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A b s t r a c t .  S tre sz c z e n ie

T he  paper presents a  form alism  for rew riting (hyper)graphs in a controlled m anner. This 
form alism  is essentially  a  simple program m ing language w ith productions, th a t is rew riting 
rules, playing the role of basic instructions. The program s in this language arc built from 
productions by m eans of ra ther standard  constructors, including a  parallel com position. 
T hey m ay contain  param eters to  point to  specific elem ents of graphs to  which they are 
supposed to  be applied . T he program s are  intended to describe how to transform  a  graph 
and a valuation  of param eters in this g raph in order to  reach a resulting g raph  and a 
resulting  valuation  of param eters.

FO RM A LIZM  DO PROG RAM O W AN IA  TRA N SFO R M A CJI (H Y PE R )G R A FÓ W

P raca  prezentuje form alizm  do kontrolowanego przetw arzania (hyper)grafów . Form al­
izm ten  stanow i w istocie prosty język program ow ania z produkcjam i, tzn . regularni 
przetw arzan ia , odgryw ającym i rolę instrukcji podstawowych. Program y w tym  języku 
są. budow ane z produkcji za  pomocy typow ych konstruktorów  program otw órczych wśród 
których je s t złożenie równolegle. P rogram y mogą zawierać param etry . P aram etry  pro­
gram u wskazują elem enty grafów do których ten program  m a być stosowany. Ogólnie, 
p rogram  opisuje ja k  transform ow ać g raf i wartościowanie param etrów  w tym  grafie ażeby 
uzyskać g raf wynikowy i wynikowe wartościowanie param etrów .

K e y  w o rd s :
(hyper)g raph , rew riting  rule, production, param etrized production, rew riting step , pro­
g ram  of rew riting , s tru c tu red  operational sem antics, resulting relation.
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1 I n t r o d u c t io n
Some models of com puting can be form ulated in a natural m anner in term s of rew riting of 
appropriate  d a ta  s truc tu res represented as graphs. Take, for instance, th e  representation 
of acto r system s as in [JaRo 91] or th a t of logic program s in [CMREL 91].

A theory of g raph rew riting systems has been developed which describes how to 
rew rite graphs according to  formal rules called productions, where a  rule says th a t a 
certain  given pa tte rn  can be replaced by another pa ttern  if it occurs in a  graph, and 
where graphs m ay be of very general types, including hypergraphs, coloured hypergraphs, 
relational structures, etc. (cf. [CER 79], [EKMRW 82], [ENR 83], [ENRR 87], [EKR 91]). 
T his theory  in its pure form does not assume anything about where and in w hat order to  
apply productions. In th is situation  a t each stage of rewriting an independent search of 
an applicable rule and  of a  place of application m ust be done, which in general is a  task 
of high complexity. On th e  o ther hand, in some problems the structu re  of d a ta  and the 
algorithm  to solve th e  problem  allow to  organize rewriting in an efficient m anner.

T his paper presents a  formalism w ith mechanisms which make such an  organized 
rew riting possible. O ur form alism  is in th e  framework of the algebraic approach proposed 
in [EPS 73]. It is essentially  a  kernel of a  simple programming language w ith productions 
playing th e  role of basic instructions. Program s are built in this formalism from produc­
tions by means of ra th e r standard  constructors which define the order and  m odalities of 
rew riting steps. Among th e  program  constructors there is a parallel com position which 
declares th e  possibility of executing program s in parallel. The parallelism  is understood 
here as an a rb itra ry  interleaving of atom ic (i.e. indivisible) actions of com ponent pro­
gram s, where atom ic actions are  e ither single instructions or complexes o f instructions 
which are specified as atom ic with the aid of a special constructor. Productions and pro­
gram s m ay contain param eters to  point to  particu lar elem ents of graphs to  which they are 
supposed to  be applied. W hen applied to  pairs consisting of a  graph and a  valuation of 
param eters in this g raph they transform  such pairs one into another as long as it follows 
from their m eaning. T he  m echanism  of accessing graphs through valuations o f param eters 
allows to enforce com ponents of a program  to operate on the sam e d a ta  and to  realize 
shared variables whose values represent some parts of da ta .

T he presented form alism  is endowed w ith a structured  operational sem antics in the 
sty le o f [Plo 81]. T his sem antics defines the possible executions of a program . Conse­
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quently, it determ ines the corresponding relations between the d a ta  and results of per­
formed executions.

T he form alism  we define may be useful whenever a  problem can natu rally  be reduced 
to  graph rew riting and  the process of rew riting is too complex to  be represented as a 
result o f a  free application  of a  system  of productions. We shall illustrate  it on example 
of a  concurrent execution of a  program  in a simple concurrent logic language (called FCP 
after [Sh 89]).

1 .1 . E x a m p le .  C onsider the logic program:

s u m ( Y , S ) «— jum '(K , 0, S) 
s u m '( Q ,F ,S ) . - F  =  S
W ( [ x m  p , S )  -  P M * ,  p , q ), w ( y ,  q , S )
p lus (0 ,0 , X )  —  X  =  0 
p lus(0 ,1 , AT) *— X  =  1

W hen applied to  th e  goal su m ([l,2 ] ,S )  this program  com putes the sum of elem ents of 
the list Y  =  [1, 2] and assigns the result to S.

