
PRACE IPI PAN • ICS PAS REPORTS

A n d r e a M a g g io lo -S c h e tt in i
a n d

Józef Winkowski

A FORM ALISM
FO R PR O G R A M M E D R E W R IT IN G

OF (H Y PE R)G R A PH S*

745

INSTYTUT PODSTAW INFORMATYKI
POLSKIEJ AKADEMII NAUK

INSTITUTE OF COMPUTER SCIENCE
POLISH ACADEMY OF SCIENCES

¥ % ! >

i /
V '

A n d re a M a g g io lo -S c h e tt in i
a n d

Józef Winkowski

A FORM A LISM
FO R PR O G R A M M E D R E W R IT IN G

OF (H Y PE R)G R A PH S*

7 4 5

• W i l l l i

J m N U

W a rs z a w a , J u ly 1994

‘This work has been supported by the Italian National Council for Research
(CNR-CNIM), by the Polish Academy of Sciences (IPI PAN),
and by COM PUGRAPH Basic Research Esprit Working Group n. 7183

A dresy au to rów : A ndrea M aggiolo-Schettini
D ip a rtim en to di In fo rm ática
U n ivers itá di P isa
C orso Ita lia 40
56100-Pisa
Ita ly

Józef W inkow ski
In s titu te of C o m p u te r Science
Polish A cadem y of Sciences
ul. O rdona 21
01-237 W arszaw a
Poland

P r i n t e d a s a m a n u s c r i p t
N a p r a w a c h r ę k o p i s u

C R : F .I . , H .l .

nr inw.

N akład 180 egz. A rk . w yd. 1,20; ark . d ruk . 1,00. P ap ie r kserograficzny kl. III.
O d d an o do d ru k u w lipcu 1994 r. W ydaw nictw o IP I PAN

ISSN: 013S-0648

A b s t r a c t . S tre sz c z e n ie

T he paper presents a form alism for rew riting (hyper)graphs in a controlled m anner. This
form alism is essentially a simple program m ing language w ith productions, th a t is rew riting
rules, playing the role of basic instructions. The program s in this language arc built from
productions by m eans of ra ther standard constructors, including a parallel com position.
T hey m ay contain param eters to point to specific elem ents of graphs to which they are
supposed to be applied . T he program s are intended to describe how to transform a graph
and a valuation of param eters in this g raph in order to reach a resulting g raph and a
resulting valuation of param eters.

FO RM A LIZM DO PROG RAM O W AN IA TRA N SFO R M A CJI (H Y PE R)G R A FÓ W

P raca prezentuje form alizm do kontrolowanego przetw arzania (hyper)grafów . Form al
izm ten stanow i w istocie prosty język program ow ania z produkcjam i, tzn . regularni
przetw arzan ia , odgryw ającym i rolę instrukcji podstawowych. Program y w tym języku
są. budow ane z produkcji za pomocy typow ych konstruktorów program otw órczych wśród
których je s t złożenie równolegle. P rogram y mogą zawierać param etry . P aram etry pro
gram u wskazują elem enty grafów do których ten program m a być stosowany. Ogólnie,
p rogram opisuje ja k transform ow ać g raf i wartościowanie param etrów w tym grafie ażeby
uzyskać g raf wynikowy i wynikowe wartościowanie param etrów .

K e y w o rd s :
(hyper)g raph , rew riting rule, production, param etrized production, rew riting step , pro
g ram of rew riting , s tru c tu red operational sem antics, resulting relation.

■

✓

■

1 I n t r o d u c t io n
Some models of com puting can be form ulated in a natural m anner in term s of rew riting of
appropriate d a ta s truc tu res represented as graphs. Take, for instance, th e representation
of acto r system s as in [JaRo 91] or th a t of logic program s in [CMREL 91].

A theory of g raph rew riting systems has been developed which describes how to
rew rite graphs according to formal rules called productions, where a rule says th a t a
certain given pa tte rn can be replaced by another pa ttern if it occurs in a graph, and
where graphs m ay be of very general types, including hypergraphs, coloured hypergraphs,
relational structures, etc. (cf. [CER 79], [EKMRW 82], [ENR 83], [ENRR 87], [EKR 91]).
T his theory in its pure form does not assume anything about where and in w hat order to
apply productions. In th is situation a t each stage of rewriting an independent search of
an applicable rule and of a place of application m ust be done, which in general is a task
of high complexity. On th e o ther hand, in some problems the structu re of d a ta and the
algorithm to solve th e problem allow to organize rewriting in an efficient m anner.

T his paper presents a formalism w ith mechanisms which make such an organized
rew riting possible. O ur form alism is in th e framework of the algebraic approach proposed
in [EPS 73]. It is essentially a kernel of a simple programming language w ith productions
playing th e role of basic instructions. Program s are built in this formalism from produc
tions by means of ra th e r standard constructors which define the order and m odalities of
rew riting steps. Among th e program constructors there is a parallel com position which
declares th e possibility of executing program s in parallel. The parallelism is understood
here as an a rb itra ry interleaving of atom ic (i.e. indivisible) actions of com ponent pro
gram s, where atom ic actions are e ither single instructions or complexes o f instructions
which are specified as atom ic with the aid of a special constructor. Productions and pro
gram s m ay contain param eters to point to particu lar elem ents of graphs to which they are
supposed to be applied. W hen applied to pairs consisting of a graph and a valuation of
param eters in this g raph they transform such pairs one into another as long as it follows
from their m eaning. T he m echanism of accessing graphs through valuations o f param eters
allows to enforce com ponents of a program to operate on the sam e d a ta and to realize
shared variables whose values represent some parts of da ta .

