PRACE IPI PAN < [ICS PAS REPORTS

Andrea Maggiolo-Schettini
and

Jozef Winkowski

A FORMALISM
FOR PROGRAMMED REWRITING
OF (HYPER)GRAPHS*

745

INSTYTUT PODSTAW INFORMATYKI
POLSKIEJ AKADEMII NAUK

INSTITUTE OF COMPUTER SCIENCE
POLISH ACADEMY OF SCIENCES

¥% !>

<=

Andrea Maggiolo-Schettini
and
Jozef Winkowski

A FORMALISM
FOR PROGRAMMED REWRITING
OF (HYPER)GRAPHS*

745

W ill i

Jm N U

W arszawa, July 1994

‘This work has been supported by the Italian National Council for Research
(CNR-CNIM), by the Polish Academy of Sciences (IP1 PAN),
and by COMPUGRAPH Basic Research Esprit Working Group n. 7183

Adresy autoréw: Andrea Maggiolo-Schettini
Dipartimento di Informatica
Universitd di Pisa
Corso Italia 40
56100-Pisa
Italy

Jozef Winkowski

Institute of Computer Science
Polish Academy of Sciences
ul. Ordona 21

01-237 Warszawa

Poland

CR: F.l., H.I.

nr iNnw.

Printed as a manuscript
Na prawach rekopisu

Naktad 180 egz. Ark. wyd. 1,20; ark. druk. 1,00. Papier kserograficzny KI. I1I.
Oddano do druku w lipcu 1994 r. Wydawnictwo IPl PAN

ISSN: 013S-0648

Abstract. Streszczenie

The paper presents a formalism for rewriting (hyper)graphs in a controlled manner. This
formalism is essentially a simple programming language with productions, that is rewriting
rules, playing the role of basic instructions. The programs in this language arc built from
productions by means of rather standard constructors, including a parallel composition.
They may contain parameters to point to specific elements of graphs to which they are
supposed to be applied. The programs are intended to describe how to transform a graph
and a valuation of parameters in this graph in order to reach a resulting graph and a
resulting valuation of parameters.

FORMALIZM DO PROGRAMOWANIA TRANSFORMACIJI (HYPER)GRAFOW

Praca prezentuje formalizm do kontrolowanego przetwarzania (hyper)graféw. Formal-
izm ten stanowi w istocie prosty jezyk programowania z produkcjami, tzn. regularni
przetwarzania, odgrywajacymi role instrukcji podstawowych. Programy w tym jezyku
sa. budowane z produkcji za pomocy typowych konstruktoréw programotwoérczych wsréd
ktorych jest ztozenie réwnolegle. Programy mogg zawieraé parametry. Parametry pro-
gramu wskazuja elementy graféw do ktérych ten program ma by¢ stosowany. Ogélnie,
program opisuje jak transformowac graf i wartoSciowanie parametréw w tym grafie azeby
uzyska¢ graf wynikowy i wynikowe warto$ciowanie parametréow.

Key words:
(hyper)graph, rewriting rule, production, parametrized production, rewriting step, pro-
gram of rewriting, structured operational semantics, resulting relation.

http://rbc.ipipan.waw.pl

1 Introduction

Some models of computing can be formulated in a natural manner in terms of rewriting of
appropriate data structures represented as graphs. Take, for instance, the representation
of actor systems as in [JaRo 91] or that of logic programs in [CMREL 91].

A theory of graph rewriting systems has been developed which describes how to
rewrite graphs according to formal rules called productions, where a rule says that a
certain given pattern can be replaced by another pattern if it occurs in a graph, and
where graphs may be of very general types, including hypergraphs, coloured hypergraphs,
relational structures, etc. (cf. [CER 79], [EKMRW 82], [ENR 83], [ENRR 87], [EKR 91]).
This theory in its pure form does not assume anything about where and in what order to
apply productions. In this situation at each stage of rewriting an independent search of
an applicable rule and of a place of application must be done, which in general is a task
of high complexity. On the other hand, in some problems the structure of data and the
algorithm to solve the problem allow to organize rewriting in an efficient manner.

This paper presents a formalism with mechanisms which make such an organized
rewriting possible. Our formalism is in the framework of the algebraic approach proposed
in [EPS 73]. It is essentially a kernel of a simple programming language with productions
playing the role of basic instructions. Programs are built in this formalism from produc-
tions by means of rather standard constructors which define the order and modalities of
rewriting steps. Among the program constructors there is a parallel composition which
declares the possibility of executing programs in parallel. The parallelism is understood
here as an arbitrary interleaving of atomic (i.e. indivisible) actions of component pro-
grams, where atomic actions are either single instructions or complexes of instructions
which are specified as atomic with the aid of a special constructor. Productions and pro-
grams may contain parameters to point to particular elements of graphs to which they are
supposed to be applied. When applied to pairs consisting of a graph and a valuation of
parameters in this graph they transform such pairs one into another as long as it follows
from their meaning. The mechanism of accessing graphs through valuations of parameters
allows to enforce components of a program to operate on the same data and to realize
shared variables whose values represent some parts of data.

