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Abstract . Coaepz&HBe . Streszcze&le

The paper is devoted to implementation of such, systems of 
activities which can he represented hy Petri nets. It is shown 
that systems of this type can he executed hy distributed net-: 
works of interconnected modules controlling places and transit­
ions of the corresponding nets. The modules executing a net and 
the links between them depend only on local properties of the 
net, not on global ones. Due to this feature the speed at which 
each particular activity is executed does not depend on the 
size of entire system of activities.

0 paonpeaeneHHofl pearasaqaii ceTetl n»Tpn

PaOoTa KacaeTCfl peajU!3auHB chctom ¿e8cTBii8 onaouBaeicoc 
ceTfluM IIstph. IloKa3MBaeTCH, uto Tanne cHCTenu peamayeiiH 
pacnpenejieHHhiiiii ceTHim iiosyjiett KOHTpojmpyDisnc iiecTa h ne- 
pexo^H cooTBPTOTByBmnx ceïeB Dstph. Boayjm peaBH3ynwe aaH-
Hyn C6TB Ü3TPH Z CBH3H UeitVJ HEUE 38BHCHT TOflBKO OT aOKa/ttHHX
c b o Mctb sTott ceTH. Eaoronapfl sTouy cRopocn BHnoxHemfl
leflCTBHti He 38BH0HT OT paSHepa CHCT6HH.
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O implementacji Bleci Petri przez systemy rozprószone

Praca jest poświęcona implementacji systemów czynności 
opisynalnych sieciami Petri. Pokazano, że takie systemy mogą 
być realizowane przez rozproszone sieci połączonych modułów 
kontrolujących miejsca i przejścia odpowiednich sieci. Moduły 
wykonujące sieci i ich połączenia zależą jedynie od lokalnych 
własności sieci, a nie od własności globalnych. Dzięki temu 
szybkości, z jakimi 8ą wykonywane poszczególne czynności, 
nie zależą od rozmiarów systemu.
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1. Introduction

The purpose of thie paper is to show that a system of 
activities can be implemented such that:

- each activity is executed (posfiibly repeatedly) by a ¡iodule 
whioh depends only on this activity, not on the entire 
system,

- the transfer of information from one activity to another is 
realized by a communication between the corresponding 
modules,

- each module reacts only on its own state and on the state 
of its communication links.

The reason of tending to such implementation is twofold:

- each activity of the system cam be executed at a speed 
which does not depend on the system size,

- the implementation is fault-resistant in the sense that a 
fault in one module does not necessarily lead to a fall of 
entire system.

The requirements imposed on implementation have the fol­
lowing consequences:

- any central co-ordination or synchronization of modules 
and any global data are not allowed,

- the modules can exchange information only with the aid of 
established communication lines.
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In other words, Buch requirements can be fulfilled only by a 
distributed implementation.

In our considerations we assume that systems of activities 
are represented by Petri nets and concentrate on such nets.

We recall that a Petri net is a bipartite directed graph,
i.e.., a directed graph P whose set of'nodes is partitioned into 
two subsets: a subset 3 of circles, called places, and a subset 
E of boxes, called transitions, each arc connecting only nodes 
of different types. Formally, P-(B,E,F), where F C B x E U E x . B  
(cf. [2]). We assume that P is finite, i.e., B and E are finite.

If an arc is directed from node x to node ¡7 (either from a 
place to a transition or a transition to a place) then we write 
xFy, x is called an input to y, and y is called an output of x. 
Input x to y (resp.: output y of x) is said to be pure if it is 
not an output of y (resp.: input to x). By Fx (resp.: by xF) we 
denote the set of all inputs to x (resp.: of all outputs of x). 
Two transitions e and e‘ with (Feu e¥)f\ (Fe'U e'F)-0, i.e. with 
disjoint sets of adjacent places, are said to be Independent.

Each place may carry a number of markers, called tokens. 
This gives a distribution of tokens, called a marking. Formally, 
a marking is a mapping m:£— *-{0,1,...], where m(b) represents 
the number cf tokens in place b.

Sometimes it is convenient to assume that the number of 
toicens in a place b cannot exceed a certain limit, called the 
capacity of b, and denoted capacity fb). This leads one to the



concept of a restricted Petri net, where only those markings rc 
are admitted which satisfy a (b) <  capacity'b) for all places b. 
?on&lly, such net is P- (g.L.F. capacity), where B,E,F are as be­
fore and, in acdition, we have a zapping capacitv:3— ►lO,1,...,+0»j

The usual (unrestricted) fetri nets can be regarded as re­
stricted or.e6 with capacity(b)-+ eo for all places b. The bo cal­
led condition/event nets are restricted Petri nets with capacity(b) 
for all places b (the name comes from the fact that places of such 
nets represent conditions which may hold or not, and transitions 
represent events which may occur and change the holding of condi­
tions).

That a net P is a representation of a system of activities is 
reflected by the concept of execution.

The execution of P starts with a marking and changes it 
according to a precise principle, called the firing rule. This 
principle is as follows.

A transition e is said to be fireable (or enabled) under a 
marking m if each input place b € Fe carries at least one token, 
a>ic the number of tokens in each pure output place b e eF-?e is
2ess than capacity(b).

Beir.j- firea'cie under a marking m, a transition e may fire 
(jr be executed, or it may occur). The firing is assumed to change
a to ar.other marking, denoted me, where:



me(b) - 1 :
a(b)-1 forbeFe-eF 
m(b)+1 for beeF-Fe 
(b) for other placeB .

—-S-»

Such firing is regarded to- be an indivisible operation in the sense 
that it cannot be disturbed by firing any other transition which is 
not independent of e, i.e., with adjacent places in Pe weF. As a 
consequence, if several transitions are enabled that are not in­
dependent then a conflict arises which must be solved in order to 
decide which transitions may fire. The decisions of this type are 
assumed to be indeterministic.