T he presented form alism is endowed w ith a structured operational sem antics in the
sty le o f [Plo 81]. T his sem antics defines the possible executions of a program . Conse

5

quently, it determ ines the corresponding relations between the d a ta and results of per
formed executions.

T he form alism we define may be useful whenever a problem can natu rally be reduced
to graph rew riting and the process of rew riting is too complex to be represented as a
result o f a free application of a system of productions. We shall illustrate it on example
of a concurrent execution of a program in a simple concurrent logic language (called FCP
after [Sh 89]).

1 .1 . E x a m p le . C onsider the logic program:

s u m (Y , S) «— jum '(K , 0, S)
s u m '(Q ,F ,S) . - F = S
W ([x m p , S) - P M * , p , q), w (y , q , S)
p lus(0 ,0 , X) — X = 0
p lus(0 ,1 , AT) *— X = 1

W hen applied to th e goal su m ([l,2] ,S) this program com putes the sum of elem ents of
the list Y = [1, 2] and assigns the result to S.

If such a program is regarded as a concurrent logic program in FC P then the atom ic
form ula of th e goal and those which are obtained by applying the clauses of th is program
to th e goal can be viewed as processes which com m unicate via their variables (in [Sh
89] such variables are called logical ones). Each process of this type keeps trying to
m atch its form ula (th a t is the formula it corresponds to) with a clause head by a suitable
substitu tion of term s for variables, and, if successful, it creates processes corresponding
to th e atom ic form ulas of the right hand side of the clause. This procedure may imply an
in s tan tia tion of variables the process shares with o ther existing processes. Due to this,
th e processes aw aiting for such an instantiation m ay advance.

For ou r p rogram and goal we obtain the following com putation:

aum ([l,2],S)
sum '([l ,2] ,0 ,S)
p /us(l ,0 , F),sur7i'([2],F,5)
p/ua(1, 0 , / >) ,p /u s (2, F, Q),sum '([], Q ,S)
P = l ,p /u s (2 ,F ,(j) , ju m '(0 ,Q ,S)
P = l ,p /us(2 ,F ,Q) ,i3 = S
P = 1 , P ^ (2 , F , S)
p/us(2,1 , S)
5 = 3.

In th is com puta tion S , P , Q arc variables. In order to find the required sum and assign
it to S , the process su m ([l ,2] ,5) m atches its form ula with the head of the first clause
and creates the process s u m '([l ,2] ,0 ,5) . This process m atches its form ula w ith the third

6

clause and creates two parallel processes plus(1,0, P) and sum '([2), P, S) which contain
a new variable P . Now p /u s (l ,0 , P) in stan tia tes P to 1 and sum '([2], P, S) evolves into
plus[2, P, Q) and ju m '([] , Q, S) . T he processes p iu s (l,0 , P) and plus(2, P, Q) synchronize
in the sense th a t p lus(2, P, Q) w aits for in stan tia tion of P to 1 in order to in stan tia te Q.
As sim ultaneously 5 is in stan tia ted to Q due to the second clause, we ob ta in finally the
required result 5 = 3.

In ou r approach each s ta te of a com putation of this type is represented by a jungle
as in [CR 93]. For instance, the s ta te p /u s (l ,0, P), sum '([2], P, S) is represented as shown
in figure 1.1. In this representation hyperedges correspond to concrete occurrences of
p red icate and function sym bols and nodes represent term s (m ore precisely, nodes are
roots of subjungles which represent term s). For instance, the node a represents th e term
2 |(], th a t is the list [2).

mm
Figure 1.1

Processes which take p art in a com putation are present in it as subjungles which
represent th e respective atom ic formulas. They are realized by calling with su itab le values
of param eters and executing, possibly m any tim es, program s which spccify how a proccss
of a given class perform s its step. Such a realization leads usually to parallel processes and
then it appears as an interleaving of actions of the existing processes which is synchronized
solely by instan tia tions of variables shared by processes.

For an illustration of this way of representing and realizing of processes let us consider
th e process plus(1,0, P). Each step of th is process can be realized by calling w ith { repre
senting 1 and r) representing 0, and w ith (= P , and executing a program P L U S ({ , rj,C)
whose body can be defined as

E x Ey if (represen ts x and 17 represents y
th e n replace p lu s ({ ,r i , () by (— x + y

e lse P L U S { { , t) , ()

where replace p lu s ((, i j , () iy (= i + y denotes a reduction of the jungle which represents

7

plus({ ,T),Q (see leftm ost jungle in figure 2.4) to a single edge w ithout ta rge t nodes,
w ith a single source node C, and w ith th e colour equal to the sum of x and y (see the
righ tm ost jung le in figure 2.4), and where Ex and Ey denote an indeterm inistic choice
of som e instances of x and y in the jungle to which the program is applied. Each call of
PLUS{(,,rj,C,) is an a tte m p t of in stan tia ting variables of term s represented by £, 77, £. If
successful, it te rm inates the process p iu s (l ,0 , P) w ith P = x + y. O therw ise it causes a
subsequent call of P L U S (£ ,r i , () which m ay be viewed as a subsequent step the process
p lu s (\ ,0 , P) to be realized (possibly in parallel with o ther processes) after com pleting the
cu rren t step.