If such a  program  is regarded as a concurrent logic program  in FC P then the atom ic 
form ula of th e  goal and  those which are obtained by applying the clauses of th is program 
to th e  goal can be viewed as processes which com m unicate via their variables (in [Sh 
89] such variables are  called logical ones). Each process of this type keeps trying to 
m atch its  form ula ( th a t is the formula it corresponds to) with a clause head by a suitable 
substitu tion  of term s for variables, and, if successful, it creates processes corresponding 
to  th e  atom ic form ulas of the right hand side of the clause. This procedure may imply an 
in s tan tia tion  of variables the process shares with o ther existing processes. Due to  this, 
th e  processes aw aiting for such an instantiation  m ay advance.

For ou r p rogram  and goal we obtain  the following com putation:

aum ([l,2],S)
sum '([ l ,2 ] ,0 ,S )
p /us(l ,0 ,  F),sur7i'([2],F,5)
p/ua( 1, 0 , / >) ,p /u s (2, F, Q ),sum '([], Q ,S )
P  = l ,p /u s (2 ,F ,( j ) , ju m '(0 ,Q ,S )
P  = l ,p /us(2 ,F ,Q ) ,i3  =  S 
P  =  1 , P ^ ( 2 , F , S )
p/us( 2,1 , S)
5  =  3.

In th is com puta tion  S , P , Q  arc variables. In order to  find the required sum and assign 
it  to  S , the process su m ([ l ,2 ] ,5 )  m atches its form ula with the head of the first clause 
and  creates the  process s u m '( [ l ,2 ] ,0 ,5 ) . This process m atches its form ula w ith the third
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clause and creates two parallel processes plus( 1,0, P)  and sum '([2), P, S )  which contain 
a  new variable P .  Now p /u s ( l ,0 ,  P)  in stan tia tes P  to  1 and sum '([2], P, S )  evolves into 
plus[2, P, Q) and ju m '([] , Q, S ) .  T he processes p iu s ( l,0 , P )  and plus(2, P, Q)  synchronize 
in the sense th a t p lus(2, P, Q)  w aits for in stan tia tion  of P  to  1 in order to  in stan tia te  Q. 
As sim ultaneously 5  is in stan tia ted  to  Q  due to  the second clause, we ob ta in  finally the 
required result 5  =  3.

In ou r approach each s ta te  of a com putation  of this type is represented by a jungle 
as in [CR 93]. For instance, the s ta te  p /u s ( l ,0, P ),  sum '([2], P, S )  is represented as shown 
in figure 1.1. In this representation  hyperedges correspond to concrete occurrences of 
p red icate  and function sym bols and nodes represent term s (m ore precisely, nodes are 
roots of subjungles which represent term s). For instance, the node a  represents th e  term  
2 |(], th a t is the  list [2).

mm
Figure 1.1

Processes which take p art in a com putation  are present in it as subjungles which 
represent th e  respective atom ic formulas. They are realized by calling with su itab le  values 
of param eters and  executing, possibly m any tim es, program s which spccify how a proccss 
of a given class perform s its step. Such a realization leads usually to  parallel processes and 
then it appears as an interleaving of actions of the existing processes which is synchronized 
solely by instan tia tions of variables shared by processes.

For an illustration  of this way of representing and realizing of processes let us consider 
th e  process plus(  1,0, P ).  Each step  of th is process can be realized by calling w ith { repre­
senting 1 and r) representing  0, and w ith (  = P ,  and executing a program  P L U S ( { ,  rj,C) 
whose body can be defined as

E x  Ey if  (  represen ts  x  and 17 represents y 
th e n  replace p lu s ({ ,r i , ( )  by (  — x  +  y 

e lse  P L U S { { , t ) , ( )

where replace p lu s (( ,  i j , ( )  iy  (  =  i  +  y denotes a reduction of the jungle which represents
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plus({ ,T),Q  (see leftm ost jungle in figure 2.4) to  a single edge w ithout ta rge t nodes, 
w ith a  single source node C, and w ith th e  colour equal to  the sum  of x  and y  (see the 
righ tm ost jung le  in figure 2.4), and where Ex and Ey denote an indeterm inistic choice 
of som e instances of x  and  y in the jungle to  which the program  is applied. Each call of 
PLUS{(,,rj,C,)  is an  a tte m p t of in stan tia ting  variables of term s represented by £, 77, £. If 
successful, it te rm inates the  process p iu s ( l ,0 ,  P)  w ith P  =  x  +  y. O therw ise it causes a 
subsequent call of P L U S (£ ,r i , ( )  which m ay be viewed as a  subsequent step  the process 
p lu s ( \ ,0 ,  P )  to  be realized (possibly in parallel with o ther processes) after com pleting the 
cu rren t step.

Sim ilarly, each step of th e  process 3u m '( [ l ,2] ,0 , 5 ) can be realized by calling with £ 
representing [1, 2], 7 representing 0, and with { =  S ,  and executing a program  S U A/'({, 17, ( )  
whose body can be defined as

Y.X  EK  i f  { represen ts  [A’lV]
th e n  E g (replace sum '(£ , tj, ( )  by p lu s (X ,  17, £>) and su m '(Y ,  g, £);

( P L U S ( X , n ,e )  II S U M \ Y , e , 0 ) )
e ls e  if  (  represen ts  Q

th e n  replace sum"(( ,  r/ ,() by (  = 0 

e ls e  S U M '( ( , i7,0)
where (P L U S (X ,r ] ,  g) || S U M '[ Y ,  g ,Q  denotes the parallel interleaving execution of pro­
g ram s P L U S ( X , n , g )  and  S U M '(Y ,  p,C), and

replace sum'(£,ri,  ( )  by p lu s (X ,  rj, o) and sum '(Y ,  g , ( ) ,

replace sum '(£ ,r i ,Q  by (  =  0

are  th e  opera tions o f replacing th e  leftm ost jungle by the rith tm ost one in figures 2.2 and
2.4, respectively. T he  call o f S U M \ ( ,  »7, ( )  if { represents the em pty list [] m ay be viewed 
as a  subsequent step  of th e  realized process ju m '( [ l ,2 ] ,0 ,S )  whereas P L U S ( X ,  77, p) and 
S U M \ Y , g , Q  s ta r t  two new processes p lu s ( l ,  0, P)  and sum '([2], P, S) .