Each finite initial segment of execution of P starting from a 
marking m is represented by a string x-e^-.e^, called a firing 
sequence, such that: e1 is fireable under m, e2 is fireable under 
me^,..., and is fireable under m e ^ , . ^ ^ .  The order in such 
string does not mean, however, that transitions e^(...,e^ are 
executed one after another. Only transitions that are not inde­
pendent must be executed in such manner (in order to guarantee 
their indivisibility). Independent transitions that are enabled 
can be executed also concurrently, and that does net change the re­
sult. This means that the order of such transitions is irrelevant 
and can be reflected by considering partially ordered analogons of 
firing sequences (cf. the concepts of a process in D Q .  M .  D O .  

and £«]>. This also means that a marking not necessarily re­
presents a global state of execution at a certain moment (if in­
dependent transitions are executed concurrently then there'may be 
no moment at which such global state io defined). It rather re­
présenté a collection of local states which could potentially hold 
valid simultaneously, but actually may hold valid in different or 
even disjoint time intervals.



A marking m' is said to be reachable from m if there exists 
a firing sequence x such that »'«mx.

A marking in' i6 said to be dead if no transition is fireable 
under m'.

The entire execution starting from m is represented by a 
string y - e ^ . . .  such that each finite initial segment of y is a 
firing sequence and y is finite if and only if my is a dead mar­
king.

Since the order of independent transitions is irrelevant, 
different strings as described may represent the same execution.
On the other hand, since possible conflicts between transitions 
which are not independent can be solved in different wayB, there 
may be essentially different executions starting from the same 
marking.

In order to describe our implementation of Petri nets, we 
extend the concept of Petri nets by assuming that tokens are re­
cords carrying information, and that such information is processed 
during executing transitions. It is enough to do it for con­
dition/event nets. The corresponding nets, called interpreted ones, 
can be defined as follows.

An interpreted net is Q-(P,I), where P-(B,E,P) is a con­
dition/ event net and I is a function, called lnterpretat ion, which 
assigns to each place the data carried by every token residing in 
this place and to each transition the transformation performed 
during executing the transition of the data from input places into 
data in output places (see sections 4,5, and 6 , for examples).
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A marking of such net can be regarded as a family 
m-(m(b): b€B) of sets of tokens residing in the corresponding 
places, where each n(b) contains a single token, denoted token(m(b)), 
or is empty (token(m(b)) is not defined). If 1(b)- (1, j,... ) for a 
place b then token(m(b)). when defined, is regarded to contain data 
denoted respectively i (token(m (b))), j (token (m(b ))),... .

Fireabllity of a transition e under "such marking means that 
m(bV0 for all b€Fe and m(b)-0 for all bceF-Fe. The execution 
of e changes a to me as follows:

me(b )
0 for b £ Fe-eF 
[b-token] for b € eF-Fe 
m(b) for other b ,

where b-token is a suitable token which may be carried by b. The 
information carried by the tokens of m are assumed to be processed 
into thaticarried by the tokens of me as specified by 1(e) (see 
sections 4,5, and 6).

In our description each condition/event net P-(B,E,F) is con­
sidered together with an invariant subset C of markings. The pair 
(?,C) (or the quadruple (3,E,F,C) ) is usually called a con­
dition/event system (cf. Petri QQ) or simply a system. In case 
of interpreted net w“ (F.l) we have to do with an interpreted sys­
tem (Q,C).

The paper is organized as follows.

In section 2 we describe the nodules and the constructicr. of 
the system which is supposed to execute a Petri net.
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The general idea (based on JÎÔ) ) of the function of the system 
is described in section 3.

A detailed description of basic modules as Interpreted systems 
is given in sections 4 and 5. The interpreted systems presented 
there are combined in section 6 into one system which describes the 
implementation of entire Petri net.

In section 7 we formulate properties which have to be proved 
in order to show correctness of implementation.

The corresponding proofs are given in section 8.

The paper ends with final remarks that are collected in 
section 9.

It should be mentioned that some attempts of implementing 
Petri nets by Interconnected modules have already been made 
(cf. ïurtek fl} and Prieae [V]. for example). Our problem 
statement and the idea of solving it are, however, different from 
those known from other works.
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2. The construction

A Petri net P-(B,E,F) will be executed by modu3.es assigned to 
placeB and transitions, the.modules corresponding to adjacent nodes 
connected by communication^ lines.

To each place b (reap.: transition e) we assign a module
(a kind of automaton), denoted control^ (resp.: control^). which
plays the role of local sequential control of b (resp.: of e).
If b is an input or output plice of e (i.e., bFe or eFb) then we
establish a communication line from control,, to control . denoted------- d  e
line,.., and a communication line from control to control,., de-  De  e -------b
noted llneĉ ~. Finally, with thé aid of a successor function next^. 
we introduce a circular order of all incoming and outgoing lines 
of each control^ (q-nextx (p) means that q follows immediately p).

Each line^  serves to send information from control^ (the 
sender) to control^, (the receiver). Such line is' supposed to work 
as a register which may be loaded by the sender when empty, and 
emptied by the receiver when loaded. The sender sends information 
to the receiver by loading it into the line when the line is empty 
(a write operation). The receiver accepts the information and 
empties the line when the information is loaded into the line 
(a read operation). This mode of communication prevents the sender 
and the receiver from simultaneously using the line and from a 
.loss of information.

The local sequential controls are supposed to scan their in­
coming and outgoing communication lines (according to the intro­
duced circular orders) and react properly. If an incoming line is
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scanned which currently is loaded then the control reads the con­
tents of the line (by which the line is emptied), process it, and 
goes to scanning the next line. If such line is empty then the 
control goes immediately to scanning the next line. If an out­
going line is scanned which currently is empty then the control 
works out the information to be sent, loads it into the line, and 
goes to scanning the next line. If such line is loaded then the 
control goes immediately to scanning the next line.

Working in such manner, the local sequential controls are 
able to exchange information by the established communication 
lines and store it. In particular, the control of a transition e 
is able to follow (possibly with a delay) the situations in all 
adjacent places (the control of each adjacent place b can report 
the situation in b to the control of e) and deposit certain in­
formation in such places or remove it, if necessary (by sending 
suitable signals to the controls of the corresponding places).