Sim ilarly, each step of th e process 3u m '([l ,2] ,0 , 5) can be realized by calling with £
representing [1, 2], 7 representing 0, and with { = S , and executing a program S U A/'({, 17, ()
whose body can be defined as

Y.X EK i f { represen ts [A’lV]
th e n E g (replace sum '(£ , tj, () by p lu s (X , 17, £>) and su m '(Y , g, £);

(P L U S (X , n ,e) II S U M \ Y , e , 0))
e ls e if (represen ts Q

th e n replace sum"((, r/ ,() by (= 0

e ls e S U M '((, i7,0)
where (P L U S (X ,r] , g) || S U M '[Y , g ,Q denotes the parallel interleaving execution of pro
g ram s P L U S (X , n , g) and S U M '(Y , p,C), and

replace sum'(£,ri, () by p lu s (X , rj, o) and sum '(Y , g , () ,

replace sum '(£ ,r i ,Q by (= 0

are th e opera tions o f replacing th e leftm ost jungle by the rith tm ost one in figures 2.2 and
2.4, respectively. T he call o f S U M \ (, »7, () if { represents the em pty list [] m ay be viewed
as a subsequent step of th e realized process ju m '([l ,2] ,0 ,S) whereas P L U S (X , 77, p) and
S U M \ Y , g , Q s ta r t two new processes p lu s (l , 0, P) and sum '([2], P, S) .

T he present paper extends and improves a previous work in [MW S3], [MW 91), and
[MW 92]. It is organized as follows. In section 2 we recall and modify for our purposes
th e basic notions related to rew riting graphs. In section 3 we define program s of rewriting
graphs. In section 4 we present a structured operational sem antics of these program s. In
section 5 we describe in p u t-o u tp u t relations of programs.

2 G r a p h s , p r o d u c t io n s , a n d d e r iv a t io n s
Let A be a fixed m any-sorted first-order language w ith equality which has sorts nodes,
edges, colours, operation sym bols
none » nodes,
I ^source, ..., m^source, 1 - ta rge t , ..., n ja r g e t : edges —* nodes,
edgecolour : edges —* colours,

S

u>i : colours x . . . X colours —» colours, u>j : colours X .. . X colours —» colours, e tc .,
and infinite, m utually disjoint sets nodevariables, edgevariables, cotourvariablcs of node-
, edge-, and colour variables, respectively.

Let i l denote th e signature consisting of the sorts and operation sym bols of A and
ilo th e p a rt o f H consisting of the sort colours and operation sym bols u>i,... .

By an Cl-graph (or a graph) we mean an fl-algebra G such th a t i^sourcec(x) = nonec
im plies j _sourcec(x) = nonce f o r / > i and i J a r g e tc { x) = nonec implies j j a r g e t c (x) —
nonce for j > >"• By sourccc(x) (resp.: by ta rg e tc (x)) we denote the string of subsequent
different from no n ec nodes i^sourcec(x) (resp.: the string of subsequent different from
nonec nodes i J a r g e tc (x)) . T hus we ob tain functions

so u r c e c , ta rg e tc ■ edgesc (nodesc)".

By an Cl-homomorphism from an fi-graph G to an fi-graph G' we m ean any homo
m orphism h : G —* G' from the fi-algcbra G to the fi-algebra G', and by h „ ^ s,
hcoicun, we denote th e com ponents of h corresponding to the sorts nodes, edges, colours,
respectively.

By Cl.graphs we denote the category of fi-graphs and fi-hom om orphism s.

T he category d ig ra p h s enjoys the following property.

2 .1. P r o p o s i t i o n . Each pair of fi-hom om orphism s of the form (L +- K D) such
th a t th e pair (Sl<>-reduct(L) ‘fSss’ Clo-rcduct(K) i lo j-educi(D)) has a pushout

{Cl0jreduct{L) X i - fioJ-educt(D)) in the category of fl-algebras has also a pushout
(£ -i* G D) in U.graphs, where t lo j-ed u d (G) = X , = g ¿co/e. r, = V,
nodesc, edgesc, gnodc. , 9cdt ci> 6-><*&*> btd,t , are obtained from the respective pushouts
in th e category o f sets, and i s o u r c e c , i J a r g e t c , edgecolourc are determ ined by the
properties of fi-graphs. O

In particu lar, if we are no t interested in operations on colours, and so in H there are
jjo operation sym bols, then (fi<>J 'educt(L) { lo j-educt(K) f loj-educt(D)) is a
d iagram in th e category of sets. Consequently, the corresponding category f l .graphs has
pushouts.

T he fact th a t nodesc , edgesc, 9ru*Ui, 9cd««> K<xUi, can be taken from the
respective pushouts in th e category of sets is straightforw ard.

As far as th e definitions and uniqueness of i jsourcec, iJ a r g e tc , edgecolourc are
concerned, they follow from the fact th a t, if an edge x 6 edgesc has i-sourcei,(x) = y,
j j a r g e t i (x) = z , and tdgecolouri,{x) = u, then the only candidate for i^sourcec{.gtdt t,{x))
is gnojc*(y), th e only cand ida te for j J a rge tc (g edt f (x)) is gnodtj(z), and the only candidate
for edgecolourc{gcd,<.(.x)) is g ^ our»(u).

9

In th is paper we re s tric t ourselves to special pushouts.

G iven a p a ir o f fi-hom om orphism s (L <i- K D) and a pushout (L G D) of
th is pa ir, we call th is pushou t natural, and we call (K D G) the natural pushout
complement of (K —* L G), if the com ponents of b : D —* G are inclusions.