The presented formalism is endowed with a structured operational semantics in the
style of [Plo 81]. This semantics defines the possible executions of a program. Conse-

quently, it determines the corresponding relations between the data and results of per-
formed executions.

The formalism we define may be useful whenever a problem can naturally be reduced
to graph rewriting and the process of rewriting is too complex to be represented as a
result of a free application of a system of productions. We shall illustrate it on example
of a concurrent execution of a program in a simple concurrent logic language (called FCP
after [Sh 89]).

1.1. Example. Consider the logic program:

sum(Y,S) «—jum'(K,0,S)

sum'(Q ,F,S).-F =S

W ([xm p,S)- PM *,p,q)w (y,q,S)
plus(0,0,X) — X =0

plus(0,1, AT) *X =1

When applied to the goal sum ([l,2],S) this program computes the sum of elements of
the list Y = [1,2] and assigns the result to S.

If such a program is regarded as a concurrent logic program in FCP then the atomic
formula of the goal and those which are obtained by applying the clauses of this program
to the goal can be viewed as processes which communicate via their variables (in [Sh
89] such variables are called logical ones). Each process of this type keeps trying to
match its formula (that is the formula it corresponds to) with a clause head by a suitable
substitution of terms for variables, and, if successful, it creates processes corresponding
to the atomic formulas of the right hand side of the clause. This procedure may imply an
instantiation of variables the process shares with other existing processes. Due to this,
the processes awaiting for such an instantiation may advance.

For our program and goal we obtain the following computation:

aum([1,2],9)

sum'([l,2],0,S)

p/us(l,0, F),sur7i'([2],F,5)
p/ua(1,0,/>,p/us(2,F,Q),sum'([], Q,S)

P = I,p/us(2,F,(j),jum'(0,Q,S)
P = 1,p/us(2,F,Q),i3 =S
P=1P"(2,F,S)

p/us(2,1,S)

5 = 3.

In this computation S,P,Q arc variables. In order to find the required sum and assign
it to S, the process sum ([l,2],5) matches its formula with the head of the first clause
and creates the process sum'([l,2],0,5). This process matches its formula with the third

clause and creates two parallel processes plus(1,0, P) and sum'([2), P, S) which contain
a new variable P. Now p/us(l,0, P) instantiates P to 1 and sum'([2], P, S) evolves into
plus[2, P, Q) and jum'([], Q, S). The processes pius(l,0, P) and plus(2, P, Q) synchronize
in the sense that plus(2, P, Q) waits for instantiation of P to 1 in order to instantiate Q.
As simultaneously 5 is instantiated to Q due to the second clause, we obtain finally the
required result 5 = 3.

In our approach each state of a computation of this type is represented by a jungle
as in [CR 93]. For instance, the state p/us(l,0,P), sum'([2], P, S) is represented as shown
in figure 1.1. In this representation hyperedges correspond to concrete occurrences of
predicate and function symbols and nodes represent terms (more precisely, nodes are
roots of subjungles which represent terms). For instance, the node a represents the term
2|1, that is the list [2).

mm

Figure 1.1

Processes which take part in a computation are present in it as subjungles which
represent the respective atomic formulas. They are realized by calling with suitable values
of parameters and executing, possibly many times, programs which spccify how a proccss
of a given class performs its step. Such a realization leads usually to parallel processes and
then it appears as an interleaving of actions of the existing processes which is synchronized
solely by instantiations of variables shared by processes.

For an illustration of this way of representing and realizing of processes let us consider
the process plus(1,0, P). Each step of this process can be realized by calling with { repre-
senting 1 and 1) representing 0, and with (= P, and executing a program PLUS({, rj,C)
whose body can be defined as

Ex Ey if (represents x and Trepresents y
then replace plus({,ri,() by (—x +y
else PLUS{{,t),()

where replace plus((, ij,() iy (= i +y denotes a reduction of the jungle which represents

plus({,T),Q (see leftmost jungle in figure 2.4) to a single edge without target nodes,
with a single source node C, and with the colour equal to the sum of x and y (see the
rightmost jungle in figure 2.4), and where Ex and Ey denote an indeterministic choice
of some instances of x and y in the jungle to which the program is applied. Each call of
PLUS{(,,rj,C,) is an attempt of instantiating variables of terms represented by £, 77 £. If
successful, it terminates the process pius(l,0, P) with P = x + y. Otherwise it causes a
subsequent call of PLUS(£,ri,() which may be viewed as a subsequent step the process

plus(\,0, P) to be realized (possibly in parallel with other processes) after completing the
current step.