Observe that each local sequential control (of a place or a 
transition) is a module which reacts only on its own state and on 
the state of its communication lines.

The same remains true for combinations as shown in fig. 1 of 
local sequential controls and connecting them communication lines. 
Each combination of this kind can also be regarded as a module.
The state of such module consists of the states of its components 
(modules and internal communication lines). The communication 
lines of the module are those connecting it with its environment.
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In consequence, every subset of transitions is i œ p i c n t ^7 

the nodule consisting of the- controls of these transitions, the 
controls cf their adjacent places, and the communication lines 
which connect the above components.

Observe that such modxile depends 'only on the particular sub­
set of transitions (taken together with the necessary context of 
adjacent places), and it does not depend on entire net,.

\ car.tr s

ccr.trc
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3. The function of construction

The implemented net is executed by the controls cf transit­
ions working permanently and co-operating with the controls cf ad­
jacent places. The control of each transition follows the 
situations in adjacent places and tries to execute the transition 
whenever this transition is enabled. When several transitions 
with common adjacent places are enabled a conflict arises which 
must be solved by the controls of transitions. In order to solve 
conflicts the controls of enabled transitions play a game and only 
the control that wins is allowed to execute the transition it is 
assigned to (cf. jio] ).

The game is played with the aid of local lists placed in 
places, called local priorities, which jointly represent a global 
priority among the controls of transitions. These lists consist 
of (names of) adjacent transitions. The control of a transition e 
is regarded to be of higher priority than that of e if e precedes 
e in a local list. The local lists must be consistent in the sen­
se that the relation "to be of higher priority" must be a partial 
order. For simplicity the local lists are supposed to be static 
(in [1 3 dynamic local priorities have been considered).

The game is played permanently with the varying set of con­
trôle of enabled transitions as players.

Depending on the current situation the players are distribut­
ing their vieitlag-cardE in the adjacent places of the correspond­
ing transitions (cne card of a player in a place) or collecting 
the already distributed visiting-cards back. The visiting-cards



which are present in & place are arranged into a queue. A player 
wine if he succeeds to distribute his visiting-cards in all ad­
jacent places cf the transition he is assigned to such that the 
cards are firs*, ones in all the corresponding queues. Such a 
p_aver annc.1r.2es his winning ir. a_l ac-ac-er.t t^irer cf the tr&n- 
s.tiSr. he .r ¿.¿ri-rr.sc. tc.

The ruler of the jane ars a. fellows.

*. player may start distributing his visiting-cards is a.s 
jaoent places of the transition he is assigned to and continue 
this process while the following three conditions are fulfilled:

(¿1 ; the transition is enabled,

(d2 ) in aa lacect pilaces there are no announcement ts of winning 
of other players,

(d3) in adjacent places there are no visiting-cards of players
of higher priorities or 8uch cards are preceded by a visiting- 
-card of the player.

t A plaver is obliged to stop distributing his visiting-cards 
and c-.llect hack the cards he has already distributed whenever m e  
cf the following three events occurs:

(ri ) the transition the player .5 asri-.*.ei t: teases being enabled,

(r?) in an adjacent. place an announcement of winnir.s- of another 
player appears,

(r3 ) in an adjacent place a visiting-card of a player of higher 
priority appears to precede the card the player has left or 
is going to leave in the queue.

- 1 6 -
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The winner announces his winning in all adjacent places of 
the transition he is assigned to and next he rénovés his own cards 
from such places and waits until cards of other players are also 
removed. Then he changes the marking of adjacent places according 
to the firing rule. Finally, the winner removes his announcements 
of winning from all adjacent places. This ends the current exe­
cution of the transition.

4. The behaviour of the control of a place

The control of a place b has incoming lines from and outgoing 
lines to the controls of all adjacent transitions eeFbubF.
It maintains information t^ on the current situation in b. This in­
formation is updated according to the signals received from the 
controls of adjacent transitions and reported to these controls.
In order to read signals and report information the control of b 
scans the incomijtig and outgoing lines in the circular order given 
by a successor function next^ and performs read and write opera­
tions when possible. In what follows we assume that llne^- 
next^ (llne^ ) for all e£Fbv/bF and by priority (b ) we denote the 
list of (names of controls of) adjacent transitions ecF b U b F  
(each e occurring exactly once) which represents the' local priority 
in b (e is regarded to be of higher priority than e' if e precedes 
e' in the list).

The Information t^ that control-  ̂maintains consists of the 
following data:

queue (t^ ) : a list of (visiting-cards of controls of) adjacent
transitions eÉFbobF, each e occurring at most once.
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winners(t^); a subset of (names of controls of) adjacent transitions 
e€F b U b F  which contains at most one element,

marking(t^): a non-negative integer (the current number of tokens 
in b), where marking(t^ W  capacity (b).

By we denote the set of all t^ of this kind.

1
From the behavioural point of view control^ can be regarded as 

an interpreted system s£-(q£,C*), where Q*-(I^,I*) is an Interpreted 
net, i.e., a net p£-(B^,E^,F*) with an interpretation I*, and C* is 
a set of aarkings of ?£. We define B^ as the set of places 
at^ (llneet ). at^ (line^). loaded (linect ). empty (linect ). 
loaded (line^g), empty (line^) (e€FbUbF), and E* as the set of 
transitions read^ (linecb ). skipt (line^). writeb (llne^). 
sklp^ (llne^ ) (e€FbubF). The relation F* and interpretation I* 
are defined as shown In fig. 2 (the information a token being in a 
place contains i8 specified at the corresponding circle; how the 
information contained in tokens is processed during executing 
transitions ie specified in the corresponding boxes). C* is the set 
of markings such that: at most one of all places at^iline ). 
at^ illne^c ) (e€FbUbF) carries a token, at most one of each two 
places loaded (llne^ ). empty(line) (e€FbubF) carries a token, 
and at most one of each two places loaded (line^). empty (llne-u ) 
(e€Fbv/bF) carries a token.
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atb (llnecb ) with tfe

atb (nextb (linebe)) with S

V “1!)

egpty(j.lne.^

- o
loaded(li2ecb ) with

V ’He b ( V seb)
-\

Pig. 2

The functions and Ee^ are defined as follows:

f o r a l l ^ C ^ .