For ou r purposes we shall have to do only w ith cases in which n a tu ra l pushouts and
pushout com plem ents can be obtained in a particu larly simple way.

L et fto-ierm .s be th e fi0-algebra of term s w ith colour variables. From th e universal
p roperty of free algebras we ob ta in the following proposition.

2 .2 . P r o p o s i t io n . For each fio-algebra A and each fio-homom orphism a : f l0 te r m s —*
A , th e d iag ram (CloJerms f l0J c r m s) A) has a pushout and the diagram

(f io Je rm s A A) is such a pushout. O

From th is proposition we ob ta in im m ediately the following one.

2 .3 . P r o p o s i t i o n . Each pair of m orphism s (L K D) w ith fto-reduct[L) and
i lo jredu c i(K) equal to i lo J e rm s , and w ith K L being the identity hom om orphism ,
has a n a tu ra l pushou t (L -i* G D). □

2 .4 . P r o p o s i t i o n . Each pair of n-hom om orphism s (K -U L A G) such th a t Q.0j-educt[L)
and Clo-reduct(K) a re equal to U o J e rm s , K L is the identity hom om orphism , gno4e,
is one-to-one in nodesi, — ImxUtinodesn), 9tdge> is one-to-one in edgesi, — lci S' , (edgesK),
an d all i ^ o u r c e c (x) and j J a r g e ta (x) w ith x e edgesa - gcJi<. (edgesi) a re in

(inodesc - g n<»u,[nodes L)) U 9nodt.(ln^t.(nodesK))),

has a n a tu ra l pushou t com plem ent (K D \ G). Moreover,

nodesD = (nodesG - g (nodes L)) U gnode.(Lo4t .(nodeSK)),

edgesD = (edgesa - 9 t i , t , (td 9 t3 i)) u ScdJe . (W * (e<fye'sA")).

flo-reduct(D) = fto j-educt(G) — fi0 J e r m s ,

d is defined by dnoJej(x) = ^ejge*(x) = gcilget(ledgem(x)), dcolours(x) —
gcoitn.rt(la>iouri{x)), and 6 consists of inclusions ¿ w « ,, bej !C, and of the identity of colours.
Q

A proof of th is proposition for th e g raph p a rt is essentially as the proof o f a sim ilar
theorem for re la tional s truc tu res in [EKMRW 82]. For the colour p art it follows from 2.3.

T h e category t l-graphs m ay be too large for some applications. For exam ple, for
logic p rogram m ing th e full subcategory of th is category w ith graphs being jungles is more
su itab le , where a jung le is a (hyper)graph w ithout cycles and w ithout edges having a

10

com m on node in sources (cf. (CMREL 91] and [CRP 91]). For o th er applications we
m ay need o ther subcategories in which pushouts and pushout com plem ents, a rb itra ry or
na tu ra l, m ay be different from those in Cl.graphs, o r even m ay no t exist. So, in th e sequel
we shall re la te all o u r form alism to an a rb itra ry bu t fixed full subcategory C of Cl.graphs.

Productions representing rew riting rule3 for fi-graphs can be defined as follows.

By a production we m ean any p — (L K A R), where L, K , R a re fi-graphs in
the subcategory C w ith finite sets of nodes and edges and the fio-reducts coinciding w ith
f io Je rm s , the fio-algebra of term s, and / : K —> L, r : K —* R a re fi-hom om orphism s
w ith Icoiau,, and r^our, being identities.

We call K th e gluing graph of p, and we call L and R the left side and the right side
of p, respectively.

In order to be ab le to point to some elements of productions, we in troduce su itable
concepts of param etrized productions and param eters.

By a parametrized p roduction we m ean any p = (L K -A R , m , n) , where prr =
(L 4- K A R) is a p roduction and m and n are triples m = (m „0,je, ,m ej pej,m c0<<,„r j) and
n = (,n„cdc, , n c<lstJ, n colnr.) of partia l m appings

m„odet ■ nodest, O —* nodevariables
rri'd/'M • edgesl 0 —+ edgevariables
^colour, : coloursL 3 —t colourvariables
n„o<ic : nodesp 3 —♦ nodevariables
n cjgct ■ edges ft 2 —* edgevariables
ncoitmr, ■ coloursR D —* colourvariables

such th a t

n«i«(x)) = n nMi(<(r IW4u (z)} for all x e nodesK ,
(¡edgcj(y)) — n ^ p t t (rejge, (y)) for all y € edges^ ,

and mcaiourt, n „ j„ r, a re respectively an inclusion of a subset of colour-variables occurring
in fio-term s assigned to edges of L and an inclusion of a subset of colour-variables occurring
in fio-term s assigned to edges of R.

Values o f m appings m noj ci, n noj ei, ^« Jonn , are called respec
tively node-, edge-, and colour-parameters of p.

2 .5 . E x a m p le . In th e case of the logic program in 1.1 atom ic formulas corresponding
to processes can be rew ritten according to the param etrized productions in figures 2.1 -
2.4, where the labels p lay the role of param eters. □

11

3 um '

•

3um[Y,S) => jum'ÍV'.OjS)

Figure 2.1

íum '([X -|y], P, S) => p lu s (X , P, Q) ,su m '(Y , Q, S)

Figure 2.2

¿ .P .S - .S = P

ju m '(Q ,P , S) => S := P

Figure 2.3

□

\P .S

12

plus

.s I .s i ,

f
□ ED 1 ° + b i

p lu s (a ,b ,S) => S := a + 6

Figure 2.4

A pplications of usual productions to ft-graphs can be defined following th e standard
algebraic approach originated in [EPS 73]. An application of a param etrized production
p can be defined as an application of the usual production prp in which all occurrences of
each param eter are instan tia ted in the sam e way.