T he present paper extends and improves a previous work in [MW S3], [MW 91), and 
[MW 92]. It is organized as follows. In section 2 we recall and modify for our purposes 
th e  basic notions related  to  rew riting graphs. In section 3 we define program s of rewriting 
graphs. In section 4 we present a structured  operational sem antics of these program s. In 
section 5 we describe in p u t-o u tp u t relations of programs.

2 G r a p h s ,  p r o d u c t io n s ,  a n d  d e r iv a t io n s
Let A be a  fixed m any-sorted  first-order language w ith equality  which has sorts nodes, 
edges, colours,  operation  sym bols 
none  » nodes,
I ^source, ..., m^source, 1 - ta rge t , ..., n ja r g e t  : edges —* nodes, 
edgecolour : edges —* colours,
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u>i : colours x  . . .  X colours  —» colours, u>j : colours X .. .  X colours —» colours,  e tc ., 
and  infinite, m utually  disjoint sets nodevariables, edgevariables, cotourvariablcs  of node- 
, edge-, and  colour variables, respectively.

Let i l  denote th e  signature consisting of the sorts and operation  sym bols of A and 
ilo th e  p a rt o f H consisting of the sort colours and operation  sym bols u>i,... .

By an  Cl-graph (or a graph) we mean an  fl-algebra G  such th a t i^sourcec(x)  =  nonec  
im plies j  _sourcec(x)  =  nonce  f o r /  >  i  and i J a r g e tc { x )  =  nonec  implies j j a r g e t c ( x )  — 
nonce  for j  >  >"• By sourccc(x)  (resp.: by ta rg e tc (x ))  we denote the string  of subsequent 
different from no n ec  nodes i^sourcec(x)  (resp.: the string  of subsequent different from 
nonec  nodes i J a r g e tc ( x ) ) .  T hus we ob tain  functions

so u r c e c , ta rg e tc  ■ edgesc  (nodesc)".

By an Cl-homomorphism  from an fi-graph G  to  an fi-graph G' we m ean any homo­
m orphism  h : G  —* G' from the fi-algcbra G  to  the fi-algebra G', and by h „ ^ s, 
hcoicun, we denote  th e  com ponents of h corresponding to  the sorts nodes, edges, colours, 
respectively.

By Cl.graphs  we denote the category of fi-graphs and fi-hom om orphism s.

T he category  d ig ra p h s  enjoys the following property.

2 .1. P r o p o s i t i o n .  Each pair of fi-hom om orphism s of the  form (L  +- K  D) such 
th a t th e  pair (Sl<>-reduct(L) ‘fSss’ Clo-rcduct(K) i lo j-educi(D ))  has a pushout

{Cl0jreduct{L) X  i -  fioJ-educt(D))  in the category of fl-algebras has also a pushout 
( £  -i* G D)  in U.graphs, where t lo j-ed u d (G )  =  X ,  = g ¿co/e. r, =  V,
nodesc, edgesc, gnodc. , 9cdt ci> 6-><*&*> btd,t ,  are obtained from the respective pushouts 
in th e  category  o f sets, and i s o u r c e c ,  i J a r g e t c , edgecolourc  are determ ined by the 
properties of fi-graphs. O

In particu lar, if we are  no t interested in operations on colours, and so in H there are 
jjo operation  sym bols, then (fi<>J 'educt(L) { lo j-educt(K)  f loj-educt(D))  is a
d iagram  in th e  category of sets. Consequently, the corresponding category f l .graphs  has 
pushouts.

T he fact th a t  nodesc , edgesc, 9ru*Ui, 9cd««> K<xUi, can be taken from the 
respective pushouts in th e  category of sets is straightforw ard.

As far as th e  definitions and uniqueness of i jsourcec, iJ a r g e tc ,  edgecolourc  are 
concerned, they  follow from the fact th a t, if an edge x  6  edgesc  has i-sourcei,(x ) =  y, 
j j a r g e t i ( x )  = z ,  and  tdgecolouri,{x) =  u, then the only candidate  for i^sourcec{.gtdt t,{x))  
is gnojc*(y), th e  only cand ida te  for j  J a rge tc (g edt f ( x ) )  is gnodtj(z),  and the  only candidate 
for edgecolourc{gcd,<.(.x)) is g ^  our»(u).
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In th is paper we re s tric t ourselves to  special pushouts.

G iven a  p a ir o f fi-hom om orphism s (L  <i- K  D)  and a  pushout (L  G  D)  of 
th is pa ir, we call th is  pushou t natural, and we call ( K  D  G) the natural pushout 
complement  of (K  —* L  G ), if the com ponents of b : D  —* G  are inclusions.

