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Abstract. This paper presents recent developments on clustering al-
gorithms designed to deal with numeric strings, i.e., non-increasingly
ordered numeric vectors of possible varying lengths. Such objects can
be found in real-world data sets in the field of informetrics. Investigation
carried out in this paper focuses on partitional clustering algorithms. The
genetic approach proposed in this paper as well as the K-means algorithm
introduced previously are investigated from, both, machine learning and
aggregation theory perspective. Also, a projection of original data into a
space of fixed number of indices is considered.

1 Introduction

Informetrics is an active field of research, which mostly deals with measurable
aspects of information processes. One of the main informetric tasks is the so
called Producers Assessment Problem (PAP) in which we would like to evaluate
a set of producers of information resources according to, both, the quantity of
information they output and its quality. PAP is often identified with bibliomet-
rics, where a scientist is a producer and scientific articles he/she published are
products. Moreover, the quality of each paper is often measured by the num-
ber of citation it received. However, application of PAP exceeds beyond that.
Let us consider for example on-line social networking services, like “Facebook”,
“Twitter” or “Stack Exchange”. Each active user is a producer of new informa-
tion items that are assessed by the members of the on-line community (cf., e.g.,
“Like”, “Share”, “Follow”, “UpVote”, or “DownVote” buttons).

The nature of informetric data may be situated “somewhere between” mul-
tidimensional real data and the character string domain. On the one hand, ob-
servations are real numbers but, on the other, their number is not established
a priori. Informetric data sets consisting of non-increasingly ordered vectors of
unequal lengths are examples of numeric strings [1]. Most often, such vectors
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are analyzed by the means of aggregation theory [3], for example with various
bibliometric indexes [4,5]. Recently, the usage of unsupervised machine learning
techniques in the field of informetrics is studied too.

In this paper we focus on various clustering algorithms that may be applied on
informetric data in order to automatically discover diverse groups of producers.
Such methods are crucial not only in identification and/or description of certain
groups of producers (productive, high impact, low impact, etc. ones), but also
may be used in automated informetric decision support systems.

One of the possible approaches to apply clustering techniques on vectors of
nonconforming lengths is to reduce the data dimension by considering a fixed
number of attributes or indicators, see, e.g., [6,7]. Please note that such an ap-
proach has, however, some limitations, like for instance arbitrariness in the choice
of considered indexes and their quantity, unstable behavior of some bibliometric
indexes when it comes to input data transformation, etc. On the other hand, in
[8] a class of modified metrics was proposed so that they can be applied on vectors
of nonconforming lengths. Owing to that, i.a., hierarchical clustering algorithms
may be used in order to determine an input data set’s partition consisting of
sets of homogeneous producers. What is more, a K-means-like algorithm together
with a more general c-means algorithm based on modified dissimilarity measure
were proposed and studied in [2,9], respectively.

In this paper we extend the mentioned results. First of all, connections be-
tween the modified clustering techniques for informetric data and aggregation
theory are investigated. The notion of cluster centers as an aggregated represen-
tation of all vectors from a given cluster was partially studied in [9]. Nevertheless,
that study is far from being complete. Moreover, please note that the k-means
algorithm is just a heuristic and therefore, especially for unbalanced data, may
return results far from being optimal. Thus, in this paper a genetic algorithm
designed for informetric data clustering is proposed and studied as well. In the
second place, a comparative study of various informetric data sets (e.g. Stack
Exchange data base, dependency network of R packages, Elsevier’s Scopus ci-
tations base) including proposed procedures and mentioned above projection to
fixed number of indexes approach is presented.

The paper is organized as follows: Sec. 2 reviews the recent results concerning
clustering algorithms for informetric data and proposes a new genetic solution.
Next, in Sec. 3 the empirical analysis is performed. Finally, Sec. 4 concludes the
paper and gives a future research results.

2 Clustering

Clustering techniques are usually classified as either partitional or hierarchical
[12]. The former class of algorithms directly divide data points into some pre-
defined number of clusters, see, e.g., the k-means procedure, while the latter
class of methods determines the whole hierarchy of possible data partition-
ing schemes, level by level, which may be cut at an arbitrary height. Both
groups, however, require the definition of the measure that can be used to as-
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sess the dissimilarity between observations. Classically, this is achieved with
the notion of a metric, i.e., a function d : X × X → [0,∞) such that for
any x,y, z ∈ X it holds: (a) d is symmetric, (b) d fulfills the triangle in-
equality, i.e. d(x,y) ≤ d(x, z) + d(z,y), and (c) d(x,y) = 0 if and only if
x = y. Consider for example the well known Minkowski distance given by

d(x,y) =
(∑n

i=1 |xi − yi|p
)1/p

, for x,y ∈ Rn, p ≥ 1. Please note that for p = 1,
Minkowski distance is simply the Manhattan distance dL1 =

∑n
i=1 |xi− yi|, and

for p = 2 the Euclidean distance dL2
=
(∑n

i=1 |xi− yi|2
)1/2

. Let us note that if
ν : X ×X → [0,∞) is a function such that fulfills (a), (b), and a relaxed version
of (c), namely, (x = y) =⇒ ν(x,y) = 0, then ν is called a pseudometric.