Heb^b'seb^"^b*

where:

q u e u e )e when s ^ - card and e does not occur in queue(t̂ J') 
a u e u f xy whec E^^-cardback and cueue(t^)-xey 

p-scue ft«.) otherwise,
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{e} when s^-won and winners (t^ )- 0  

winners(t̂  )-V 0 when sgb-release and winners (t^ )-{e} 
I winnerB(t^) otherwise,

marking(t^ )-.
marking (t-. )-1 when seb-decrease and marking(t^) >  0
marking (t-u )+1 when s-u-increase and

marking (t^ ) <  capac ity (b ) marking(t^) otherwise. u

5. The behaviour of the control of a transition

The control of a transition e has outgoing lines to and in­
coming lines from the controls of all adjacent places bePeueP.
It maintains information vg consisting of current images of 
situations in adjacent places and of some local data. This in­
formation is updated according to reports on current situations 
received from the controls of adjacent places and it serves the 
control of e to decide what signals should be sent to the controls 
of adjacent places. In order to send signals to the controls of 
adjacent places and read reports from the controls of adjacent 
places the control of e scans the outgoing and incoming lines in 
the circular order given by a successor function nextc and performs 
write and read operations when possible. In what follows we assume 
that Iine^e-nextc (line ^ ) for all b t?ewe?.

The information vg that control. maintains consists of the 
following data:

image(vg ): a family (image,, (vc ): bgFeoeP) of current images 
situations in adjacent places bePeueP,
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sent(ve): a family uent^ (vc): b€FeUeF) of sets of signals which
have most recently been sent to the controls of the cor­
responding adjacent places b£Fewer, each sent^(v. ) 
being empty or containing a single signal - the last one 
which has been sent to control^ but possibly not yet 
taken into account,

undated (ve ): a family (updated^ (vc): b£FeueF) of boolean values 
(updated- .̂ fvQ )-true represents the fact that during 
current execution of e the marking of b has already 
been updated),

phase(v )i a value characterizing the current activity of control..

The control of a transition is assumed to be able to send the 
following eignale to the controls of adjacent places:

card.
cardback.
won.
decrease. 
increase. 
release. 
none.

The control of a transition is assumed to be in one of the 
following phases of activity:

waiting,

distributing.
removing,
wln-ing.
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cleaning.
accessing.
releasing.

From the behavioural point of view control^ can be regarded as 
an interpreted system S*-(Q*,C*), where is an interpreted
net with the underlying net p£-(B*,E^,F^) and interpretation I*, 
and C* is a set of markings of P*. We define B* as the set of places 
atc(linect)). atc (llne^ ). loaded (llnect ). empty(linea  
loaded (line^g), empty (line^ D) (b6 FeUeF), and E* as the set of 
wrltecqinect )t skl?c (l.ine^), readc (l_inebe), sklpe (llnebc ) 
(b£?e<JeF). The relation F* and interpretation I* are defined as 
shown in fig. 3. C* is defined as the set of markings such that: 
at most one of all places atc (lln’e ^ ). ate (line^. ) (b€Fe<JeF) 
carries a token, at most one of each two places loaded Cline^ ). 
empty (llne^ ) (beFeweF) carries a token, and at most one of each 
two places loaded QjJie^g), empty (llne^c) (b€ Fe^e?) carries a 
token.



Fig. 3

loaded (llnebc ) with

atc (line^j. ) with vç 
(H n e bc-nextc (line^ ) ) 
empty (llnecb )

(ve,eeb)!

(Keb (Te ),Leb (ve ' ) 
loaded(llne.^ ) with seb wrlte^

The functions Kgb, Leb, and are defined as follows.

For a family w-(wb : b 6 ïeue?) of possible (images of) situ­
ations wb 6 Tb in adjacent places b e F e u e F  we define the following
predicates :

enabled (w): (Vb: b 6 Fe)(0< marking(w-))
and (Vb: b £ eF-Fe ) (marking (w^ )s capacity (b)).

cper.c (w): enabled c (w) and (Vb: b € FeoeF)( (winners (wb )-0) and
(V®': e' precedes e in queue (w^ ))(e precedes e'

in priorityfb))).
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6houldretnoTec (w): «•»> not open^ (w ) or

(3b: tfFeVe?)(3e': e' precedes e 
in queue (w-_ VHe* precedes e in priority (b)).

ir.fror.t c (w ): 4 +  cper.^ (w ) and

(V*>* b€Fe*JeF)(e is first in queue(>.y )

announced c ( v ) : (Vb: b€Fe weF) (winners (*b )“{e} ),

cardsrenioved|: ( v ): (Vb: b£FevJeF)(e does not occur in Queue(v.y ) ) .

released^ (w): (Vb: b € Fe U eF) (winners(w^ )/{_e} ).

Besides, for vg which is maintained by control^. we define: 

firedc (ve ): <—* (Vb: b g (Fe-eF)U (eF-Fe)) updated^, (v. ).