For ou r purposes we shall have to  do only w ith cases in which n a tu ra l pushouts and 
pushout com plem ents can be obtained  in a particu larly  simple way.

L et fto-ierm .s be  th e  fi0-algebra of term s w ith colour variables. From  th e  universal 
p roperty  of free algebras we ob ta in  the  following proposition.

2 .2 . P r o p o s i t io n .  For each fio-algebra A  and each fio-homom orphism a : f l0 te r m s  —* 
A ,  th e  d iag ram  (CloJerms f l0J c r m s )  A)  has a pushout and the diagram

(f io Je rm s  A  A )  is such a pushout. O

From  th is proposition we ob ta in  im m ediately the following one.

2 .3 . P r o p o s i t i o n .  Each pair of m orphism s (L K  D)  w ith fto-reduct[L)  and 
i lo jredu c i(K )  equal to  i lo J e rm s ,  and  w ith K  L  being the identity  hom om orphism , 
has a n a tu ra l pushou t (L  -i* G D).  □

2 .4 . P r o p o s i t i o n .  Each pair of n-hom om orphism s ( K  -U L  A  G) such th a t Q.0j-educt[L)  
and  Clo-reduct(K) a re  equal to  U o J e rm s , K  L  is the identity  hom om orphism , gno4e, 
is one-to-one in nodesi, — ImxUtinodesn), 9tdge> is one-to-one in edgesi, — lci S' , (edgesK ), 
an d  all i ^ o u r c e c ( x )  and  j J a r g e ta ( x )  w ith  x  e  edgesa -  gcJi<. (edgesi)  a re  in

(inodesc -  g n<»u,[nodes L)) U 9nodt.(ln^t.(nodesK ))),

has a n a tu ra l pushou t com plem ent ( K  D  \  G). Moreover,

nodesD =  (nodesG -  g (nodes L)) U gnode.(Lo4t .(nodeSK)),

edgesD =  (edgesa -  9 t i , t , ( td 9 t3 i ) )  u  ScdJe . ( W * ( e<fye'sA")).

flo-reduct(D)  =  fto j-educt(G) — fi0 J e r m s ,

d  is defined by dnoJej(x )  =  ^ejge*(x) =  gcilget(ledgem(x )), dcolours(x)  —
gcoitn.rt(la>iouri{x)), and 6 consists of inclusions ¿ w « ,, bej !C,  and of the identity  of colours. 
Q

A proof of th is proposition  for th e  g raph p a rt is essentially as the proof o f a  sim ilar 
theorem  for re la tional s truc tu res in [EKMRW  82]. For the colour p art it follows from 2.3.

T h e  category  t l-graphs  m ay be too large for some applications. For exam ple, for 
logic p rogram m ing th e  full subcategory of th is category w ith graphs being jungles  is more 
su itab le , where a  jung le  is a  (hyper)graph  w ithout cycles and w ithout edges having a
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com m on node in sources (cf. (CMREL 91] and [CRP 91]). For o th er applications we 
m ay need o ther subcategories in which pushouts and  pushout com plem ents, a rb itra ry  or 
na tu ra l, m ay be different from  those in Cl.graphs, o r even m ay no t exist. So, in th e  sequel 
we shall re la te  all o u r form alism  to  an a rb itra ry  bu t fixed full subcategory  C  of Cl.graphs.

Productions representing  rew riting rule3 for fi-graphs can be defined as follows.

By a production  we m ean any p — (L  K  A  R),  where L, K ,  R  a re  fi-graphs in 
the subcategory  C  w ith finite sets of nodes and edges and the fio-reducts coinciding w ith 
f io Je rm s , the fio-algebra of term s, and / : K  —> L, r  : K  —* R  a re  fi-hom om orphism s 
w ith Icoiau,, and  r^our,  being identities.

We call K  th e  gluing graph of p, and we call L and R  the left side and  the right side 
of p, respectively.

In order to  be ab le  to  point to  some elements of productions, we in troduce su itable 
concepts of param etrized  productions and param eters.

By a parametrized  p roduction we m ean any p =  (L  K  -A R , m , n ) ,  where prr =  
(L  4- K  A  R)  is a  p roduction  and m and n are triples m =  (m „0,je, ,m ej pej,m c0<<,„r j) and 
n =  (,n„cdc, , n c<lstJ, n colnr.)  of partia l m appings

m„odet ■ nodest, O —* nodevariables  
rri'd/'M • edgesl 0 —+ edgevariables 
^colour, : coloursL  3 —t colourvariables 
n„o<ic : nodesp  3 —♦ nodevariables 
n cjgct ■ edges ft 2 —* edgevariables 
ncoitmr, ■ coloursR D —* colourvariables

such th a t

n«i«(x)) =  n nMi(<( r IW4u (z)} for all x  e  nodesK ,
(¡edgcj(y)) — n ^ p t t (rejge, (y )) for all y €  edges^ ,

and mcaiourt, n „ j„ r,  a re  respectively an inclusion of a subset of colour-variables occurring 
in fio-term s assigned to  edges of L  and an inclusion of a subset of colour-variables occurring 
in fio-term s assigned to  edges of R.

Values o f m appings m noj ci, n noj ei, ^« Jonn , are  called respec­
tively node-, edge-, and  colour-parameters of p.