As it was stated above, the considered informetric data may be situated
“somewhere between” multidimensional real data and the character string do-
main. On the one hand, observations are on the interval scale but, on the other,
their quantity is not established a priori. Therefore, the distance function that
can capture the similarity/dissimilarity between such objects shall be introduced.

Let S := {(x1, . . . , xn) ∈
⋃
n≥1 Rn : x1 ≥ x2 ≥ · · · ≥ xn} denote the

space of non-increasingly ordered numeric vectors of arbitrary length and X =

{x(1),x(2), . . . ,x(l)}, where x(i) =
(
x
(i)
1 , . . . , x

(i)
ni

)
for all i = 1, . . . , l, its fi-

nite subset representing input data points. Moreover, let Sn = {(x1, . . . , xn) ∈
Rn, x1 ≥ · · · ≥ xn} denote the subset of S consisting of vectors of length n and
S≤n =

⋃n
i=1 Si, n ∈ N the subset of S with vectors of length not greater than

n. It is clear to see, that X ⊂ S≤m, where m = max{|x|; x ∈ X}. The follow-
ing theorem (see [8] for the proof) defines the class of metrics on S≤m, for any
m ∈ N.

Theorem 1. (Cena, Gągolewski, Mesiar [8]) Let dM : S≤m ×S≤m → [0,∞) be
such that dM (x,y) = d(x̃, ỹ)+ν(x,y), where x̃ = (x1, x2, . . . , xn, 0, . . . , 0) ∈ Sm,
d is a metric on Rm and ν is a pseudo-metric on S≤m. Then dM is a metric on
S≤m if and only if for all x,y such that x̃ = ỹ it holds ν(x,y) = 0 =⇒ nx = ny,
where nx = |x| and ny = |y|, denote the length of x and y, respectively.

In practice, the pseudometric ν might be defined only in terms of vectors’
lengths, e.g., for x,y ∈ S, νp,q(x,y) = p|nrx − nry|.

Remark 1. It is easily seen that the dM metric defined as dM (x,y) = dL1
(x̃, ỹ)+

ν1,1(x,y) can be decomposed as follows:

dM (x,y) =

min{nx,ny}∑
i=1

|xi−yi|+
nx∑

i=min{nx,ny}+1

|xi|+
ny∑

i=min{nx,ny}+1

|yi|+|nx−ny|,

with the convention
∑v
i=u · = 0 for u > v. Hence, dM is in fact a sum of the

distance between the first min{nx, ny} largest observations plus a norm of the
remaining observations in the longer vector (which is the same as the distance
to a vector 0 with zeros at each coordinate) plus some penalty for the difference
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in vectors’ lengths. This raises the association with the Levenshtein distance for
strings [1,13], defined as minimal number of single character insertions, deletions
and replacements needed to obtain one string form another and provides an
appealing interpretation of the proposed solution.

Remark 2. It is easily seen that the dissimilarity measure dD : S≤m × S≤m →
[0,∞), i.e., function fulfilling conditions (a) and (c), but not (b) – triangle in-
equality, can be defined in the manner presented in Theorem 1, i.e., dD(x,y) =
d′(x̃, ỹ)+ν(x,y), were d′ is a dissimilarity measure on Rm and ν is pseudometric
on S≤m.

2.1 K-means-like algorithm

Classically, in the Euclidean space a partitional clustering task can be defined as
follows. Given a set of observations Y = {y(1), . . . ,y(l)}, where each y(i) ∈ Rn,
we aim at partitioning the l observations into k nonempty pairwise disjoint sets
C = {C1, C2, . . . , Ck},

⋃k
i=1 Ci = Y, so that:

C = argmin
partition C of Y

k∑
i=1

∑
y∈Ci

d2L2

(
y,µ(i)

)
, (1)

where µ(i) is the centroid of all the vectors in Ci, µ
(i)
j =

∑
y∈Ci yj/|Ci|, and

d2L2
(y,µ) =

∑n
j=1(yj − µj)2 is the squared Euclidean distance.

As the problem stated in Eq. (1) is known to be NP-complete [14], the fol-
lowing heuristic – K-means algorithm, see [15], may be used. For the initial set
of cluster centers, do what follows until convergence occurs:

1. Assign each point in Y to the cluster with the nearest center,
2. Recalculate cluster centers by computing the means µ(1), . . . ,µ(k) of all the

points assigned to particular clusters.

dD;p,q-centroid In the informetric settings, we may consider the dissimilarity
measure based on squared Euclidean distance, i.e.,

dD;p,q(x,y) = d2L2
(x̃, ỹ) + p|nrx − nry|.