Then we consider w«(w^: bfeFe^eF), where:

for other p^FeueF, 

and define ve“Î e(ve» % e)) i-11 following manner: 

ixa .-e (t^ )-w ,

sent (v')« sent (▼ ) for pfeFeUeF and p/b,p e p e

0 when senty(t. )-|card ̂ and e occurs in queue(u^ )
or sent^(vc )-[caraback} and e does not occur in queue(u^ „ ) 
or eent^(vg)-[won] and winners(u,_c (el 
or sent-,. (vc )-[decrease] and marking (u-^ )-

sentv (v')»>‘ mark in s (linagê . (t .))-1
or ser.t̂ . (v[.)- {increase ] and marking (u^c )-

marking (image-̂ (ve ) )+l
or sent,. (vc )-[release] and winners (u^ |e]

sent^(▼ ) otherwise.
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u-pdated^iv' j-updated .̂ (v_ ) for p t F e U e F  and p/b,

updated^ (v' )- -i

trug when sent^ (v_ )-{decrease j and marking (u^ )»
marking (image.. (v̂  ) )-1' 

or sent^ (v^ ̂ { increase} ana m a r k i n g )-
m a r k i n g (vc ))*1 

false when phase(ve ̂ accessing
updated^(vc) otherwise.

phase (v')- 4

distributing when phase (v|. )-waixing and ouen _ (w)
removing when phase(vc)-distributing and shouldrencve (w)
winning when phase (vc ̂ distributing and lnfro’r.t (w)
cleaning when phase(v )»winning and announced (w)

accessing when phase(v^ ̂ -cleaning and cardsremoved^(w)
releasing when phase(v£)-accessing and fired (v )
waiting when phase(ve)■releasing and releasedg(w) 

or phase (ve )-removing and card srernoved _ (w)

phase(rc ) otherwise.

Thus we have defined the function

The function I)eV, can he defined as follows:

£< v(v eb' «

card when nhase(v^)«distributlng and sentb (ve )-0 and 
e does not occur in queue (image-  ̂(v )) 

cardback when phase(vc {removing,cleaning] and gentry. )-g
and e occurs in queue (image^ (vc )) 

won when phase (vc ̂ -winning and sent-̂  (v )«0 and 
winners (image^ (v ) )-0 

decrease when phase (vc )-accesslng and sent^ fvc )»»0 and 
b 6  Fe-eF and not updated^(v ) 

increase when phase (ve /-accessing ar.d sent^ (v and 
b€eF-Fe and not u-cdated^fv. V 

release when phase Ivc )»releasir.g and sent^ fiir. )*t *nd 
wl-ners (imageb (vg ) )- {e} 

none otherwise.
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Finally, we define v£"Ke-b(Te ) ^  the fo:LlowinS manner: 

linage (v* )-Image^ (yfl ) for all peFevyeP, 

sentp(v' )-sentp(ve) for p t ï e y e P  and pî b,

B.n+ t**\ iiLeb(ve > N hen SfiSi*(▼,)-* and I0b (ve )/none
 b' e'" l̂ senty. (v^ ) otherwise,

updated^ (r£ )-updatedp (vc ) for all p'CFeUeP,

phase (v' )-nhase (v ).

6. The behaviour of entire construction

The construction consists of the controls of places and the 
controls of transitions, each two controls of elements that are ad­
jacent connected by two communication¡lines as described in 
section 2. The information processed in this construction consists 
of what is processed in particular components and of the infor­
mation existing in communication lines. The only operations are 
those of the modules controlling transitions and places. The 
modules are not synchronized from outside. What they actually do 
depends only on the information they exchange.

The behaviour of the entire construction can be described by 
the interpreted system whose net is the union of the nets of the 
components (as shown in fig. 4) and whose markings are the ones 
admissible for all components. Formally, such system is 
S*»(Q*,C*), where Q*«(F*,I*) is an interpreted net with the under­
lying net F*»(B*,E*,F*) and interpretation Iw, and C* is a set of 
markings of F*. We define 5* as U(-î* ' x£3ws), i.e., we assume 
that B*-U(B*: xéîoî), E*-U(E*: x63U3), x e ? w E )
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(which means that ?*- U(P^: x € 3 U E )  ), and I*- U  (I*: x €B*JE).
C* is defined as the set of markings c such that c|b*€2* for 
ail x€3U»E. Observe that all E* are mutually disjoint, all F* are 
mutually disjoint, E* and E* are disjoint if neither x?y nor yFx,A V
ar.d that

- { loaded (line^. ). empty (lisect ),loaded (llne^ ).
empty (linet:)l

whenever h?e or eFb for a place b and transition e. A part of the 
entire interpreted net which describes the exchange of information 
between control^ and controlr. where b is a place and e is a tran­
sition such that bFe or e?b, is shown in fig. 4. Such a part car. 
be represented schematically as shown in fig. 5. Since the subnets 
describing singular components are of circular form, the inter­
action of components can be represented schematically as shown in 
fig. 6.

Fig. 5

Fi~. 6
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7. The problem of correctness of lnslenentatlon

The interpreted net Q* is an abstract description of the be­
haviour of modules. It does not say, however, how the execution 
of the given net P proceeds in time. Now we make some assumptions 
about that.

First of all, we assume that each module scans eacb of its 
communication lines in a finite time and that it is not prevented 
by anything from continuing this process.

Next, we assume that a nodule scanning a communication line 
skips this line only if it cannot execute the corresponding read 
or write operation. Besides, we assume that all modules work at 
comparable speeds in the sense that, given a nodule and its com­
munication line, the number of transitions of Q* executed by 
modules before the given communication line is scanned by the 
given module is finite.

Finally, we assume that the time of execution of a transition 
of Q* by a module is random and varies from one execution to 
another.

The above assusptions can be expressed by restricting the 
set of formal executions of Q* to a subset of executions which 
may really happen, called real ones.

The first assumption is expressed by the following axion.
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Axlom 1. If y-f-jfo*** is a real execution of Q* starting from a 
marking n € C* then there are .not any transition f and number k 
such that f is fireable under all markings nf,,...^, nf1.. •fj[fk+1 *-. • 
and f does not occur among ,*k+1 » ^ + 2* * *'* *

The next two assunptions are expressed by the following 
axiom.

Axiom 2. If y-fjig*]*« is a real execution of Q* starting from a 
marking n£ C *  and f is a read or write transition of a module 
such that f is enabled under a marking nf^•«• fy then f occurs 
among ^ + 1 ^ + 2 .....

Finally, the last assumption ia expressed as follows.

Axiom 3. All formal executions of Q* which satisfy axioms 1 and 2 
are real executions of Q*.

That the system of modules we have constructed executes the 
given Petri net can be formulated as follows.