Similarly, each step of the process 3um'([l,2],0,5) can be realized by calling with £
representing [1,2], 7 representing 0, and with { = S, and executing a program SUA/'({, 77, ()
whose body can be defined as

Y.X EK if { represents [A’IV]
then Eg (replace sum'(£, 4,() by plus(X, 17, £ and sum'(Y, g, £);
(PLUS(X,n,e) 1SUM\Y ,e,0))
else if (represents Q
then replace sum"((,r/,() by (=0
else suM'((,i7,0)

where (PLUS(X,r],9) || SUM'[Y, g,Q denotes the parallel interleaving execution of pro-
grams PLUS(X,n,g) and SUM'(Y, p,C), and

replace sum'(£,ri, () by plus(X, rj, 0) and sum'(Y, g,(),

replace sum'(£,ri,Q by (=0

are the operations of replacing the leftmostjungle by the rithtmost one in figures 2.2 and
2.4, respectively. The call of SUMN\(, », () if { represents the empty list [] may be viewed
as a subsequent step of the realized process jum'([1,2],0,S) whereas PLUS(X, 7, p) and
SUM\Y,g,Q start two new processes plus(l, 0, P) and sum'([2], P, S).

The present paper extends and improves a previous work in [MW S3], [MW 91), and
[MW 92]. It is organized as follows. In section 2 we recall and modify for our purposes
the basic notions related to rewriting graphs. In section 3 we define programs of rewriting
graphs. In section 4 we present a structured operational semantics of these programs. In
section 5 we describe input-output relations of programs.

2 Graphs, productions, and derivations

Let A be a fixed many-sorted first-order language with equality which has sorts nodes,
edges, colours, operation symbols

none »nodes,

I"source, ..., m"source, 1-target,...,njarget : edges —* nodes,

edgecolour : edges —*colours,

Wi :colours x ... X colours —colours, u3 : colours X ... X colours —» colours, etc.,
and infinite, mutually disjoint sets nodevariables, edgevariables, cotourvariablcs of node-
, edge-, and colour variables, respectively.

Let il denote the signature consisting of the sorts and operation symbols of A and
ilo the part of H consisting of the sort colours and operation symbols u>i,... .

By an Cl-graph (or a graph) we mean an fl-algebra G such that i“sourcec(x) = nonec
impliesj _sourcec(x) = nonce for/ > i and iJargetc{x) = nonec impliesjjargetc(x) —
nonce forj > 3% By sourccc(x) (resp.: by targetc(x)) we denote the string of subsequent
different from nonec nodes i*sourcec(x) (resp.: the string of subsequent different from
nonec nodes iJargetc(x)). Thus we obtain functions

sourcec,targetc medgesc (nodesc)".

By an Cl-homomorphism from an fi-graph G to an fi-graph G' we mean any homo-
morphism h : G —=* G' from the fi-algcbra G to the fi-algebra G', and by h,, "s,
hcoicun, we denote the components of h corresponding to the sorts nodes, edges, colours,
respectively.

By Cl.graphs we denote the category of fi-graphs and fi-homomorphisms.

The category digraphs enjoys the following property.

2.1. Proposition. Each pair of fi-homomorphisms of the form (L +- K D) such
that the pair (Sl<>-reduct(L) “fSss’ Clo-rcduct(K) iloj-educi(D)) has a pushout
{Cl0jreduct{L) X i- fioJ-educt(D)) in the category of fl-algebras has also a pushout
(£ -i* G D) in U.graphs, where tloj-edud(G) = X, = g ¢coer, =V,
nodesc, edgesc, gnodc., 9cdtci> 6-><&> btd,t, are obtained from the respective pushouts

in the category of sets, and isourcec, iJargetc, edgecolourc are determined by the
properties of fi-graphs. O

In particular, if we are not interested in operations on colours, and so in H there are
jjo operation symbols, then (ficd'educt(L) {loj-educt(K) floj-educt(D)) is a
diagram in the category of sets. Consequently, the corresponding category fl.graphs has
pushouts.

The fact that nodesc, edgesc, 9ru*Ui, 9cdw«> K<xUi, can be taken from the
respective pushouts in the category of sets is straightforward.

As far as the definitions and uniqueness of ijsourcec, iJargetc, edgecolourc are
concerned, they follow from the fact that, if an edge x 6 edgesc has i-sourcei,(x) = v,
jjargeti(x) = z, and tdgecolouri,{x) = u, then the only candidate for i*sourcec{.gtdtt,{x))
isgnojc*(y), the only candidate forj Jargetc(gedtf(x)) is gnodtj(z), and the only candidate
for edgecolourc{gcd,<.(.x)) is g * our»(u).

In this paper we restrict ourselves to special pushouts.

Given a pair of fi-homomorphisms (L <- K D) and a pushout (L G D) of
this pair, we call this pushout natural, and we call (K D G) the natural pushout
complement of (K —L G), if the components of b : D —* G are inclusions.