Therefore Eq. (1) can be redefined as

C = argmin
partition C of Y

k∑
i=1

∑
y∈Ci

dD;p,q

(
y,µ(i)

)
, (2)

where µ(i) ∈ S is a centroid of Ci. Thus, in order to derive a K-means like
procedure for informetric data, first we have to provide a method for computing
a dD;p,q-centroid of a set of vectors X = {x(1), . . . ,x(l)} ⊆ S, i.e.,

µ = argmin
µ∈S

l∑
i=1

dD;p,q(x
(i),µ) := argmin

µ∈S
F (µ). (3)
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In [2] it was shown that the length of µ which is a minimizer of F cannot be
greater than m and, hence, the task defined via Eq. (3) can be decomposed as
follows. For n = 1, . . . ,m determine:

µ(n) = argmin
µ∈Sn

F (µ) (4)

and then compute:
µ = argmin

n=1,...,m
F (µ(n)). (5)

Please note that the problem defined by Eq. (4), is in fact a constrained
optimization problem, as our search space consists of vectors that are sorted
non-increasingly: we have that µ(n)

1 ≥ µ(n)
2 ≥ · · · ≥ µ(n)

n .
To present the solution to Eq. (4) given in [2], let us recall the notion of a

contiguous partition of an index set [n] := {1, 2, . . . , n}, that is a set of nonempty,
disjoint sets of consecutive elements in [n]. In other words, P ⊆ 2[n] is a con-
tiguous partition of [n] if

⋃
P∈P = [n], P ∩ P ′ = ∅, |P | > 0, {i, j} ∈ P with

i ≤ j implies that i + 1, i + 2, . . . , j − 1 ∈ P for all P 6= P ′. The whole class of
such contiguous partitions will from now on be denoted as CP([n]). It might be
shown that |CP([n])| = 2n−1. For example, we have:

CP([3]) =


{
{1}, {2}, {3}

}
,{

{1, 2}, {3}
}
,{

{1}, {2, 3}
}
,{

{1, 2, 3}
}

 .

Given P ∈ CP([n]) and i ∈ [n], let P{i} stand for an element in P such that
i ∈ P{i}. Moreover, let P (i) be the ith ordered element in P, i.e., such that for
1 ≤ i < j ≤ |P| it holds maxP (i) < minP (j). Assuming that x̃i =

∑
x:|x|≥i xi

we have what follows (see [2] for the proof).

Theorem 2. (Cena, Gągolewski [2]) Fix n ∈ [m] and let P ∈ CP([n]). Define
y ∈ Rn as:

yi =
1

l|Pi|
∑
j∈Pi

x̃j for i = 1, . . . , n.

If y1 ≥ y2 ≥ · · · ≥ yn and for all i ∈ [n] with i ∈ (P{i} \ {maxP{i}}) we have

i−min P{i} + 1

|P{i}|
∑
j∈P{i}

x̃j −
∑

j∈P{i},j≤i

x̃j > 0,

then y is a solution to Eq. (4).

Theorem 2 induces a simple algorithm to determine µ(n) ∈ Sn. One may con-
sider every possible contiguous partition of [n] and then verify if the conditions
listed in the theorem are met.
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Example 1. Let us consider a simple exemplary set consisting of three vectors
of the form:

X =

 ( 7, 5, 1, 0, 0 ),
( 1, −2, −5 ),
( −12 )

 .

It is easily seen that the maximum of vectors’ lengths is equal to m = 5. Based
on the procedure provided by Theorem 2, let us derive the dD;1,1-centroid of
length n = 3. The vector x̃ is of the form (−4, 3,−4). As it was stated above, in
order to do so, we have to consider all contiguous partitions of a set [n]:

(i) P = {{1}, {2}, {3}}; Here the candidate solution is of the form y =
(−1 1

3 , 1,−1
1
3 ) and it is clear to see that this solution does not fulfill re-

quired ordering.
(ii) P = {{1, 2}, {3}}; Thus, y = (− 1

6 ,−
1
6 ,−1

1
3 ). Since the vector y is non-

increasingly ordered, we have to check the optimality conditions: 1
2 (−4 +

3) + 4 = 3.5 > 0.
(iii) P = {{1}, {2, 3}}; Therefore y = (−1 1

3 ,−
1
6 ,−

1
6 ). Since, the ordering is not

preserved, this candidate solution is rejected.
(iv) P = {{1, 2, 3}}; Here y = (− 5

9 ,−
5
9 ,−

5
9 ) with conditions 1

2 (−4 + 3) + 4 =
3.5 > 0 and 1

3 (−4+ 3− 4) + (−4+ 3) = −2 2
3 < 0. As the second condition

is not fulfilled, this candidate solution has to be rejected.