For every marking m of the given net P, by executions(P.m) 
we denote the set of all executions of P starting from m. Similar­
ly, for every narking n€C* cf the interpreted net Q*, by 
executions(Q*,n) we denote the set of all formal executions of Q* 
starting from n. Finally, by realexecutions(iK.n) we denote the 
subset of real executions of 5* starting from neC*.

Ther. we require defining a subset £*C C* of markings of 3* 
and two functions U and W such that:

l
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( 1 ) £* is invariant under all transitions of Q*,

(2) to every n€3* there corresponds a marking U(n) of P,

(3) every marking of P is of the form U(n) for some n € D * r

(4) to every string y of transitions of Q* that is a real
execution of Q* starting from nCD*, or an initial segment 
of such execution, there corresponds a string W(y) of 
transitions of P,

(5 ) W(yz)-W(y)W(z) whenever W(yz) is defined,

(6 ) U(n)W(y)-U(ny) whenever n€D* andjny is defined,

(7) W(y)e Mcecutions(P,U(n)) whenever n£ D *  and
y € realexecutions(Q*.n).

(8 ) every string x of transitions of P that is a finite execution 
of P starting from a marking m, or a finite initial segment of 
an infinite execution starting from m, is of the form W(y) for 
a real execution y of Q* starting from n € D *  3uch that U(n)-m, 
or, respectively, for an initial segment of such execution.

The possibility of defining such subset D* and functions U 
and W means that all firing sequences of P can be realized by the 
system of modules, and that all runs of the system of modules 
starting from suitable markings can be regarded as executions of P. 
This is just what we have in mind speaking of correctness of Im­
plementation.

In order to define D*,U, and W, as required we consider mar­
kings ntC* such that:

)
\
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(11 ) for every be 3, exactly one of the places at.p (line^) and 
at-. ulne-j. c) (e€Fb»JbF) carries a token, denoted ^(n),

(i2 ) for every e€E, exactly one of the places atr (llr.e ^ ) and
at (line^c ) (b 6 Fe u eF) carries a token, denoted ve(n),

(i:) for every (b,a)6 F and every (e,b)eF, exactly one of the
two place? loaded (line^. ). eattv (line^.) carries a token 
denoted respectively ube(n) or ^ e U O  when defined, and 
exactly one of the two places loaded (llne^-). empty (llne^) 
carries a toker. denoted respectively sg^(n) or ret(n) when 
defined,

(14) fcr every e€E, if phase (v (n))-waiting then
not open (image (v (n))) and, for all b€?eweF: 
winners (t^ (»))/{ e} and winners (image^ (v. (n)) and
e does net occur in queue(t^fn)) and In queue{image^(vc(n))). 
and not updated^ (vfi (n)) and sent^. (vg (n) )«0 and either re^ (n) 
is iefined or sĉ  (n )-none.

(15) for every e 6 £, if phase (v (n) ̂ distributing then 
openc (image (v£ (r.)) ) and e does not occur or is not first 
in queue (iaagCy. (v (n))) for sone bfePeveF, and,
for all b€FeueF: not updated^ (v. (n)) and exactly one of 
the following conditions is fulfilled:

- e occurs in queue(V (n)) and in queue t image-, (v. (n)) ) and 
aenty. (v. (r.) )-0 and either n) is define: or =etl (n)-ncne,

- e occurs, in queue(t^ (n)) but not ir. que^c (ina-Cy (vf (r.)) ) 
and £entv (ve(n))«{card] and either r.v(n; is defined or 
sc0 (n)-none,
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- e does not occur in queue(t^fa)) and in queue(iinage^ (v^ fa))) 
and sentb (ve (n))-{card} and seb(n)-card,

-  e does not occur in queue(t^f a ) )  and in queue(image^ ( V f a )  ) ) 

and sentb (ve(n) ) - 0  and either reb(n) is defined or
sebfa)~none»

(16) for every e€£, if phase(v fa))-removing then e occurs in 
queue (imageb (vc fa ) ) ) for some b € P e u e F  and, for all b£FeueF: 
winners(t^fa)V(e) and winners(image^(v^ fa))V fej and
not updated^(vcfa)) and exactly one of the following con­
ditions is fulfilled:

- e does not occur in queue(tb fa)) and in queue(image^(v f a ))) 
and sentb (ve(n) ) - 0  and either rgb(n) is defined or
seb(n )“£°û®»

- e does not occur in queue(t^fa)) but it occurs
in queue (lmage^ (v£ fa) ) ) and sent^ (v fa ) )-[cardback} 
and either rgb(n) is defined or s.,, fa)-none.

- e occurs in queue(t^fa)) and in queue(image^ (v fa)))
and sentt (v£ fa) )-{cardback] and ecb fa)-cardbacic.

- e occurs in queue(t^fa)) and in queue(imagê . fv fa))) and
sentb (ve(n) ) - 0  and either reb(n) is defined or s b fa)°none.

(17) for every eeE, if Phase (v fa) )-wlnnlng then
enabled. (image(vc fa) ) ) and winners(image^ (v fa))VieV for 
some b é F e u e F  and, for all b€FeUeF: e is first 
in 3ueue(tb (n)) and in queue(image .̂ (v  ̂fa) ) ) and 
not updated,. (v. fa ) ) and exactly one of the following con­
ditions is fulfilled:
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- winners (tb (n) )-winners (image^ (n ) > )- fe} and sent^ (tc (n ) )-fl 
and either rgb(n) is d.efined or (a)-none.