For our purposes we shall have to do only with cases in which natural pushouts and
pushout complements can be obtained in a particularly simple way.

Let fto-ierm.s be the fi0-algebra of terms with colour variables. From the universal
property of free algebras we obtain the following proposition.

2.2. Proposition. For each fio-algebra A and each fio-homomorphism a : fl0 terms —*
A, the diagram (CloJerms floJcrms) A) has a pushout and the diagram
(fioJerms A A) is such a pushout. O

From this proposition we obtain immediately the following one.

2.3. Proposition. Each pair of morphisms (L K D) with fto-reduct[L) and
ilojreduci(K) equal to iloJerms, and with K L being the identity homomorphism,
has a natural pushout (L -i* G D). O

2.4. Proposition. Each pairofn-homomorphisms (K -U L A G) such that QO0j-educt[L)

and Clo-reduct(K) are equal to UoJerms, K L is the identity homomorphism, gnode,
is one-to-one in nodesi, — ImxUtinodesn), 9tdge> is one-to-one in edgesi, —IciS,(edgesK),
and all irourcec(x) and jJargeta(x) with x e edgesa - gdli<.(edgesi) are in

(inodesc - gn<»u,[nodesL)) U 9nodt.(In"t.(nodesK))),

has a natural pushout complement (K D\ G). Moreover,
nodesD = (nodesG- g (nodesL)) U gnode.(Lo4t.(nodeSK)),
edgesD = (edgesa - 9ti,t,(td9t3i)) u Scdle.(W * (efye'sA")).
flo-reduct(D) = ftoj-educt(G) —fi0Jerms,

d is defined by dnoJej(x) = ~ejge*(x) = gcilget(ledgen{x)), doolours(x) —
geoitn.rt(la>iouri{x)), and 6 consists of inclusions ;w«,, bej!C, and of the identity of colours.

Q

A proof of this proposition for the graph part is essentially as the proof of a similar
theorem for relational structures in [EKMRW 82]. For the colour part it follows from 2.3.

The category tl-graphs may be too large for some applications. For example, for
logic programming the full subcategory of this category with graphs being jungles is more

suitable, where a jungle is a (hyper)graph without cycles and without edges having a

10

common node in sources (cf. (CMREL 91] and [CRP 91]). For other applications we
may need other subcategories in which pushouts and pushout complements, arbitrary or
natural, may be different from those in Cl.graphs, or even may not exist. So, in the sequel
we shall relate all our formalism to an arbitrary but fixed full subcategory C of Cl.graphs.

Productions representing rewriting rule3 for fi-graphs can be defined as follows.

By a production we mean any p — (L K A R), where L, K, R are fi-graphs in
the subcategory C with finite sets of nodes and edges and the fio-reducts coinciding with
fioJerms, the fio-algebra of terms, and / : K — L, r : K —=* R are fi-homomorphisms
with Icoiau,, and r™our, being identities.

We call K the gluing graph of p, and we call L and R the left side and the right side
of p, respectively.

In order to be able to point to some elements of productions, we introduce suitable
concepts of parametrized productions and parameters.

By a parametrized production we mean any p = (L K -A R,m,n), where prr =
(L 4- K A R) is a production and m and n are triples m = (m,,0je,,m ¢ pej,m d;,rj) and
n = (,n,cdc,,nc<st),ncolnr.) of partial mappings

m,,odet mnodest, O—*nodevariables
rri'd'M < edgesl 0 —edgevariables
Acolour, : coloursL 3 —t colourvariables
n,,o<ic : nodesp 3 — nodevariables
nggct medgesft 2 —~edgevariables
ncoitmr, mcoloursR D—*colourvariables

such that

n«i«(x)) = nnMi(<(rWAu (z)} for all x e nodesK,
(jedgcj(y)) —n”ptt(rejge, (y)) for all y € edges”,

and mcaiourt, n,,j,,r, are respectively an inclusion of a subset of colour-variables occurring
in fio-terms assigned to edges of L and an inclusion of a subset of colour-variables occurring
in fio-terms assigned to edges of R.

Values of mappings mnojci, nnojei, N«Jonn, are called respec-
tively node-, edge-, and colour-parameters of p.

2.5. Example. In the case of the logic program in 1.1 atomic formulas corresponding

to processes can be rewritten according to the parametrized productions in figures 2.1 -
2.4, where the labels play the role of parameters. O

u

\P

3um[Y,S) => jum'iV'.0jS)

Figure 2.1

fum'([X-|ly], P, S) =>plus(X, P,Q),sum'(Y, Q, S)

Figure 2.2

jum'(Q,P,S) =S :=P

Figure 2.3

12

3um’

plus

plus(a,b,S) =S :=a+ 6

Figure 2.4

Applications of usual productions to ft-graphs can be defined following the standard
algebraic approach originated in [EPS 73]. An application of a parametrized production
p can be defined as an application of the usual production prp in which all occurrences of
each parameter are instantiated in the same way.