Let A be a fixed fto-algebra, equipped possibly w ith some relations whose symbols
belong to the language A.

By a rewriting step (or a direct derivation) over A via a param etrized production
p = (L «— K A R , m , n), we mean a pair a = (p, i) which consists of p and of a diagram
i as in figure 2.5 in th e subcategory C o f f t .graphs such th a t (1) and (2) for na tu ra l
pushouts, th e fto-reducts of G, D, H coincide w ith A, bcoimr, and are identities,
and , for each sort s , we have;

m ,(x) = m ,(y) im plies g ,(i) = s ,(y) whenever m ,(x) and m ,[y) are defined,
rn ,(z) = n ,(y) im plies g ,(x) = h ,(y) whenever m ,(x) and n ,(y) are defined,
n ,(x) = n ,(y) im plies h , (x) = h,(y) whenever n ,(x) and n ,(y) are defined.

We say th a t a rewrites G into H and w rite it as G => H.

L . 1 K r ji

(1) d (2)

G . b n c

Figure 2.5

2 .6 . E x a m p le . T he replacem ent of 3u m '([l |2] ,0 ,S) by p lu s (\ , 0 ,P) and jum '([2], P, S)
can be represented as a rewriting step as in figure 2.6. O

13

su m ' plus sum '

s I .P .5 i . X .p Y :— U

X . .Y

.X .Y

.5 a-

LU

zin

I ■

m

I I

m m

plus

ou ou
[p .s

Œ

ju m '([l |2] ,0 ,5) =>■ p lu s (l ,0 , P), sum'([2], P, S)

Figure 2.6

T he concept of a direct derivation can be easily generalized.
Given a set il o f param etrized productions, by a derivation over A via productions

from II we mean a finite sequence a = (Go =$• G\ 3 - ... =6- G,) of rewriting steps over A
v ia productions from II. Given such a sequence a, we say th a t it rewrites G; from Go,
w rite Go =>* G,-, and denote Go and G, by âo(cr) and 3i((t), respectively. By Derc.M\
we denote the set of derivations of this kind with Go, G | ,..., G,- having finite sets of nodes
and edges.

14

Given a set X C D e r c ^ j i of derivations, by the relation o f derivability v ia derivations
from X we m ean th e following relation r e l (X) between graphs:

(G , H) 6 r c l (X) iff G = o t(o ’) and H — <?i(a) for some o £ X .

3 P r o g r a m s

We are interested in rew riting graphs according to some program s.
Intuitively, a p rogram p we have in m ind is a description, possibly w ith some pa

ram eters, of an algorithm of rew riting graphs by applying productions. In particu lar, it
describes how a given graph G and a given, possibly partia l, valuation v of variables in
this g raph , which is defined for param eters of p, a re transform ed in to subsequent graphs
and valuations of variables until reaching a final result.

In o rder to facilitate a sort of busy waiting of processes as m entioned in section
1, we adm it a recursion such th a t program s m ay call themselves w ithout executing any
real action (an unguarded recursion). Theoretically it leads to infinite idle loops, bu t in
p ractice such loops do not happen due to a sort of fairness which is usually ensured.

P rogram s are defined presupposing a set p ro g ra m id en ti f ie r s of program iden ti
fiers, each identifier w ith an arity which specifies a num ber of node-, edge-, and colour-
param eters. T hey a re given by program expressions p, q, r,... which are of th e following
ki^ds:

(1) A constan t n il . T his program expression represents doing nothing.

(2) A param etrized production p. T his program expression represents a possible rew rit
ing step a = (p ,i) as in figure 2.5 which transform s a graph G and a valuation v of
param eters o f p in G in to a g raph H and a valuation w of param eters of p in H ,
w here v ,(m ,(i)) = g , (x) and u),(n ,(y)) = h,(y) for each sort s and all x ,y of this
sort.

(3) A result p 7 of a substitu tion 7 of new variables for param eters in a p rogram expres
sion p. T h is program expression represents an activ ity which transform s a graph G
and a valuation t; of param eters of py in the way in which the ac tiv ity represented
by p transform s G and th e valuation 7 o v, i.e. the superposition of 7 and u.

(4) A conditional i f a th e n p e lse q, where a is a formula in the language A and
p, q a re program expressions. This program expression represents th e choice and
execution of p or q depending on the satisfaction of a for the given g raph G and the
given valuation v of free variables of a and param eters of p and q.

(5) A sequential com position p; q of program expressions p and q. T his program expres
sion represents an execution of p followed by an execution of q.

(6) A parallel com position p || q o f program expressions p and q. T his program expres
sion represents a parallel execution of p and q which can be viewed as an arbitrary
interleaving of actions of p and q.

(7) An indeterm inistic sum p + q of program expressions p and q. T his p rogram expres
sion represents an indeterm inistic choice and execution of p or q.

15

(8) An in d e ten n in is tic sum E x p, where x is a variable and p is a program expression.
T h is p rogram expression represents an ac tiv ity which transform s a graph G and a
valuation v o f param eters of p in G in th e way in which th e activ ity represented by
p transform s G and a valuation v ' obtained from v by an in d e te rm in ista choice of
a su itab le value of z . If there is no such a value for z then the represented activity
reduces to doing nothing.