- winners (t^ (n ) )- (e? »¿winners (imageb (vc (a ) )) and 
senttj(ve(n))-{won} and either rgb(n) is defined 
or seb(n)-none,

- winners(t^ (n) fe?»¿winners(image^ (vc In.))) and 
sentt,CTc(n))-{wgn} and seb(n)-won,

- winners fa) fc[ /winners (lmagê . (v^ fa))) and 
sent^iVgin))-^ and either is defined or seb(n)-none,

(i8 ) for every e€£, if phase (vc (n) ̂ -cleaning then
enabled (.image (v. fa ) )) and e occurs in queue(image^ (vc fa))) 
for some hfePeoe? and, for all be.PeUel’: 
winners (tb fa ) )-winners (image^ (vc fa)))- f el and 
not updated,. (vg (n)) and exactly one of the following con- 
ditioas is fulfilled:

I A '* •
- e does not occur in queue (l^fa)) and in queue (image^ (v£ fa ) ) ) 

and senti)(ve (n))-0 and either reb(n) is defined or 
scb(n)-none,

- e does not occur in queue(tb fa)) but it occurs
in queue ( laage^ (v_ f a ) ) )  and sest^ ( x  f a ) )-[cardbac)c [ and 
either rob(n) is defined or seb(n)-none,

- e occurs in queue (t^fa)) and in queue (imagê . (v^ fa))) 
and sentb (vc fa))-jcardbackj and s ^  (n)-cardback.

- e occurs in Queue (tb (n)) and in queue (image^. (vc fa ))) and 
sent_b (vg (n) )-J> and either r_v fa) is defined or ŝ .. fa)-none.
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(19) for every e€E, if phase (vc (n) )-acces3lng then 
not firedfi(ve(n)) and, for all bgFeUeF:
winners (t^ (n) Winners (inageb (vc (n)))- M  and queued̂ , fa) ) Is 
empty and queue(imageb (vc fa))) le empty and exactly one of 
the following conditions is fulfilled:

- b € Fe ̂  eF and marking(t^ fa) )-marklng(linagê  (v^fa)))' and 
not u£datedb (ve(n)) and sentb (ve(n) ) - 0  and either rgb(n) is 
defined or scb(n)-none.

- b€Fe-eF and updated^ (v^ fa)) and 
marking (tb fa ) )-marking (iaiageb (v0 fa ) ) )j >  0 and 
6entb (ve (n) ) - 0  and either reb(n) is defined or 8cb(n)-none.

- bgFe-eF and not updatedb (vc fa) ) and
marking(t^ fa))-marking(linage^(v_fa) ) )-1 ^  0 and 
sent^(vcfa) )»fdecrease] and either reb(n) is defined 
°r scb (n)-none,

- b 6 Fe-eF and not updated^ (r fa)) and 
marking (tb fa) )-marking f Image^ (v _ fa) ) ) >  0 and 
sent^ (vc fa) )-[decrease } and ecb (n)-decrease.

- b € Fe-eF and not updated^(v fa)) and 
marking fa ) )-marking ( image^ (v£ fa) )  )  >  0  and 
sentb (ve (n) ) - 0  and either rgb(n) is defined or sgb(n)-none,

- b € eF-Fe and updated^ (v fa)) and
marking (tv (n))-aarkir.g (imagey (▼ (n)) )4 capacity (b ) and 
senty (v. fa) )-0 ar.d either rob(n) is defined or sey (n)-none.

- b £ eF-Fe and not updated.. (v (n)) ar.d
T.arking(tv fa) )-mar :lng (Ima.-ey (v (n)) )+1 ^  capacity (b) and 
senty tve(n))»[increase j and either rgb(n) is defined

0T Ecb fc)-cca6»
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- b 6  eF-?e and not updated^ (v e (n ) ) and
marking (t^f a ))-marking( Images( v Q ( n ) ) ) < capacity(b) and 
sent-̂  (vc fa) )—[increase] and fa)-increase.

- b e  eF-Fe and not updated^ (vg (n) ) and
narking (t^ fa))-marking(image1j (vefa))) < capacity(b) and 
sent^ (vc fa) ) - 0  and either r^fa) is defined or fa)-none.

(i10) for every e€.E, if phase (vc fa) )-rel easing then
winners Cimage^ (ve fa) ) )-{e? for some b € F e U e F  and, for all 
bÉFe'-'eF: e does not occur in queue (t^ fa) ) and 
in queue(image^(vcfa ) ) ) and exactly one of the following 
conditions is fulfilled:

- winners(t^fa) )/ {el/winners (linagê  (v^ fa) 1 ) and
not updated^. (vefa)) and sentb (ve(n))-0‘ and either reb(n) is 
defined or a.^ fa)-none.

- winners (t^ fa) )/ \ e} -winners ( image^ (vc fa ) ) ) and
not updated^(vc fa) ) and sent^ (vg(n))-■[release] and 
either reij(n ) defined or s ^  fa)-none.

- winners (t^ fa ) )- fe} -winners (linage-̂  (vc fa ) ) ) and 
queue(t^f a ) )  and queue( image,.( v c f a  ) )  ) are empty and 
not updated-^Vç.fa)) and sent^ ( v e f a  ) ) -  {release} and 
set) fa)-release,

- winners (t̂  fa) )- {e}-wlnners (image-̂  (vc fa) ) ) and 
queue (t-_ (n) ) and queue (inage^ (vc fa) ) ) are empty and 
updated^ (vc fa)) whenever b ^ F e O e F  and not updated^ (vc fa)) 
whenever b€? e n e F  and sent^(vgfa) ) - 0  and either -g^OO Is 
defined or s.-̂  fa. )-none.



The following leama oar: easily be verified.

leiaaa ' . The subset C* of markings r. e. C* satisfying (ii ) - (łl'" 
is invariant under all transitions of i.e., hfeC* for «,?! 
r. e:? an-; f fe~*.

Observe also that (iS) implies the fcllowing ’nu+ual ir.~ 
clusion property.

For every n€C*, if two distinct e,e'€ E are such that 
(?ewe?;o(Fe'w e'?)«0 then -ha~e(vcfa) )-accessinr irapliee 
?.iace(vc, fa ))>i accessing.

Now, taking into account lerxna 1, we define 3*, U, end W, 
as foliowe.

The subset 3* is defined as C*.

For every n € B x we define U(n) ir. the following manner:

v- . * - )  ( '  }* <

-arkin.^ (jr.a/re,. (vę (n ) ; ;+i if b e Fe-eP ar.d
rharc (v_ fa ) ,y s « ir, -
and updated., (vc fa))

-arkisgfigaee^ (v^ (n)) ¿i ' € eF-Fe and
. '-a£5 (*•• efa))-.v.-jeesina- 
arc ur:;a-eitl(vI.fa))

-arkir.r (-■);) » € Ft oe? ar.d
rhase;v fa))-accessing 
and net uydatrr.^ fv.fr.))