Let A be a fixed fto-algebra, equipped possibly with some relations whose symbols
belong to the language A.

By a rewriting step (or a direct derivation) over A via a parametrized production
p= (L «—K A R,m,n), wemean a pair a = (p, i) which consists of p and of a diagram
i as in figure 2.5 in the subcategory C of ft.graphs such that (1) and (2) for natural
pushouts, the fto-reducts of G, D, H coincide with A, boimr, and are identities,
and, for each sort s, we have;

m,(x) = m,(y) implies g,(i) = s,(y) whenever m,(x) and m,[y) are defined,
rn,(z) = n,(y) implies g,(x) = h,(y) whenever m,(x) and n,(y) are defined,
n,(x) = n,(y) implies h,(x) = h,(y) whenever n,(x) and n,(y) are defined.

We say that a rewrites G into H and write it as G =>H.

L. 1 K r ji

Figure 2.5

2.6. Example. The replacement of 3um'([l1|2],0,S) by plus(\,0,P) and jum'([2], P, S)
can be represented as a rewriting step as in figure 2.6. O

13

sum’ plus sum'

S | P 5 i X .p Y — U
X Y
X. Y
plus
5 a- [p
m ouou
LU E

ZIn mm

jum'([1]2]1,0,5) ==plus(l,0, P), sum'([2], P, S)

Figure 2.6

The concept of a direct derivation can be easily generalized.

Given a set il of parametrized productions, by a derivation over A via productions
from Il we mean a finite sequence a = (Go =% G\ 3- ... =6 G,) of rewriting steps over A
via productions from Il. Given such a sequence a, we say that it rewrites G; from Go,
write Go =* G,-, and denote Go and G, by ao(cr) and 3i((t), respectively. By Derc.M\
we denote the set of derivations of this kind with Go, G |[,..., G- having finite sets of nodes
and edges.

14

Given aset X C Derc”jiof derivations, by the relation of derivability via derivations
from X we mean the following relation rel(X) between graphs:

(G,H) 6 rcl(X) iff G = ot(0’) and H —<?i(a) for some 0 £ X.

3 Programs

We are interested in rewriting graphs according to some programs.

Intuitively, a program p we have in mind is a description, possibly with some pa-
rameters, of an algorithm of rewriting graphs by applying productions. In particular, it
describes how a given graph G and a given, possibly partial, valuation v of variables in
this graph, which is defined for parameters of p, are transformed into subsequent graphs
and valuations of variables until reaching a final result.

In order to facilitate a sort of busy waiting of processes as mentioned in section
1, we admit a recursion such that programs may call themselves without executing any
real action (an unguarded recursion). Theoretically it leads to infinite idle loops, but in
practice such loops do not happen due to a sort of fairness which is usually ensured.

Programs are defined presupposing a set programidentifiers of program identi-
fiers, each identifier with an arity which specifies a number of node-, edge-, and colour-
parameters. They are given by program expressions p, g, r,... which are of the following
kinds:

(1) A constant nil. This program expression represents doing nothing.

(2) A parametrized production p. This program expression represents a possible rewrit-
ing step a = (p,i) as in figure 2.5 which transforms a graph G and a valuation v of
parameters of p in G into a graph H and a valuation w of parameters of p in H,
where v,(m,(i)) = g,(x) and u),(n,(y)) = h,(y) for each sort s and all x,y of this
sort.

(3) A result p7 of a substitution 7 of new variables for parameters in a program expres-
sion p. This program expression represents an activity which transforms a graph G
and a valuation t; of parameters of py in the way in which the activity represented
by p transforms G and the valuation 7 o v, i.e. the superposition of 7 and u.

(4) A conditional if a then p else g, where a is a formula in the language A and
p, g are program expressions. This program expression represents the choice and
execution of p or q depending on the satisfaction of a for the given graph G and the
given valuation v of free variables of a and parameters of p and q.

(5) A sequential composition p; q of program expressions p and g. This program expres-
sion represents an execution of p followed by an execution of g.

(6) A parallel composition p || qof program expressions p and g. This program expres-
sion represents a parallel execution of p and q which can be viewed as an arbitrary
interleaving of actions of p and q.

(7) An indeterministic sum p + g of program expressions p and g. This program expres-
sion represents an indeterministic choice and execution of p or q.

15

(8) An indetenninistic sum Ex p, where x is a variable and p is a program expression.
This program expression represents an activity which transforms a graph G and a
valuation v of parameters of p in G in the way in which the activity represented by
p transforms G and a valuation v' obtained from v by an indeterminista choice of
a suitable value of z. If there is no such a value for z then the represented activity
reduces to doing nothing.