Therefore, the solution is equal to y = (− 1
6 ,−

1
6 ,−1

1
3 )

Such a routine, being of course mathematically correct, is unfortunately prac-
tically unusable. Therefore, to solve Eq. (4), the algorithm which runs in O(n2)
time, see the Algorithm 1, was proposed and the following theorem holds (see
[2] for more details and the proof):

Theorem 3. (Cena, Gągolewski [2]) Fix n and let X = {x(1), . . . ,x(l)}. If y is
the result of applying Algorithm 1, then y = argminy∈Sn F (y).

Example 2. Let us again focus on a data set discussed in Example 1. Here is the
output of Algorithm 1 for each n = 1, 2, . . . , 5. The optimal solution is obtained
for n = 3.

xtilde= | -1.333 1.000 -1.333 0.000 0.000
---------- | --------------------------------------------
n dist | y1 y2 y3 y4 y5
1 249.67 | -1.333
2 253.83 | -0.167 -0.167
3 *247.50* | -0.167 -0.167 -1.333
4 251.17 | -0.167 -0.167 -0.667 -0.667
5 253.06 | -0.167 -0.167 -0.444 -0.444 -0.444

Moreover, the generalization of Theorem 2 and Theorem 3 to a fuzzy clus-
tering was derived and discussed in [9].
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Data: A set of l vectors X ⊂ S(I) and n ∈ N.
Result: µ(n) = argminµ∈SnF (µ).
Let x̃ be such that x̃i =

∑
x:|x|≥i xi, i ∈ [n];

Let P = ∅;
Let y ∈ Rn;
for k = 1, 2, . . . , n do

yk = x̃k/l;
Let P := P ∪

{
{k}
}
;

while |P| > 1 and yminP (|P|) > ymaxP (|P|−1) do
P :=

((
P \ {P (|P|)}

)
\ {P (|P|−1)}

)
∪ {P (|P|) ∪ P (|P|−1)};

for i ∈ P (|P|) do
Set yi := 1

l|P (|P|)|

∑
j∈P (|P|) x̃j ;

end
end

end
return y;

Algorithm 1: An algorithm to solve Eq. (4).

Properties of the dD;p,q-centroid In the context of aggregation theory, the proce-
dure of determining the dD;p,q-centroid is a fusion function in sense of [1,10,11],
which combines a set of objects into an representative object of the same type.

Definition 1. Let F : Sl → S be a fusion function such that

F(x(1), . . . ,x(l)) = argmin
µ∈S

l∑
i=1

dD;p,q(x
(i),µ). (6)

Please note that F may be computed via Algorithm 1. Let us now consider
basic properties proposed in [1] suitable for such functions.

Remark 3. (Cena, Gągolewski [9]) Unfortunately, the function F defined by
Eq. (6) is not a E-monotonic fusion function, where E is the partial ordering:

x ∈ Sn E y ∈ Sm ⇔ n ≤ m and xi ≤ yi for all i ∈ [n].

Let us consider for example

X = {x(1) = (10, 2, 1, 0, 0),x(2) = (−11),x(3) = (−5,−6,−10)}

and

Y = {y(1) = (10, 2, 1, 0, 0),y(2) = (10,−100),y(3) = (−5,−6,−10)}.

It is clear to see that for each i = 1, 2, 3 we have x(i) E y(i). However, for the
corresponding centroids we have (−1.67,−1.67,−3) 6E (5,−34.67).

Proposition 1. The function F defined by Eq. (6) is:
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(i) idempotent, i.e. F(x,x, . . . ,x) = x ,
(ii) symmetric, i.e., F(x(1),x(2), . . . ,x(l)) = F(x(σ(1)),x(σ(2)), . . . ,x(σ(l))), where

σ is a permutation of set X ,
(iii) componentwise internal on common indices, i.e., µi ∈ [

∧l
j=1 x

(j)
i ,
∨l
j=1 x

(j)
i ],

i = 1, . . . ,minj=1,...,l |x(j)|,
(iv) global internal, i.e., µnµ ≥ u and µ1 ≤ v, where µ = F(X ) and u =

mini=1,...,l{x(i)ni }, v = maxi=1,...,l{x(i)1 }
(v) length internal, i.e., nµ ≥ nmin and nµ ≤ nmax, where µ = F(X ), nµ = |µ|

and nmin = mini=1,...,l{|x(i)|}, nmax = maxi=1,...,l{|x(i)|}.