2 .5 . E x a m p le . In th e  case of the logic program  in 1.1 atom ic formulas corresponding 
to  processes can be rew ritten  according to  the param etrized productions in figures 2.1 -
2.4, where the labels p lay the role of param eters. □
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3 um '

•

3um[Y,S) => jum'ÍV'.OjS) 

Figure 2.1

íum '([X -|y ], P, S ) => p lu s (X ,  P, Q ) ,su m '(Y ,  Q, S )

Figure 2.2

¿  .P  .S  -  .S  = P

ju m '(Q ,P , S ) => S  :=  P  

Figure 2.3

□

\P .S
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plus

.s I .s i ,

f
□  ED 1 ° + b i

p lu s (a ,b ,S )  => S  :=  a +  6 

Figure 2.4

A pplications of usual productions to  ft-graphs can be defined following th e  standard  
algebraic approach originated in [EPS 73]. An application of a param etrized production 
p can be defined as an application of the usual production prp in which all occurrences of 
each param eter are  instan tia ted  in the sam e way.

Let A  be a  fixed fto-algebra, equipped possibly w ith some relations whose symbols 
belong to  the  language A.

By a  rewriting step  (or a  direct derivation) over A via a param etrized  production 
p =  (L  «— K  A  R ,  m , n ), we mean a pair a  =  (p, i) which consists of p and  of a  diagram  
i as in figure 2.5 in th e  subcategory C  o f f t .graphs  such th a t (1) and (2) for na tu ra l 
pushouts, th e  fto-reducts of G, D, H  coincide w ith A, bcoimr, and are  identities,
and , for each sort s ,  we have;

m ,(x )  =  m ,(y ) im plies g ,( i )  =  s ,(y )  whenever m ,(x )  and m ,[y)  are defined, 
rn ,(z )  =  n ,(y )  im plies g ,(x )  = h ,(y )  whenever m ,(x ) and n ,(y ) are defined, 
n ,(x )  =  n ,(y )  im plies h , (x )  =  h,(y )  whenever n ,(x )  and n ,(y )  are defined.

We say th a t a  rewrites G  into H  and w rite it as G  => H.

L  . 1 K  r ji

( 1) d (2 )

G  . b n  c

Figure 2.5

2 .6 . E x a m p le .  T he replacem ent of 3u m '( [ l |2] ,0 ,S )  by p lu s ( \ , 0 ,P )  and  jum '([2 ], P, S )  
can be represented as a rewriting step  as in figure 2.6. O
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su m ' plus sum '

s I .P  .5 i .  X .p Y :— U

X .  .Y

.X  .Y

.5 a-

LU

zin

I ■

m

I I

m m

plus

ou ou
[p .s

Œ

ju m '( [ l |2 ] ,0 ,5 )  =>■ p lu s ( l ,0 ,  P),  sum'([2], P, S)  

Figure 2.6

T he concept of a  direct derivation can be easily generalized.
Given a  set il  o f param etrized productions, by a derivation over A  via productions 

from II we mean a finite sequence a  =  (Go =$• G\ 3 - ... =6- G,) of rewriting steps over A 
v ia productions from II. Given such a sequence a,  we say th a t it rewrites G; from Go, 
w rite Go =>* G,-, and denote Go and G, by âo(cr) and 3i((t), respectively. By Derc.M\ 
we denote the set of derivations of this kind with Go, G | ,..., G,- having finite sets of nodes 
and edges.
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Given a set X  C  D e r c ^ j i of derivations, by the relation o f  derivability v ia derivations 
from X  we m ean th e  following relation r e l (X )  between graphs:

(G , H )  6  r c l (X )  iff G = o t(o ’) and H  — <?i(a) for some o  £  X .

3 P r o g r a m s

We are interested  in rew riting graphs according to  some program s.
Intuitively, a  p rogram  p we have in m ind is a  description, possibly w ith some pa­

ram eters, of an algorithm  of rew riting graphs by applying productions. In  particu lar, it 
describes how a  given graph G  and a  given, possibly partia l, valuation  v  of variables in 
this g raph , which is defined for param eters of p, a re  transform ed in to  subsequent graphs 
and valuations of variables until reaching a  final result.

In o rder to  facilitate a  sort of busy waiting of processes as m entioned in section 
1, we adm it a  recursion such th a t program s m ay call themselves w ithout executing any 
real action  (an unguarded recursion). Theoretically  it leads to infinite idle loops, bu t in 
p ractice such loops do not happen due to  a  sort of fairness which is usually ensured.

P rogram s are  defined presupposing a set p ro g ra m id en ti f ie r s  of program  iden ti­
fiers, each identifier w ith an arity  which specifies a  num ber of node-, edge-, and  colour- 
param eters. T hey  a re  given by program expressions p, q, r,... which are  of th e  following 
ki^ds:

(1) A constan t n il . T his program  expression represents doing nothing.

(2) A param etrized  production p. T his program  expression represents a  possible rew rit­
ing step  a  =  (p ,i)  as in figure 2.5 which transform s a graph G  and a  valuation v  of 
param eters o f p  in G  in to  a g raph H  and a valuation w  of param eters of p in H ,  
w here v ,(m ,( i) )  =  g , ( x ) and u),(n ,(y )) =  h,(y )  for each sort s  and  all x ,y  of this 
sort.

(3) A result p 7 of a  substitu tion  7 of new variables for param eters in a  p rogram  expres­
sion p. T h is program  expression represents an activ ity  which transform s a graph G  
and  a  valuation  t; of param eters of py in the way in which the ac tiv ity  represented 
by p  transform s G  and  th e  valuation 7  o v,  i.e. the superposition of 7  and  u.

