-cycle) and post-
translational feedback module.
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Computational modelling is a tool to investigate complex molecular signalling
pathways and formalize the description of the dynamics of the system. Computa-
tional models integrate experimental data with formal description of a modelled
system and consequently they allow to test new hypotheses about interactions
between modelled species. In paper (Gambin et al., 2013) we compared three
different approaches to the modelling of JAK1/2-STAT1 phenomenon. The sen-
sitivity analysis was useful not only to find the crucial parameters of any analysed
JAK-STAT models, but we used it also as a tool to compare different modelling
approaches.
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delayed inhibition STA —_ CTAT1P-STAT1?
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of phosphorylation _ -
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______ ‘ - T AT 4P QTATHP

STAT@ i STAT1*-S
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transcription of
o Nucleus -Il: target genes

Fig.10. JAK-STAT Feedback Model

3.5 Sphingolipid metabolism model

In paper (Wronowska et al., 2015) we propose the first comprehensive computa-
tional model of sphingolipid metabolism in human tissue. Contrary to the pre-
vious attempts, we use a model that reflects cell compartmentalization thereby
highlighting the differences among individual organelles, see Fig. 11.

It has been proven that a significant role in the cell apoptosis pathway can
be played the ceramides - bioactive lipids, members of sfingolipid family. The
exact role of ceramides in signals transduction within nerve cells is still not fully
explained. Our motivation was to formally describe an empirically observed cor-
relation between ceramides concentration and cell viability response in human
neuroblastoma SH-SY-5Y. Ceramides in low concentrations increase cell viabil-
ity and may stimulate proliferation but in high concentrations ceramides induce
cell apoptosis. One of the hypothesis which may explain the pro-survival role
of ceramides in low concentrations is connection with sphingosine 1-phosphate
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Fig. 11. Sphingolipid Metabolism Model (Figure previously published in BMC Systems
Biology by Wronowska et al., 2015)

(S1P) synthesis involving sphingosine ceramide kinase activity. We aim to ex-
amine molecular mechanism of cell death evoked by ceramides within nerve cells
for both pathological states: cancer and neurodegeneration.

The model that we had build was validated using recently proposed meth-
ods of model analysis, allowing to detect the most sensitive and experimentally
non-identifiable parameters and determine the main sources of model variance.
Moreover, we demonstrate the usefulness of our model in the study of molecular
processes underlying Alzheimer’s disease, which are associated with sphingolipid
metabolism. This model allows to study sphingolipid metabolism disorders that
have been observed in various pathological conditions such as cancer and neu-
rodegeneration.

We performed local sensitivity analysis for this ODE model, but unfortu-
nately due to the model complexity the method was of limited use and must
have been complemented by the other SA method. The reason for limited ap-
plicability of LSA was due to its sensitiveness to the arbitrary choice of time
horizon. In case of sphingolipid model we found useful the stochastic noise de-
composition method based on LNA described in Section 2.2, for the results see
Fig. 3. The StochDecomp method allowed to detect parameters of highest vari-
ance components and it complemented the LSA method.

4 Summary

There are plenty recently available SA methods that were developed over decades.
We briefly recalled most popular SA methods in Section 2.1. Nevertheless each
method has some limitations in its applicability to model assessment. Our in-
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terest in development of new SA methods resulted from the need for efficient
analytical tools to assess computational models that deeply explore natural com-
plex phenomena. Section 3 contain description of some larger models examples
of transcriptional signalling and metabolic pathways that were under our inves-
tigation. For this models classical methods such as local SA was of limited use
duet to its applicability only to one at the time factor. Consequently it was not
enough to perform simple LSA to understand all model dependencies. In case of
larger networks (cf. model of sphingolipids metabolism Fig. 11) to understand
the complex relations within modelled species and parameters we prefer to in-
vestigate all parameters at once, as they may interact one with another and they
can have common impact to the model. In case of sphingolipid metabolism model
we found useful to compare the results of LSA with the StochDecop output that
let us identify the species with the greatest variance component resulting from
different reactions.

We also focused on development of a new method based on MI in lieu of
its discrete equivalent. This method seems to be promising as it can be applied
to any subset of parameters and can provide the information about interactions
within parameters groups with respect to the model output. We used this method
to compare with the LSA results of the p53-Mdm2 negative feedback loop model.
Contrary to LSA that can only provide the sensitivities of a single species to a
single parameter separately, SA based on MI provide us with the information of
sensitivity of global output to any subset o parameters and moreover with the
information of parameters interactions.

To conclude there are many SA methods with different applications. LSA is
most popular for biochemical dynamical models but it is a OAT method. The
alternative GSA methods are usually computationally inefficient especially for
stochastic version of biochemical models. The StochDecomp tool is a solution
that by LNA can provide the variance decomposition steaming from separate
reactions and can be easily applied to any biochemical model. The SA method
based on MI can by applied to samples of data from continuous random vari-
ables and can provide the sensitivity indexing for any subset of parameters,
consequently we found it useful for biochemical models.
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