Proof. (i) Trivial.
(ii) Trivial.
(iii) Is induced by the properties of averaging fusion functions.
(iv) Assume this does not hold, i.e., (∃i)µi > v for some i. This implies that

1
l|P{i}|

∑
j∈Pi x̃j > v. On the other hand, please note that v < 1

l|P{i}|∑
j∈Pi x̃j ≤ x

′, where x′ = maxj∈Pi{x
(1)
j , . . . , x

(l)
j }. Therefore,

v 6= maxx∈X ,i=1,...,nx{xi}, and the proof is complete.
(v) In Lemma 1 [2] it was shown that nµ ≤ nmax. Let us now consider nµ ≥

nmin. Let µ = F(X ) = argminF (µ) and |µ| = nµ < nmin. Then, F (µ) =∑l
i=1

(∑nµ
j=1(x

(i)
j − µj)

2 +
∑nxi
j=nµ+1 x

2
j

)
+
∑l
i=1 nxi − lnµ. Let us now

consider vector µ′ = (µ, (nmin − nµ) ∗ 0). Now, |µ′| = nmin and F (µ′) =∑l
i=1

(∑nµ
j=1(x

(i)
j − µ′j)

2 +
∑nxi
j=nµ+1 x

2
j

)
+
∑l
i=1 nxi − lnmin. Therefore,

F (µ)− F (µ′) = l(nmin − nµ) > 0 and µ 6= argminF (µ) = F(X ).

2.2 Genetic algorithm

Another approach to solve the optimization task defined by Eq. (2) is via genetic
algorithms [16,17,18], i.e., search heuristics that mimic the process of natural
selection. Basically, the genetic algorithm requires a population of candidate so-
lutions, called individuals, to an optimization problem and an objective function
associated with each individual that represents the quality of the result. During
the computations, population is evolved toward better solutions. In general a
genetic algorithm consists of operators that are used to produce a new popula-
tion of candidate solutions (so called offsprings), i.e., selection (operator that
chooses which solutions are used for crossover), crossover (the process of com-
bining selected individuals to obtain a new solution) and mutation (a random
perturbation of a solution candidate), see Algorithm 2. Investigation carried out
in this paper focuses on algorithms to solve clustering problems for which the
number of clusters K is known or set up a priori.

Representation of the individuals. When it comes to a clustering task, individ-
uals in the genetic algorithm can be expressed via binary, integer, and real rep-
resentation [17]. In our investigation we focus on the real encoding, i.e, clusters
centers. Classically, in n dimensional space, if individual i encodes K clusters
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Data: The initial population P .
evaluation(P );
repeat

P := crossover(selection(P ));
mutation(P ):
evaluation(P );

until termination condition met ;
Algorithm 2: A genetic algorithm.

then its length is Kn, where the first n positions represent the n coordinates
of the first cluster prototype, the next n positions represent the coordinates of
the second cluster prototype, and so on. However, in our setting the individu-
als are of possibly different lengths. Therefore, each individual is represented by
a set of K vectors encoding K clusters, i.e., the i-th individual is of the form
{µ(1)

i , . . . ,µ
(K)
i }, for i = 1, . . . , N , where N is the size of population. The initial

population is produced as a random sample of given data points.

Selection. Typically, selection is based on the value of the objective function of
the solutions. In the proposed algorithm the selection simply chooses M of all
the individuals that gives the smallest value of the objective function.

Crossover. In the proposed algorithm two individuals (parents) are selected form
the population. The offspring is created as a concatenation of the randomly
chosen sub-sequences of each one of them, see Algorithm 3.

Data: Population of clusters centers of size M .
Result: Population P ′ of size N .
Let P = {(µ(1)

1 , . . . ,µ
(K)
1 ), . . . , (µ

(1)
M , . . . ,µ

(K)
M )};

P ′ := {};
for i = 1, . . . , N do

j1 := U{1, . . . ,M}; (random observations)

j2 := U{1, . . . ,M};
for j = 1, . . . ,K do

k := (U{1, . . . ,K},U{1, . . . ,K});
n1 := U{1, . . . , |µk1

j1
|};

n2 := U{1, . . . , |µk2
j2
|};

n3 := |µk2
j2
|;

µ̃j
i := sort_decreasing((µk1

j1
[1 : n1],µ

k2
j1
[n2 : n3]));

(we have x[i : j] = (xi, xi+1, . . . , xj), i ≤ j)
end
P ′ := P ′ ∪ (µ̃

(1)
i , . . . , µ̃

(K)
i );

end
Algorithm 3: Crossover procedure for genetic approach for informetric data
sets.
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Mutation. In our setting the mutation stage consists of three, randomly chosen
actions: remove one element of an individual, add one element to an individ-
ual and perturb individual with noise generated from a Gaussian distribution,
repeated several times (see Algorithm 4).

Data: The population of clusters centers P of size N .
The number of mutations to make LM .
Result: Population P ′.
Let P = {(µ(1)

1 , . . . ,µ
(K)
1 ), . . . , (µ

(1)
N , . . . ,µ

(K)
N )};

for i = 1, . . . , LM do
u := U(0, 1);
j1 := U{1, . . . , N};
if u < 0.33 then

j2 := U{1 . . . ,K};
z := µ

(j2)
j1

;
µ

(j2)
j1

:= z[−U{1, . . . , |z|}];
else

if u < 0.67 then
j2 := U{1 . . . ,K};
z := µ

(j2)
j1

;
y := U(0,MAX);
µ

(j2)
j1

:= sort_decreasing((z, y));
else

j2 := U{1 . . . ,K};
z := µ

(j2)
j1

;
µ

(j2)
j1

:= sort_decreasing(z+N (|z|, 0, σ));
end

end
end

Algorithm 4: Mutation procedure for genetic approach for informetric data
sets.