(4) A conditional i f  a  th e n  p e lse  q, where a  is a formula in the language A and 
p, q a re  program  expressions. This program  expression represents th e  choice and 
execution of p or q depending on the satisfaction of a  for the given g raph  G  and the 
given valuation  v  of free variables of a  and param eters of p and q.

(5) A sequential com position p; q of program  expressions p  and q. T his program  expres­
sion represents an execution of p followed by an execution of q.

(6) A parallel com position p || q o f program  expressions p and q. T his program  expres­
sion represents a parallel execution of p and q which can be viewed as an arbitrary  
interleaving of actions of p  and q.

(7) An indeterm inistic  sum  p  + q of program  expressions p and q. T his p rogram  expres­
sion represents an indeterm inistic choice and execution of p or q.
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(8) An in d e ten n in is tic  sum  E x  p, where x is a  variable and p  is a  program  expression. 
T h is p rogram  expression represents an ac tiv ity  which transform s a  graph G  and a 
valuation  v  o f param eters of p in G  in th e  way in which th e  activ ity  represented by 
p  transform s G  and  a  valuation v '  obtained from v by an in d e te rm in ista  choice of 
a  su itab le  value of z . If there is no such a  value for z  then the represented activity  
reduces to  doing nothing.

(9) A defined program  expression

V k h k w h e re  (v?i(yn, V u ,•••) =  V > i . V n ( y n i =  0 «),

w here yji, a re  program  identifiers and j /n ,y ij , . . . ,y „ i ,y n 2, — are  param eters as
specified by th e  respective arities and each tl>¡ is a  program  expression which m ay con­
ta in  expressions o f the form ^ i ( z j u ,* , • « , ..9 n(2¡nii*¡nJi...) and is such th a t all 

*<U) •••> *int» »m2, ... and o ther param eters of 4>< occur am ong y , i ,y , i , .... T his pro­
g ram  expression represents an activ ity  whose execution for y n .y « , . . .  is defined by 
rpk- As in th ere  m ay occur y>i(znii V’«(i tn i. 2*ni,...), one has to  define
the  respective ac tiv ities by the equations y>i(yu,yi2,. . .)  =  0 i,...,V 9„(y„i,y„2, .. .)  =  
V>„, and  consider an occurrence of •••) ' n as a call of th e  respective
xf>j. In pa rticu la r, each program  expression of the form

ip w h e re  (y> =  i f  a  t h e n  p; e lse  n il)

is equivalent to  th e  standard  ite ra tion  construct w h ile  a  d o  p.

(10) An a tom ic  program  expression a to m  p, where p  is a program  expression. T his pro­
g ram  expression represents the activ ity  of successfully executing p as one indivisible 
step .

T hus we have th e  following syntax  of program  expressions:

p  n il
| <  p a ra m e tr i z e d  production >
¡P7
| i f  q  th e n  p  e lse  q
Ip; 9 
Ip II ?
|p + v
| E z p
b * ( j /* i .y « .—) w h e re  (v>, =  V > i , =  0 »)
|a to m  p

To each program  expression p there correspond a set F P (p )  of node-, edge-, and 
colour-variables called free parameters o f  p, which can be defined as follows:

(1) If p  is a  param etrized  production then F P (p )  is the set of param eters of p.

(2) F P ( n il)  =  0.

(3) F P ( p  7 ) = - j (F P(p)) .



(4) F P [ if  a  t h e n  p  e lse  ç) is the union of F P (p )  U F P (q)  and the set of free variables 
of a.

(5) F P ( P; q) =  F P ( P || q) =  F P (p  + q) =  F P (p )  U F P(q).

(6) F P ( Z x p )  = F P ( p ) - { x } .

(7) F P (< Sk(yn ,yk i ,—) w h e re  (y>, =  V ' =  V»»)) =  {yu, J/w, •••}•

(8 ) F P ( a to m  p) — F P[p).

3 .1 . E x a m p le . A program  of com puting the sum  of elem ents of a list of integers as in 
1.1 can be defined as follows:

w h e re

P L U S ( t , n , Q  =

replace sum(Ç,Ç) by sum '(£ ,  0, £);
5l/Af'((,0,C),

E.Y EK if  i  represents  [X|>']
th e n  Ep (replace sum'(£, Ç)

by p lu s (X , 1;, g) and  s u m '( Y, q, £);
( P L U S { X , v , e ) II S U M '( Y , e ,  0 ) )

e lse  if  (  represents  0
th e n  replace su m '( ( ,7 j ,Q  by Ç =  0 
e lse  S U M \i ,n ,Q ) ,

E i  Ey i f  f  represents  x and  tj represen ts  y
th e n  replace p lu s ( ( ,r / , ( )  by (  = x  -f y
e lse  P L U S(Z ,  tj.O

T he instructions o f replacem ent which occur in this program  are param etrized  pro­
ductions as in 2.5. Form ulas occurring in the program  are abbreviations of form ulas of the 
first order language A. For instance, th e  form ula { represents  [A '|y] is an abbreviation  
of a  form ula which sta tes th e  existence o f an edge with the colour |, th e  source node ( ,  
and  the ta rge t nodes X  and Y .

4 S e m a n t ic s
T he way in which pairs consisting of graphs and valuations of variables in these graphs arc 
transform ed by executing program s can be described in the form of a  labelled transition  
system  which consists of a  universe con/  of configurations and a transition  relation — 
W hen considered together with suitable fairness assum ptions, such a system  allows to 
define all p ractically  possible program  com putations.