(9) A defined program expression

V. k h k where (vV2i(yn,Vu,e») =V >i.Vn(yni=0«),

where yji, are program identifiers and j/n,yij,...,y, i,yn2,—are parameters as
specified by the respective arities and each t5is a program expression which may con-
tain expressions of the form "i(zju,* ,* « ,.9n(2jnii*inJi...) and is such that all

*<U) ee>*int» »m2, ... and other parameters of &<occur among y,i,y,i,.... This pro-
gram expression represents an activity whose execution for yn.y«,... is defined by
rpk- As in there may occur y>i(znii V«(i tni. 2*ni,...), one has to define
the respective activities by the equations y>i(yu,yi2,...) = 0i,...,V9,(Y,i,y¥,2,...) =
V5, and consider an occurrence of ees) 'N as a call of the respective
x>. In particular, each program expression of the form

ipwhere (y>= if a then p; else nil)

is equivalent to the standard iteration construct while a do p.

(10) An atomic program expression atom p, where p is a program expression. This pro-
gram expression represents the activity of successfully executing p as one indivisible
step.

Thus we have the following syntax of program expressions:

p nil
| < parametrized production >
iP7
|if g then p elseq
Ip; 9
Iplh?
Ip+v
|[Ezp
b*(j/*i.y«.—)where (v, =V > i, =0»)
latom p

To each program expression p there correspond a set FP(p) of node-, edge-, and
colour-variables called free parameters of p, which can be defined as follows:

(1) Ifpis a parametrized production then FP(p) is the set of parameters of p.
(2) FP(nil) = 0.

(3) FP(p 7) = -i(FP(p)).

(4) FP[ifathen pelse ¢) is the union of FP(p) U FP(q) and the set of free variables
of a.

(5) FP(P;q) = FP(P [l g) = FP(p +q) = FP(p) U FP(q).

(6) FP(Zxp) = FP(p)-{x}.

(7) FP(<Sk(yn,yki,—) where (y>, = V "= V) = {yu, Jw, eee}e
(8) FP(atom p) —FP[p).

3.1. Example. A program of computing the sum of elements of a list of integers as in
1.1 can be defined as follows:

where
replace sum(C,C) by sum'(£€, 0, £);
51/AF((,0,0),
EY EK if i represents [X|>]
then Ep (replace sum'(€, ©)
by plus(X,1;, g) and sum'(Y, q, £);
(PLUS{X,v,e) ISUM'(Y,e, 0))
else if (represents 0
then replace sum'((,7j,Q by C= 0
else SUM\i,n,Q),
PLUS(t,n,Q = Ei Ey if f represents x and g represents y
then replace plus((,r/,() by (=x -fy
else PLUS(Z,tj.O

The instructions of replacement which occur in this program are parametrized pro-
ductions as in 2.5. Formulas occurring in the program are abbreviations of formulas of the
first order language A. For instance, the formula { represents [A'ly] is an abbreviation
of a formula which states the existence of an edge with the colour |, the source node (,
and the target nodes X and Y.

4 Semantics

The way in which pairs consisting of graphs and valuations of variables in these graphs arc
transformed by executing programs can be described in the form of a labelled transition
system which consists of a universe con/ of configurations and a transition relation —
When considered together with suitable fairness assumptions, such a system allows to
define all practically possible program computations.

The universe conf consists of configurations of the form ¢ = (p,G,v), where p is a
program expression, G is a graph, and u is a (possibly partial) valuation of variables in G
such that the defined values of node-, edge-, and colour variables arc respectively nodes,
edges, and colours of G.

The transition relation —* consists of transitions of the form t = (c, Q.c7), where
c,d are configurations and a is either an invisible action r which does not change the

17

configuration (that is such that ¢ —ct) or an action of applying a production or executing
an atomic program. Denoting by actions the set of possible actions we can define this
relation as the smallest —C conf x actions x conf satisfying the following conditions:

(1) (p,G,v) = (nil, //, w) for each parametrized production p and G, If, v, w such that
there is a rewriting step o = (p, i) with the diagram «as in figure 2.5 and g,(x) —
u(rn,(x)), h,(y) = w(m,(y) for each sort s and all x,y such that m,(x) and n,(y)
are defined.

(2) (atom p,G, V) p (nil, G', i) for each program p and G,G', v, v' such that there
exists a finite sequence of transitions of the form

(p-G,v) N ... 24 (nil, G*Vv').

3)If (p,G,70 u) -2. (p\G ', 7 °»") then (p~i,G,v) (py.G"v").

4) If (p,G,v) A (f/,G\v’) and the formula/ issatisfied for the valuation & then
(if / then pelse 7,G, i) -2* (p', G', u').

(5) If (q,G,v) (7', G\ u') and the formula / isnot satisfied forthe valuation v then
(if / then p else 7,G,v) </, G', u).

(6) If (p,G,v) A (nil,G', t;") then (p\q,G,v) (7,G', u").