Additionally, during the computations, if the convergence is slow, the algo-
rithm is automatically restarted.

Remark 4. Please note that a function R : S2 → S given by the procedure of
combining two parents into one offspring in the crossover operator (inner loop
in Algorithm 3) is also a fusion function. Moreover, it is easily seen that R is
not symmetric, componentwise internal on common indices and length internal.
It fulfills, however, global internality.

3 Empirical Analysis

In this section, a comparative analysis of the proposed approach and the projec-
tion to a fixed space of indexes is performed. We consider the following sources
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of data: Stack Exchange data base, dependency network of R packages, and
Elsevier’s Scopus citations base.

Stack Exchange data base. Stack Exchange is a network of question-answer sites
each devoted to a specific topic, e.g., mathematics, physics, philosophy, etc. In
each of such, sites users ask questions concerning a given topic and also give an-
swers to other users questions. Such post (answer, question) is evaluated by the
whole community by means of DownVotes (−1) and UpVotes (+1). Therefore,
each user can be described by the vectors of such evaluations (possibly negative).
Moreover, the length of such vectors may vary from user to user. In the investi-
gation carried out here we focused on the users of the Physics Stack Exchange
(physics data set). In the evaluation process we consider only answers to the
questions given by users. The data were collected on the September 15, 2015
and consist of 6470 vectors corresponding to users who answered at least one
question. Please note that in this particular data set, about 64% of all vectors
are of length 1, and among them about 33% are equal to 0.

R packages dependency network. In R each user may create a package and make
it publicly available. Each new software item is built by reusing the functional-
ity provided by packages that are already available. Such dependencies may be
viewed as citations and the total number of such citations is overall assessment of
the package quality (importance). Because of that, the system of R packages may
be perceived as a structure of interrelated items that depend on each other. The
collected data consists of information considered 4356 packages (see [19] for the
description of the data set). Please note that there are 2928 packages (i.e. 67.2%)
which are not cited at all. Moreover, we found 997 items (i.e. 22.43%) that do
not cite any other package. Please note that in this particular data set, about
41% of all vectors are of length 1, and among them about 66% are equal to 0.

Elsevier’s Scopus citations base. The scopus data set consists of 16282 citations
vectors gathered from Elsevier’s Scopus (see [20] for the description of the data
set). For the sake of the clarity of the results presented in this paper, a subset
of 3500 randomly chosen authors (scopus) has been selected. However, please
note that the structure of the data set remains the same. Table 1 presents the
sample statistics (minimum, maximum, quantiles and arithmetic mean) of basic
characteristics of vectors in each set.

Moreover, please note that about 78% of all vectors in Elsevier’s data base
are of length 1, and among them about 32% are equal to 0. For the random
sample scopus the proportions are similar (about 78% of length 1 and among
them about 31% equals to 0).

K-means-like algorithm vs projection approach. The aim of the analysis pre-
sented in this section is to determine the relationship between partitioning
schemes obtained with k-means algorithm on the projection original data into
space of fixed number of aggregation indexes and the clustering obtained with
modified K-means-like algorithm applied on the raw data points.
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Table 1. The comparision of the Elsevier’s Scopus data base and random sample
scopus.

Min. 1st Qu. Median Mean 3rd Qu. Max.
Vetors’ lengths

scopus 1 1 1 1.696 1 95
Elsevier’s Scopus 1 1 1 1.667 1 129

Vectors’ maximal element
scopus 0 0 3 9.746 10 791

Elsevier’s Scopus 0 0 3 9.098 9 836
Vetors’ sum of elements

scopus 0 0 3 14.94 11 1610
Elsevier’s Scopus 0 0 3 13.53 11 2396

We perform computations with sequences of parameters p and q ranging from
1 to 10 and 0.5 to 2, respectively. For the projection methods we consider the
following sets of indexes:

(A) N (vectors’ length), Min (vectors’ minimal value), Q1 (first quartile of vec-
tors’ elements), NP2 (the number of vectors’ elements that are ≤ 0), and
NP (the number of vectors’ elements greater of 0)

(B) Max (vectors’ maximal value), Sum (sum of all vectors’ elements), Q2,
Q3 (second and third quartile of vectors’ elements), and arithmetic mean
(Mean)

(C) indexes form set (A), (B) and additionally h-index, g-index and w-index
when possible, i.e., for data sets with only non-negative values (rpkg, sco-
pus).