T he universe c o n f  consists of configurations of the form c =  (p , G , v ), where p is a 
p rogram  expression, G  is a  g raph , and u is a  (possibly partia l) valuation of variables in G 
such th a t th e  defined values of node-, edge-, and colour variables arc respectively nodes, 
edges, and colours o f G.

T he transition  relation —* consists of transitions of the form t =  (c, Q .c7), where 
c, d  a re  configurations and a  is e ither an invisible action r  which does no t change the
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configuration ( th a t is such th a t c — ct) or an action of applying a  production o r executing 
an atom ic program . D enoting by actions  the  set of possible actions we can define this 
relation  as the  sm allest —»C c o n f  x actions  x  co n f  satisfying the following conditions:

( 1) (p , G ,v )  ■£* (n il ,  / / ,  w)  for each param etrized production p and G, I f ,  v, w  such th a t 
there  is a  rew riting  step  o  =  (p, i) w ith the diagram  « as in figure 2.5 and g,(x )  — 
u (rn ,(x )), h ,(y )  =  w (m ,(y )  for each sort s and all x ,y  such th a t m ,(x )  and n ,( y) 
are defined.

(2) ( a to m  p ,G ,  v) p (n il, G', i>') for each program  p and G ,G ', v, v'  such th a t there 
exists a  finite sequence of transitions of the form

(p. G ,v )  ^  ... 24 (n il, G*, v').

(3) If (p ,G , 7 0  u) -2. ( p \ G ',7 ° » ')  then (p~i,G,v) (p,y ,G ' ,v ' ) .

(4) If (p, G , v) A  ( f / , G \ v ’) and the formula /  is satisfied for the valuation i> then
(if  /  th e n  p  e lse  7 , G , i>) -2* (p ', G ', u').

(5) If ( q ,G ,v )  (7', G \  u ') and the formula /  is not satisfied for the valuation v then
( if  /  th e n  p  e lse  7 , G ,v )  (</', G ', u').

(6 ) If (p ,G ,v )  A  (n il, G ', t;') then (p \q ,G ,v )  (7 , G ', u').

(7) If (p ,G ,v )  -A (p ', G ', v’) then (p , q , G , v ) A  (p'; 7, G \  u').

(8 ) If (p, G ,v )  A  (p ', G ', v ') then (p || , ,G ,v )  A  ( j /  || , , G > ' ) .

(9) If (7 , G , V )  A  (7',  G ', v')  then (p || q ,G ,v )  A  (p || 7', G ', u').

(10) If (p ,G ,t/)  A  (p ', G ', v ') then (p +  7,G ,u )  A  (¡ / ,G ' , v ').

(11) If (7 , G , v )  ^  (7',  G ', v ') then (p +  9, G, v)  A  ( , ' ,  G ', v')

(12) (E x  p, G , u) -A (n il, G ,u ) for each program  expression p and all G , u such th a t v(x) 
is no t defined.

(13) If (p , G , v ) -2* (p ',G ',u ')  for some u such tha t i>(x) is defined then (E x  p ,G ,w )  
(p '.G '.u ')  for w  = v — { (x ,v ( x ) ) } .

(14)

(v> t(y* i.»M .-) w h e re  (si>i =  V’l . - . S 5» =  <!>„),G ,v )

(s» j(y> i.y /» .-) w h e re  (9 , =  0 =  0 „ ) ,G ,v )

w henever is the first program  expression in 0 * which is obtained by
substitu ting  in th e  program  expression

V’i(y<t<y>2> - )  w h e re  (y , =  0 i,...,v>„ =  </>„) 

for each occurrence of s? ,(y ;i,y ,j,...).
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(15) If ( r p ^ G jv )  A  t/)  for V'i obtained by substitu ting  in tpk the  program  expres­
sion

) w h e re  (v>, =  ’n =  0 n)

for each occurrence of then

(s»*(W i.yM .— ) w h e re  (y>, =  V>i>-••»¥>» =  W .G ,» )  A  (p '.G '.v ') .

T he  transition  relation  allows to  define com putations of program s and th e  respective 
relations betw een d a ta  and  results.

Formally, a  compulation  of a  program  p is defined as a sequence of tran sitions of the
form

“  =  ( ( P . G . u )  ^  ( p , , G i . v i )  . . . ) ,

where u is either countably  infinite or it has a term inal configuration of th e  form  (n il, G', v'). 
T he  pairs (G, v)  and  (G', v') (if u term inates) are called respectively the data and  the result 
of u.

In reality  it  is usually  ensured th a t only such com putations are possible which enjoy 
a  fairness property . Consequently, in the sequel by a com putation  of a  program  p  we shall 
m ean only such a com putation  u of p which is fa ir  in the sense th a t there  is no transition  
of p  w hich is perm anently  possible s ta rting  from a  configuration c of u and  does no t occur 
am ong th e  tran sitions of u which follow c.

T he resulting relation of a  program  p, re s(p ), is defined as the relation  which holds 
betw een th e  d a ta  and  th e  results of finite com putations of p: (G , v) res(p)  (G',  v ') iff there 
exists a  com puta tion  of p  of the form: (p ,G ,v )  ... —V (n iI ,G ', v').