(9) A defined program expression

V k h k w h e re (v?i(yn, V u ,•••) = V > i . V n (y n i = 0 «),

w here yji, a re program identifiers and j /n ,y ij , . . . ,y „ i ,y n 2, — are param eters as
specified by th e respective arities and each tl>¡ is a program expression which m ay con
ta in expressions o f the form ^ i (z j u ,* , • « , ..9 n(2¡nii*¡nJi...) and is such th a t all

*<U) •••> *int» »m2, ... and o ther param eters of 4>< occur am ong y , i ,y , i , T his pro
g ram expression represents an activ ity whose execution for y n .y « , . . . is defined by
rpk- As in th ere m ay occur y>i(znii V’«(i tn i. 2*ni,...), one has to define
the respective ac tiv ities by the equations y>i(yu,yi2,. . .) = 0 i,...,V 9„(y„i,y„2, .. .) =
V>„, and consider an occurrence of •••) ' n as a call of th e respective
xf>j. In pa rticu la r, each program expression of the form

ip w h e re (y> = i f a t h e n p; e lse n il)

is equivalent to th e standard ite ra tion construct w h ile a d o p.

(10) An a tom ic program expression a to m p, where p is a program expression. T his pro
g ram expression represents the activ ity of successfully executing p as one indivisible
step .

T hus we have th e following syntax of program expressions:

p n il
| < p a ra m e tr i z e d production >
¡P7
| i f q th e n p e lse q
Ip; 9
Ip II ?
|p + v
| E z p
b * (j /* i .y « .—) w h e re (v>, = V > i , = 0 »)
|a to m p

To each program expression p there correspond a set F P (p) of node-, edge-, and
colour-variables called free parameters o f p, which can be defined as follows:

(1) If p is a param etrized production then F P (p) is the set of param eters of p.

(2) F P (n il) = 0.

(3) F P (p 7) = - j (F P(p)) .

(4) F P [if a t h e n p e lse ç) is the union of F P (p) U F P (q) and the set of free variables
of a.

(5) F P (P; q) = F P (P || q) = F P (p + q) = F P (p) U F P(q).

(6) F P (Z x p) = F P (p) - { x } .

(7) F P (< Sk(yn ,yk i ,—) w h e re (y>, = V ' = V»»)) = {yu, J/w, •••}•

(8) F P (a to m p) — F P[p).

3 .1 . E x a m p le . A program of com puting the sum of elem ents of a list of integers as in
1.1 can be defined as follows:

w h e re

P L U S (t , n , Q =

replace sum(Ç,Ç) by sum '(£ , 0, £);
5l/Af'((,0,C),

E.Y EK if i represents [X|>']
th e n Ep (replace sum'(£, Ç)

by p lu s (X , 1;, g) and s u m '(Y, q, £);
(P L U S { X , v , e) II S U M '(Y , e , 0))

e lse if (represents 0
th e n replace su m '((,7 j ,Q by Ç = 0
e lse S U M \i ,n ,Q) ,

E i Ey i f f represents x and tj represen ts y
th e n replace p lu s ((,r / , () by (= x -f y
e lse P L U S(Z , tj.O

T he instructions o f replacem ent which occur in this program are param etrized pro
ductions as in 2.5. Form ulas occurring in the program are abbreviations of form ulas of the
first order language A. For instance, th e form ula { represents [A '|y] is an abbreviation
of a form ula which sta tes th e existence o f an edge with the colour |, th e source node (,
and the ta rge t nodes X and Y .

4 S e m a n t ic s
T he way in which pairs consisting of graphs and valuations of variables in these graphs arc
transform ed by executing program s can be described in the form of a labelled transition
system which consists of a universe con/ of configurations and a transition relation —
W hen considered together with suitable fairness assum ptions, such a system allows to
define all p ractically possible program com putations.

T he universe c o n f consists of configurations of the form c = (p , G , v), where p is a
p rogram expression, G is a g raph , and u is a (possibly partia l) valuation of variables in G
such th a t th e defined values of node-, edge-, and colour variables arc respectively nodes,
edges, and colours o f G.

T he transition relation —* consists of transitions of the form t = (c, Q .c7), where
c, d a re configurations and a is e ither an invisible action r which does no t change the

17

configuration (th a t is such th a t c — ct) or an action of applying a production o r executing
an atom ic program . D enoting by actions the set of possible actions we can define this
relation as the sm allest —»C c o n f x actions x co n f satisfying the following conditions:

(1) (p , G ,v) ■£* (n il , / / , w) for each param etrized production p and G, I f , v, w such th a t
there is a rew riting step o = (p, i) w ith the diagram « as in figure 2.5 and g,(x) —
u (rn ,(x)), h ,(y) = w (m ,(y) for each sort s and all x ,y such th a t m ,(x) and n ,(y)
are defined.

(2) (a to m p ,G , v) p (n il, G', i>') for each program p and G ,G ', v, v' such th a t there
exists a finite sequence of transitions of the form

(p. G ,v) ^ ... 24 (n il, G*, v').

(3) If (p ,G , 7 0 u) -2. (p \ G ',7 ° » ') then (p~i,G,v) (p,y ,G ' ,v ') .

(4) If (p, G , v) A (f / , G \ v ’) and the formula / is satisfied for the valuation i> then
(if / th e n p e lse 7 , G , i>) -2* (p ', G ', u').

(5) If (q ,G ,v) (7', G \ u ') and the formula / is not satisfied for the valuation v then
(if / th e n p e lse 7 , G ,v) (</', G ', u').