It is clear to see that the set (A) focuses on vectors’ lengths, while set (B) on
the values of their elements.

Note, however, that such a comparison cannot be performed directly. Not
only each algorithm optimizes a differently defined objective functions, but also
is situated in different spaces. Therefore, to assess the differences between projec-
tion and K-means-like procedure we choose to use Rand Index, i.e., A/(A+D),
where A denotes the number of all pairs of data points assigned by both par-
titions into the same cluster or into different clusters (both partitionings agree
for all pairs A) and D denotes the number of all pairs assigned differently by
both partitions (the partitions disagree for all pairs D), compare [21]. Moreover,
please note that the Rand Index has zero expected value in the case of a random
partition, and it is bounded above by 1 in the case of perfect agreement between
two partitions.

Table 2 present the maximal Rand Index value for each data set between
all considered combinations of parameters. The smallest agreement between the
projection and K-means-like approaches usually obtain for scenario (A) then (B)
and (C), especially while partitioning into fewer groups. This seems reasonable
since this set of indexes does not include specific measure of quality. However,
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the obtain results indicate that with appropriate choice of parameters p and q,
the K-means-like algorithm produce clustering quite similar (about 80%) to the
one obtained with the projection approach (especially for (B) and (C) set of
indexes).

Table 2. The maximal value of the Rand Index between clustering obtained via K-
means-like algorithm with dD;p,q dissimilarity measure with various parameters p and
q and via the k-means algorithm on projection to a space of indexes.

physics rpkg scopus
K (A) (B) (C) (A) (B) (C) (A) (B) (C)
3 0.65 0.71 0.44 0.76 0.75 0.80 0.54 0.91 0.84
6 0.72 0.82 0.83 0.74 0.94 0.95 0.68 0.74 0.78
9 0.24 0.86 0.92 0.78 0.92 0.93 0.70 0.94 0.85

K-means-like vs genetic approach. Let us now consider the comparison between
the K-means-like procedure and the proposed genetic algorithm. Firstly, both
procedures were applied on random samples of each considered data sets. The
Table 3 presents the percentage of all cases in which genetic algorithm performed
better in case of partitioning into 3, 6, and 9 clusters. In most cases, between 84%
for physics data set and 60% for scopus data set, the K-means-like algorithm
performed better in case of detecting three clusters. However, for the six and
nine clusters, genetic approach gives better results (between 68% for physics
and 100% for rpkg).

Table 3. The percentage of cases when GA performed better than K-means-like proce-
dure, i.e., the returned value of the objective function was smaller. The mean difference
between GA and KMA is also presented in brackets, where the first value concerns cases
when GA performed better and the second one when KMA performed better.

Set \K 3 6 9
scopus 0.40 (3227.9 | 599.3) 0.96 (5673.1 | 946.3) 0.84 (6116.2 | 526.4)
rpkg 0.36 (8829.2 | 36154.9) 0.80 (93120.7 | 5158.3) 1.00 (99950.7 | ∅)

physics 0.16 (51851 | 1410.6) 0.68 (2837.7 | 662.3) 0.84 (2829.6 | 790.2)

Let us now focus on exemplary results obtained via K-means-like and genetic
approaches. Table 4 presents the value of the objective function for clustering
obtain via K-mean-like (denoted as KMA) procedure and genetic approach (de-
noted as GA) for physics, scopus and rpkg data sets, and the Rand Index cal-
culated between those two partitionings. In each case the GA performed better
with agreement about 60% (with exception for rpkg data set with about 92% of
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agreement). Table 5 presents cluster sizes for both algorithms. Note that even
though results are similar (one large cluster and few smaller), it seems that the
genetic approach tends to create smaller groups, then KMA, e.g., cluster of one
element in physics data set. This is also reflected in Table 6 with the total inner
dissimilarity in each cluster.

Table 4. Values of the objective function for clustering obtained via K-means-like
(denoted as KMA) procedure and genetic approach (denoted as GA), and the Rand
Index (denoted as RI).

physics scopus rpkg
p, q 7, 1 2, 1 1, 1
KMA 610702.5 567252.7 546948.6
GA 585719.2 503527.2 646174.7
RI 0.594171 0.6192729 0.9212828

Table 5. Sizes of clusters obtained via KMA and GA.