(7) 1 (p,G,v) -A(p’,G" V') then (p,q,G,v) A (p7,G\U).
(8) If (p.G,v)A (p,G"V) then(p |l ..G.v) A (j/ || ..G>").
9 1 (7.6, vy A (7, G, V) then (p [.G.v) A (p |l 7, G u).
(10) If (p,G,t/) A (p',G", V') then (p + 7,G,u) A (i/,G"v").
(A1) If (7,G,v) » (7',G' V') then(p+ 9,G,v) A (,',G", V)

(12) (Ex p, G, u) -A (nil, G,u) for each program expression p and all G, u such that v(x)
is not defined.

(13) If (p,G,v) 2 (p',G",u") for some u such that i>(x) is defined then (Ex p,G,w)
(p.G"u") forw = v —{(x,v(x))}.

(14)
(v>t(y*i.»M.-) where (8> = VI.-.S5 = <d5)G,v)
(s»j(y>i.y/».-) where (9, =10 =0,),G,v)
whenever is the first program expression in 0* which is obtained by

substituting in the program expression
Vi(y<t<y>2>-) where (y, = 0i,...,v>,, = <3)

for each occurrence of s?,(y;i,y,j,...).

18

(15) If (rp~Gjv) A t/) for V'i obtained by substituting in tpk the program expres-
sion
)where (v, = 'n= 0n)

for each occurrence of then
(s»*(WiyM.— where (y>, = \bi>ew¥on = W .G ,») A (p'.G".v').

The transition relation allows to define computations of programs and the respective
relations between data and results.

Formally, a compulation of a program p is defined as a sequence of transitions of the
form
“= ((P.G.u) » (p,,Gi.vi) R

where u is either countably infinite or it has a terminal configuration of the form (nil, G', v').
The pairs (G, v) and (G', v') (ifu terminates) are called respectively the data and the result
of u.

In reality it is usually ensured that only such computations are possible which enjoy
a fairness property. Consequently, in the sequel by a computation of a program p we shall
mean only such a computation u of p which is fair in the sense that there is no transition
of p which is permanently possible starting from a configuration c of u and does not occur
among the transitions of u which follow c.

The resulting relation of a program p, res(p), is defined as the relation which holds
between the data and the results of finite computations of p: (G,v) res(p) (G', v') iff there
exists a computation of p of the form: (p,G,v) o=V (nil,G", V).

5 Resulting relations of programs

The possibility of using computations of programs to define the respective resulting re-
lations suggests that an input-output semantics could be defined directly in terms of
resulting relations. Unfortunately, such a definition is impossible because of the lack of
compositionality of the correspondence between programs and their resulting relations.
There are two sources of this situation. One of them is the parallel composition, where the
resulting relation of a program obtained by composing given programs depends not only
on the resulting relations of these programs, but also on the resulting relations of smaller
program components. For example, for a program p || ?, where p — g= and
Pi. 9ii li are parametrized productions the resulting relation is

res[p || 9) = rej(pl;pJd;qi; 97)Ures(p1;91;p3;9,)Ures(plg,;9:p,)

Urei(g,;Pi;Pj!?2) Ures(¢,;p,; pj) Ures(<7!; p,;P2)
and it cannot be expressed in terms of res(p) = res(pi\pj) and res(q) = res{qi;qg-1).
Another source of the mentioned situation is recursion, where the resulting relation of a
program defined by a mutual recursion need not be definable by the corresponding system
of equations in the algebra of relations. For example, for the program p = A’where(A' =

nil;X), each finite graph G, the resulting relation is identity and it is different from the
least relation R satisfying R = identity o R since such the latter is the empty relation 0.

The lack of compositionality w. r. to the parallel composition and recursion shows
that there is no chance for a direct input-output semantics of the considered programs.
In particular, an operational semantics as presented cannot be avoided even if we are
interested only in the resulting relations of programs. On the contrary, in the situation in
which such relations cannot be derived from programs directly, a semantics of this kind
becomes an important tool of defining the resulting relations.

The reasonning about resulting relations of programs can be supported by a number
of properties of such relations.

5.1. Proposition. The following properties hold true for the resulting relations of
programs:
(1) res(skip) = identity.

(2) Ifpis a parametrized production then (G, v)res(p)(//, w) iff there is a rewriting step
<= (p,j) with the diagram i as in figure 2.5 and g,(x) = ti(m,(r)), h,(y) =u>(m,(y)
for each sort 3 and all x,y such that m,(x) and n,(y) are defined.

(3) (G,u)res(jnr)(G',i/) iff (G.7 ou)res(p)(G',7 ou).

(4) (G, t;)rei(if / then p else q)(G'v') iff either / is satisfied for G andv and
(G,v)res(p)(G',«/) or / is not satisfied and (G,v)res(q)(G\V').

(5) res(p; q) - res(p)o res(q).