(6) If (p ,G ,v) A (n il, G ', t;') then (p \q ,G ,v) (7 , G ', u').

(7) If (p ,G ,v) -A (p ', G ', v’) then (p , q , G , v) A (p'; 7, G \ u').

(8) If (p, G ,v) A (p ', G ', v ') then (p || , ,G ,v) A (j / || , , G > ') .

(9) If (7 , G , V) A (7', G ', v') then (p || q ,G ,v) A (p || 7', G ', u').

(10) If (p ,G ,t/) A (p ', G ', v ') then (p + 7,G ,u) A (¡ / ,G ' , v ').

(11) If (7 , G , v) ^ (7', G ', v ') then (p + 9, G, v) A (, ' , G ', v')

(12) (E x p, G , u) -A (n il, G ,u) for each program expression p and all G , u such th a t v(x)
is no t defined.

(13) If (p , G , v) -2* (p ',G ',u ') for some u such tha t i>(x) is defined then (E x p ,G ,w)
(p '.G '.u ') for w = v — { (x ,v (x)) } .

(14)

(v> t(y* i.»M .-) w h e re (si>i = V’l . - . S 5» = <!>„),G ,v)

(s» j(y> i.y /» .-) w h e re (9 , = 0 = 0 „) ,G ,v)

w henever is the first program expression in 0 * which is obtained by
substitu ting in th e program expression

V’i(y<t<y>2> -) w h e re (y , = 0 i,...,v>„ = </>„)

for each occurrence of s? ,(y ;i,y ,j,...).

18

(15) If (r p ^ G jv) A t/) for V'i obtained by substitu ting in tpk the program expres
sion

) w h e re (v>, = ’n = 0 n)

for each occurrence of then

(s»*(W i.yM .—) w h e re (y>, = V>i>-••»¥>» = W .G ,») A (p '.G '.v ') .

T he transition relation allows to define com putations of program s and th e respective
relations betw een d a ta and results.

Formally, a compulation of a program p is defined as a sequence of tran sitions of the
form

“ = ((P . G . u) ^ (p , , G i . v i) . . .) ,

where u is either countably infinite or it has a term inal configuration of th e form (n il, G', v').
T he pairs (G, v) and (G', v') (if u term inates) are called respectively the data and the result
of u.

In reality it is usually ensured th a t only such com putations are possible which enjoy
a fairness property . Consequently, in the sequel by a com putation of a program p we shall
m ean only such a com putation u of p which is fa ir in the sense th a t there is no transition
of p w hich is perm anently possible s ta rting from a configuration c of u and does no t occur
am ong th e tran sitions of u which follow c.

T he resulting relation of a program p, re s(p), is defined as the relation which holds
betw een th e d a ta and th e results of finite com putations of p: (G , v) res(p) (G', v ') iff there
exists a com puta tion of p of the form: (p ,G ,v) ... —V (n iI ,G ', v').

5 R e s u l t i n g re la t io n s o f p r o g r a m s

T he possibility o f using com putations of program s to define the respective resulting re
lations suggests th a t an input-ou tpu t sem antics could be defined directly in term s of
resulting relations. U nfortunately, such a definition is im possible because of th e lack of
com positionality of th e correspondence betw een program s and their resulting relations.
T here a re tw o sources of this situation. One of them is the parallel com position, where the
resulting relation of a program obtained by com posing given program s depends not only
on th e resulting re lations of these program s, bu t also on the resulting relations of sm aller
p rogram com ponents. For example, for a program p || ?, where p — g = and
P i. 9ii l i are param etrized productions the resulting relation is

res[p || 9) = re j (p l ;p J;qi1; 97)U re s (p 1; 9I;p 3; 9,) U r e s (p 1; g , ; 9j ;p ,)

U re i(g , ; Pi ; Pj! ?2) U res(ç , ; p, ; p j) U res(<7! ; p, ; P2)

and it cannot be expressed in term s of r es(p) = re s (p i \p j) and res(q) = res{qi;q-]).
A nother source of th e mentioned situation is recursion, where th e resulting relation o f a
p rogram defined by a m utual recursion need no t be definable by the corresponding system
of equations in th e algebra of relations. For exam ple, for the program p = A’ w h e re (A ' =

19

n il;X), each finite graph G , th e resulting relation is iden ti ty and it is different from the
least re lation R satisfying R = iden t i ty o R since such the la tte r is the em pty relation 0.

T h e lack of com positionality w. r. to th e parallel composition and recursion shows
th a t there is no chance for a d irect inpu t-ou tpu t sem antics of the considered program s.
In pa rticu la r, an operational sem antics as presented cannot be avoided even if we are
in terested only in the resulting relations of program s. On the contrary, in th e situa tion in
which such relations canno t be derived from program s directly, a sem antics of this kind
becomes an im portan t tool of defining th e resulting relations.

T he reasonning ab o u t resulting relations of program s can be supported by a num ber
o f properties o f such relations.

5 .1 . P r o p o s i t io n . T he following properties hold true for the resulting relations of
program s:

(1) re s (s k ip) = iden ti ty .

(2) If p is a param etrized production then (G , v)re s (p)(// , w) iff there is a rew riting step
<7 = (p ,j) w ith th e d iagram i as in figure 2.5 and g ,(x) = ti(m ,(r)) , h ,(y) = u>(m,(y)
for each so rt 3 and all x , y such th a t m ,(x) and n ,(y) are defined.

(3) (G ,u)re s (jn r) (G ',i/) iff (G .7 o u)res(p)(G ',7 o u').