Cluster no. 1 2 3 4 5 6
physics

KMA 5081 665 538 7 159 20
GA 5757 1 474 164 67 7

scopus
KMA 2581 678 188 37 8 8
GA 2932 487 4 67 4 6

rpkg
KMA 1240 94 54 27 5 8
GA 1259 98 58 5 3 5

Let us consider the Silhouette information proposed in [22]. The Silhouette
information for each observation x(i) is defined as:

s(i) =
(b(i)− a(i))

max(a(i), b(i))
,

where a(i) = 1
|Ck|

∑
y∈Ck dD(y,x

(i)) if x(i) ∈ Ck, and b(i) := minj=1,...,K;j 6=k d(i, Cj),
where d(i, Cj) = 1

|Cj |
∑

y∈Cj dD(y,x
(i)) for all Cj such that j 6= k. Please note

that a(i) is the average dissimilarity between x(i) and all other points of the
cluster to which i belongs (if i is the only observation in its cluster, s(i) = 0
without further calculations) and d(i, cj) is an average dissimilarity of x(i) to
all observations of Cj that x(i) does not belong to. Moreover, b(i) can be seen
as the dissimilarity between i and its “neighbor” cluster, i.e., the nearest one to
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which it does not belong. Observations with a large s(i) (almost 1) are very well
clustered, a small s(i) (around 0) means that the observation lies between two
clusters, and observations with a negative s(i) are probably placed in the wrong
cluster.

Fig. 1 depicts the percentage of observations with s(i) within [−1,−0.6),
[−0.6,−0.4), [−0.4,−0.2), [−0.2, 0), [0, 0.2), [0.2, 0.4), [0.4, 0.6), [0.6, 0.8), [0.8, 1].
Please note that in cases of the physics data sets the results for the genetic
algorithm are better than for K-means-like algorithm, while for the scopus and
rpkg are about the same.

[−1,−0.6) [−0.4,−0.2) [0, 0.2) [0.2, 0.4) [0.4, 0.6) [0.6, 0.8) [0.8, 1]

0.0

0.2

0.4

0.6

0.8

1.0

(a) physics

[−1,−0.6) [−0.4,−0.2) [0, 0.2) [0.2, 0.4) [0.4, 0.6) [0.6, 0.8) [0.8, 1]
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0.8

1.0

(b) scopus
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(c) rpkg

Fig. 1. The bar plots of the Silhouette width for KMA-partitioning and GA-partitioning,
depicted in light and dark gray respectively.
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Table 6. Total inner clusters dissimilarity for clustering obtain via the K-means-like
(denoted as KMA) procedure and the genetic approach (denoted as GA).

Cluster no. 1 2 3 4 5 6
physics

KMA 77455.62 1415.78 133645.88 57756.86 165782.01 174646.30
GA 91168.00 4764.41 123587.82 91364.88 198037.46 76796.58

scopus
KMA 20533.37 44994.50 107017.54 74370.41 262758.88 57578.00
GA 56029.00 135444.09 71226.79 151434.95 45038.46 44353.86

rpkg
KMA 28827.21 34890.90 84307.37 69966.89 140740.00 287442.38
GA 41313.94 74210.71 170839.21 81404.04 24833.33 154347.40

Fig. 2 depicts exemplary box-and-whisker plots of vectors’ basic sample char-
acteristics in each cluster obtained with, both, KMA and GA algorithms for
physics data set. Please note the logarithmic scale on Y axis. On the other
hand, Figs. 3 and 4, present step plots of vectors in each cluster physics for
KMA and GA partitioning, respectively, (depicted in gray color) with their cen-
troids and centers (depicted in black). The centers obtained with the GA are
more differential according to, both, lengths (1, 8, 18, 71, 106, 1222) and total
sum of elements (1, 324.14, 31.93, 192.3, 449.27, 4236.88), then K-means-like
derived centroids (1, 1, 18, 14, 79, 489) and (1.92, -1.98, 47.77, 198.86, 285.02,
1997.75), respectively.
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(b) Vectors’ lengths (GA-partitioning).
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(d) The total sum of vectors’ elements
(GA–partitioning)

Fig. 2. The box-and-whisker plots of vectors’ basic sample characteristics – physics
data set.
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Fig. 3. Step plots of vectors in each cluster physics for KMA partitioning (depicted in
grey color) and their centroids (depicted in black).
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Fig. 4. Step plots of vectors in each cluster physics for GA partitioning (depicted in
grey color) and their centroids (depicted in black).



24 A. Cena and M. Gągolewski

4 Conclusions

This contribution presents the recent developments on clustering algorithms de-
sign to deal with so numeric strings. The genetic approach for such setting in
proposed and compare to K-means-like algorithm. Both, the data mining and
aggregation perspective is taken into account while reviewing obtained results.
Moreover, reduction of the data dimension by considering a fixed number of at-
tributes or indicators in order to apply clustering techniques on vectors of non-
conforming lengths is also investigated. It turns out that agreement between this
approach and algorithms applied directly on data points depends on parameters
of the dissimilarity function. Moreover, with appropriate choice of parameters
K-means-like procedure can mimic the results of projection approach. Therefore,
some interesting directions worth of deeper investigation arise. First of all, the
other penalty terms in dissimilarity measures should be considered and tested
so the procedure may be better calibrated to suit the nature of an input data
set we analyze. Also, calibration of the parameters of a dissimilarity measure,
so that produced values are close as much as possible to the one obtain with an
arbitrary set of indexes may be considered.
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