(6) res(p + g) = rea(p) Ures(q).

(7) res(Y.x p) —U(res(p) : i€ 1), where I is the set of possible values of valuations for
x. O

A proof is of this proposition is straightforward.

The class of resulting relations of programs is rich enough to represent the usual
derivability relation.

Taking into account the definition of the resulting relation of a program and the
definition of the semantics of programs, we obtain the following realization of the relation
of derivability.

5.2. Proposition. Let Il = {pi,-..,pm} be a finite set of parametrized productions.
There is a program p such that H is derivable from G via productions from Il iff
(G,v)res(p)(H,t/) for some v and «/. In particular, we may define such a program as

p=X where (X = g; X + nil)

where
<= (Eil)...(Exm)(pi + ... + pm)

and {xi,...,xm} is the set of parameters of productions pt,...,pm. O

20

6 Recapitulation

We have presented conceptual means for programming concurrent processes of rewriting
graphs by applying productions. These means are flexible enough to cover the usual
rewriting. However, their possibilities go much beyond such particular cases due to the
powerful mechanisms of parameters, recursion, concurrency, and operating on colours.

The presented formalism is brought to the form of (a kernel of) a programming
language with a precise syntax and semantics.

The semantics defines computations of each program p. These computations repre-
sent the possible ways of transforming a given graph G and a given valuation of variables
in this graph, and thus they determine a resulting relation res(p) of p. The possibility
of determining such a relation is important since there is no simpler way of computing it
directly from the program.

The semantics presented in the paper represents concurrency as an arbitrary in-
terleaving of actions. Nevertheless, it contains implicitly all the information about the
existing concurrency. Moreover, there seems to be a chance of refining it to a form in
which concurrency would be reflected in a more explicit way as in [MR 92]. How to do it
is however a problem which we leave open in the present paper.

Acknowledgements. The authors are grateful to the two anonymous referees of an
early version of this paper for their comments and suggestions.

References

[CER 79] Claus, V., Ehrig, H., Rozenberg, G., (Eds.) Proceedings of the 1st Interna-
tional Workshop on Graph-Grammars and Their Application to Computer
Science and Biology, Springer LNCS 73, 1979.

[CMREL 91] Corradini, A., Montanan, U., Rossi, F., Ehrig, H., Léwe, M., Logic Pro-
gramming and Graph Grammars, in [EKR 91], 221-237.

[CRP 91] Corradini, A., Rossi, F., Parisi-Presicce, F., Logic Programming as Hyper-
graph Rewriting, in the Proceedings of CAAP’91, Springer LNCS 493, 1991.
275-295.

[EKMRW 82] Ehrig, H., Kreowski, H.-J., Maggiolo-Schettini, A., Rosen, B.K.,
Winkowski, J., Transformations of Structures: An Algebraic Approach,
Math. Systems Theory 14 (19S1) 305-334.

[EKR 91] Ehrig, H., Kreowski, H.-J., Rozenberg, G., (Eds.) Proceedings of the Ath In-
ternational Workshop on Graph-Grammars and Their Application to Com-
puter Science, Springer LNCS 532, 1991.

[ENRR 87] Ehrig, H., Nagi, M., Rozenberg, G., Rosenfeld, A., (Eds.) Proceedings of
the 3rd Workshop on Graph-Grammars and Their Application to Computer
Science, Springer LNCS 291, 1987.

21

[JaRo 90]

[MR 92]

[MW 83]

[MW 91]

[MW 92]

[Plo 81]

[P 91]
[Sh 89]

Jansssens, D., Rozenberg, G., Structured Transformations and Compulation
Graphs for Actor Grammars, in [EKR 91], 446-460.

Montanari, U., Rossi, F., Graph Grammars as Context-Dependent Rewriting
Systems: A Partial Ordering Semantics, in Springer LNCS 581, 1992, 232-
247.

Maggiolo-Schettini, A., Winkowski, J., Towards a Programming Language
for Manipulating Relational Data Bases, in: Bjomer, D., (Ed.), Formal
Description of Programming Concepts 11, North-Holland, 1983, 265-278.

Maggiolo-Schettini, A., Winkowski, J., Programmed Derivations of Rela-
tional Structures, in [EKR 91], 582-598.

Maggiolo-Schettini, A., Winkowski, J., A Programming Language for De-
riving Hypergraphs, in Springer LNCS 581, 1992, 221-231.

Plotkin, G., A Structural Approach to Operational Semantics, Technical
Report, Computer Sc. Dept., Aarhus Univ., Denmark, DAIMI-FN-19,1981.

Plump, D., Graph-Reducible Term Rewriting Systems, in (EKR 91], 622-636.

Shapiro, E., The Family of Concurrent Logic Programming Languages,
ACM Computing Surveys, 21, 1989, 413-510.

22

http://rbc.ipipan.waw.pl