(4) (G , t ;) r e i (i f / th e n p e lse q)(G ',v ') iff e ither / is satisfied for G and v and
(G ,v)re s (p)(G ',« /) o r / is not satisfied and (G ,v)re s (q) (G \ v').

(5) res(p ; q) - r e s (p)o res(q).

(6) re s (p + q) = rea(p) U res(q).

(7) res(Y.x p) — U (res(p) : i € I) , where I is the set of possible values of valuations for
x . □

A proof is o f this proposition is straightforw ard.

T h e class o f resulting relations of program s is rich enough to represent the usual
derivability relation.

Taking in to account th e definition of th e resulting relation of a program and the
definition of th e sem antics of program s, we ob tain the following realization of the relation
of derivability.

5 .2 . P r o p o s i t io n . Let II = { p i,- ..,p m} be a finite set of param etrized productions.
T here is a program p such th a t H is derivable from G via productions from II iff
(G ,v) r e s (p) (H , t /) for som e v and «/'. In particu lar, we m ay define such a program as

p = X w h e re (X = q; X + n il)

where
<7 = (E i |) . . . (E x m)(pi + ... + pm)

and { x i , . . . ,x m} is th e se t o f param eters of productions p t , . . . ,p m. □

20

6 R e c a p i t u l a t i o n
We have presented conceptual means for program m ing concurrent processes o f rew riting
graphs by applying productions. These m eans are flexible enough to cover th e usual
rew riting. However, the ir possibilities go much beyond such particu lar cases due to the
powerful m echanism s of param eters, recursion, concurrency, and operating on colours.

T he presented form alism is brought to the form of (a kernel of) a program m ing
language w ith a precise syn tax and sem antics.

T he sem antics defines com putations of each program p. These com putations repre
sen t th e possible ways of transform ing a given graph G and a given valuation of variables
in this graph , and th u s they determ ine a resulting relation res(p) of p. T he possibility
of determ ining such a relation is im portan t since there is no simpler way of com puting it
d irectly from th e program .

T he sem antics presented in the paper represents concurrency as an a rb itra ry in
terleaving of actions. Nevertheless, it contains im plicitly all the inform ation abou t the
existing concurrency. Moreover, there seems to be a chance of refining it to a form in
which concurrency would be reflected in a more explicit way as in [MR 92]. How to do it
is however a problem which we leave open in the present paper.

A c k n o w le d g e m e n ts . T he authors are grateful to the two anonym ous referees of an
early version of th is paper for the ir com m ents and suggestions.

R eferen ces

[CER 79] C laus, V ., Ehrig, H., Rozenberg, G ., (Eds.) Proceedings o f the 1st In terna
tional Workshop on Graph-Grammars and Their Application to Computer
Science and Biology, Springer LNCS 73, 1979.

[CM REL 91] C orrad in i, A., M ontanan , U., Rossi, F ., Ehrig, H., Lówe, M ., Logic Pro
gramming and Graph Grammars, in [EKR 91], 221-237.

[CRP 91] C orrad in i, A ., Rossi, F ., Parisi-Presicce, F ., Logic Programming as Hyper-
graph Rewriting, in the Proceedings of C A A P’91, Springer LNCS 493, 1991.
275-295.

[EKMRW 82] E hrig, H ., Kreowski, H .-J., Maggiolo-Schettini, A ., Rosen, B.K.,
W inkowski, J . , Transformations o f Structures: A n Algebraic Approach,
M ath . System s Theory 14 (19S1) 305-334.

[EKR 91] E hrig, H ., Kreowski, H .-J., Rozenberg, G., (Eds.) Proceedings o f the Ąth In
ternational Workshop on Graph-Grammars and Their Application to Com
puter Science, Springer LNCS 532, 1991.

[EN RR 87] E hrig, H ., Nagi, M., Rozenberg, G ., Rosenfeld, A., (E ds.) Proceedings of
the 3rd Workshop on Graph-Grammars and Their Application to Computer
Science, Springer LNCS 291, 1987.

21

[JaR o 90]

[M R 92]

[MW 83]

[MW 91]

[MW 92]

[Plo 81]

[P 91]

[Sh 89]

Jansssens, D ., Rozenberg, G ., Structured Transformations and Compulation
Graphs fo r Actor Grammars, in [EK R 91], 446-460.

M ontanari, U ., Rossi, F ., Graph Grammars as Context-Dependent Rewriting
Systems: A Partial Ordering Semantics, in Springer LNCS 581, 1992, 232-
247.

M aggiolo-Schettini, A., Winkowski, J ., Towards a Programming Language
fo r Manipulating Relational Data Bases, in: B jom er, D., (E d .), Formal
D escription of Program m ing Concepts 11, N orth-H olland, 1983, 265-278.

M aggiolo-Schettini, A., W inkowski, J ., Programmed Derivations o f Rela
tional Structures, in [EKR 91], 582-598.

M aggiolo-Schettini, A., Winkowski, J ., A Programming Language fo r De
riving Hypergraphs, in Springer LNCS 581, 1992, 221-231.

P lo tk in , G ., A Structural Approach to Operational Semantics, Technical
R eport, C om puter Sc. D ept., A arhus Univ., D enm ark, D A IM I-FN -19,1981.

P lum p, D ., Graph-Reducible Term Rewriting Systems, in (EK R 91], 622-636.

Shapiro , E ., The Family o f Concurrent Logic Programming Languages,
ACM C om puting Surveys, 21, 1989, 413-510.

22