5 R e s u l t i n g  re la t io n s  o f  p r o g r a m s

T he possibility  o f using com putations of program s to  define the respective resulting re­
lations suggests th a t  an  input-ou tpu t sem antics could be defined directly  in term s of 
resulting  relations. U nfortunately, such a definition is im possible because of th e  lack of 
com positionality  of th e  correspondence betw een program s and their resulting  relations. 
T here a re  tw o sources of this situation. One of them  is the parallel com position, where the 
resulting  relation  of a program  obtained by com posing given program s depends not only 
on th e  resulting  re lations of these program s, bu t also on the resulting relations of sm aller 
p rogram  com ponents. For example, for a program  p || ?, where p — g =  and
P i. 9ii l i  are param etrized  productions the resulting relation is

res[p  || 9) =  re j (p l ;p J;qi1; 97)U re s ( p 1; 9I;p 3; 9, ) U r e s ( p 1; g , ; 9j ;p , )

U re i(g , ; Pi ; Pj! ?2) U res(ç , ; p, ; p j ) U res(<7! ; p, ; P2 )

and it cannot be expressed in term s of r es(p) = re s (p i \p j) and res(q) = res{qi;q-]). 
A nother source of th e  mentioned situation  is recursion, where th e  resulting relation  o f a 
p rogram  defined by a m utual recursion need no t be definable by the  corresponding system  
of equations in th e  algebra of relations. For exam ple, for the program  p =  A’ w h e re (A ' =
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n il;X ), each finite graph G , th e  resulting relation is iden ti ty  and it is different from the 
least re lation  R  satisfying R  =  iden t i ty  o R  since such the la tte r  is the em pty  relation 0.

T h e  lack of com positionality  w. r. to  th e  parallel composition and recursion shows 
th a t  there is no chance for a  d irect inpu t-ou tpu t sem antics of the considered program s. 
In pa rticu la r, an  operational sem antics as presented cannot be avoided even if we are 
in terested  only in the resulting relations of program s. On the contrary, in th e  situa tion  in 
which such relations canno t be derived from  program s directly, a  sem antics of this kind 
becomes an  im portan t tool of defining th e  resulting relations.

T he  reasonning ab o u t resulting relations of program s can be supported  by a num ber 
o f properties o f such relations.

5 .1 . P r o p o s i t io n .  T he  following properties hold true  for the resulting relations of 
program s:

( 1) re s (s k ip )  =  iden ti ty .

(2) If p is a  param etrized  production then  (G , v )re s (p )( // , w) iff there is a rew riting step 
<7 =  (p ,j )  w ith th e  d iagram  i as in figure 2.5 and g ,(x )  =  ti(m ,(r)) , h ,(y)  =  u>(m,(y)
for each so rt 3 and  all x , y  such th a t m ,( x )  and n ,(y)  are defined.

(3) (G ,u )re s ( jn r ) (G ',i/)  iff (G .7  o u )res(p )(G ',7  o u').

(4) (G , t ; ) r e i ( i f  /  th e n  p e lse  q)(G ',v ')  iff e ither /  is satisfied for G  and v and
(G ,v )re s (p )(G ',« /)  o r /  is not satisfied and (G ,v )re s (q ) (G \  v').

(5) res(p ; q) -  r e s (p )o  res(q).

(6 ) re s (p  +  q) =  rea(p) U res(q).

(7) res(Y.x p) — U (res(p ) : i €  I ) ,  where I is the set of possible values of valuations for 
x .  □

A proof is o f this proposition is straightforw ard.

T h e  class o f resulting relations of program s is rich enough to represent the usual 
derivability  relation.

Taking in to  account th e  definition of th e  resulting relation of a program  and the 
definition of th e  sem antics of program s, we ob tain  the following realization of the relation 
of derivability.

5 .2 . P r o p o s i t io n .  Let II =  { p i,- ..,p m} be a  finite set of param etrized productions. 
T here  is a  program  p  such th a t H  is derivable from G via productions from II iff 
( G ,v ) r e s (p ) ( H , t / )  for som e v and «/'. In particu lar, we m ay define such a program  as

p =  X  w h e re  (X  =  q; X  + n il)

where
<7 =  ( E i | ) . . . ( E x m)(pi +  ... +  pm)

and  { x i , . . . ,x m} is th e  se t o f param eters of productions p t , . . . ,p m. □
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6 R e c a p i t u l a t i o n
We have presented conceptual means for program m ing concurrent processes o f rew riting 
graphs by applying productions. These m eans are flexible enough to  cover th e  usual 
rew riting. However, the ir possibilities go much beyond such particu lar cases due to  the 
powerful m echanism s of param eters, recursion, concurrency, and operating  on colours.

T he  presented  form alism  is brought to  the form of (a  kernel of) a  program m ing 
language w ith a  precise syn tax  and sem antics.

T he sem antics defines com putations of each program  p. These com putations repre­
sen t th e  possible ways of transform ing a given graph G  and a given valuation  of variables 
in this graph , and  th u s they  determ ine a  resulting relation res(p) of p. T he  possibility 
of determ ining such a  relation  is im portan t since there is no simpler way of com puting it 
d irectly  from th e  program .

T he sem antics presented in the paper represents concurrency as an a rb itra ry  in­
terleaving of actions. Nevertheless, it contains im plicitly all the inform ation abou t the 
existing concurrency. Moreover, there seems to be a  chance of refining it to  a form in 
which concurrency would be reflected in a  more explicit way as in [MR 92]. How to  do it 
is however a problem  which we leave open in the present paper.

A c k n o w le d g e m e n ts .  T he authors are grateful to the two anonym ous referees of an 
early  version of th is  paper for the ir com m ents and suggestions.
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