:■ L- - ft-, fa ‘) otherwise.
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Finally, giver» a string y ef transitions of ** that is a real 
execution of Q* starting from sores nCD*, or ar. initial segner.t of 
such execution, we find the shortest initial segaent z1 of y such 
that:

Zi*.Vi read (linev )I 1 W 1 1

with £hase(re (nv., ) )-ac:easinF and firedc (vg (ny.,)) and
phase |v. (nz. ))-releasing, el
then the shortest initial segnent z7 of y such that:

s2-21y2£ ^ 2 0 ^ b 2e2 )

with phase (v^ (nz1y2))-accessin£ and firedc (vg (nz.,y2)) and
phase (v (nz, ) )-releasing,

2
etc.

Thus we obtain a representation:

7 ^  readCi Oisel3i €i 0^ b 2e2 >• * *

and define W(y) as the string e1e2... . In the case when there is 
not any initial segaent of y with required properties we define 
to'(y) as the empty string A .

It is obvious that D*, U, and W, enjoy the properties 
(1) - (5)- I-t remains to Frove that they enjoy also the properties
<5) - (S).
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6 . Jcr^e■ - ■- t

We start with uc'r-r:.'J properties of formal and real executions 
of the interpreted ne1- 3* of the system of mcduj.es.

Lenma 3. All formal executions of Q* starting from ne U *  arc 
infin1te.

Proof. Let \g executions(?*.n) be fipite. Then ny must be a dead 
eawing. On the other hand* ny€L* since D* is invariant under all 
transitions of 3*, and no marking belorgir.g to D* is dead. 3.E.L.

Lemma 4 . Each read ana each write transition occurs infinitely 
many times in each real execution of Q* starting from nCD*.

■°roof Let n £ B *  and ye  realexecatlons(Q*.n). Consider a read or 
write transition, for exastole the transition write, (llne.y. ).
By the definition of 3*, either loaded(llne^) carries a token 
sgb(n) or empty Cline.y ) carries a token rgb{n). Let, for example, 
empty(line.^ ) carries a token refe(n). On the other hand, again by 
the definition of DK , exactly one of atc(lineeb, ). ate (lineb/e)
(b'e ïeüeF) carries - token v3 (n). If at. (line.^ ) carries a 
toke' the*) wr? te. jr.- ) is enabled and, by axiom 2, it occurs 
ir. y, say a6 the last transition of an initial segment y1 of y.
If at. (li;;e ,y / ) with t'/b carries a token then sklpe (xinecb., ) and 
possibly write. (line _v, ) are enabled and, by axiors 1 , at least 
one of these transitions must occur in y, say as the last transit­
ion of an initial segment z1 of y. Similarly, if at^ (llne^, _ )■ 
carries a toicen then (lineQ,@) and possibly read (lineb .|. )
are enabled and at least one of these transitions must occur as
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the last transition of an initial segment ẑ  of y. Since D* is in­
variant, we obtain nz1 € D* and y-z.^' with y'g real executions (Q*.nz-j ) 
and atc (next_(Iinect,)), or respectively at.e (nextc (llnev  c ) ), 
carrying a token ve(nz.,), and we can repeat the same reasoning.
In a finite number of steps we come to a marking such that 
atc(linecb) carries a token, and we deduce that write.(line^) 
occurs as the last transition of an initial segment y 1 of y.

In the case when loaded (lineeb) carries a token we take into 
account the fact that exactly one of atfa (line^ ) .  atb (linebe,) 
(e'£FbVJbP) carries a token tb (n), and deduce as before that 
read^(llnecb ) must occur in y, which leads us to the previous 
case.

Since D* is invariant, we obtain ny.j£DK and a decomposition 
y»y1y / with y'g realexecutions(QK ,ny1) and writee(line ) 
occurring in y'. Thus we obtain infinitely many occurrences of 
writec(llnecb ) in y.

That other read and write transitions occur in y infinitely 
many times can be proved in similar way. Q.E.D.

Lemma 5. Two successive occurrences of a read transition 
reade(llne^ ) or read^(line^) (resp,: of a write transition 
writeb (linebe) or writec(linecb ) ) in a real execution y of Q* 
starting from n€ D *  are separated by an occurrence of the cor­
responding write transition writfc^ (lin£.be ) or writee (line,eb )
(resp.: of the corresponding read transition readg(lin£be) or 
readb (linecb) ).
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Proof. The letima follows from the fact that each read (resp.: write) 
transition ia enabled only if the corresponding line is loaded 
(resp.: empty) and that such transition empties (resp.: loads) the 
line. Q.E.D.

Lemma 6 . Given a marking néD* and a string z of read and write 
transitions such that:

(.1 1) each read and each write transition occurs in z infinitely 
many times,

(j2 ) two successive occurrences of a read (resp.: write) transition 
in z are separated by an occurrence of the corresponding write 
(resp.: read) transition,

(33) if a communication line is empty (reap.: loaded) under n then 
each occurrence in z of the corresponding read (resp.: write) 
transition is preceded by an occurrence of the corresponding 
write (resp.: read) transition,

there exists a real execution y of Q* starting from n such that z 
can be obtained by removing from y all skip transitions.

Proof. A real execution y as required can be defined by considering 
the successive initial segments of z and constructing inductively 
the corresponding initial segments of y.

Let z-f1 ... f ^ f ^ z  and let be a firing sequence of Q* 
starting from n such that f 1 ...f^ can be obtained by removing from 
yi all skip transitions. Then ny^€D* and, by (J2) and (J3), either 
fi+ 1 is a read transition and the corresponding communication line 
is loaded or fi+ 1 is a write transition and the corresponding com-
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"unicaticn line is empty. Ik bcth cases there exists a firing se­
quence v starting from r.y, nf skip transitions such th?~* i\+.j is 
enabled under nyiw. Defining y . +1 as y^wi i+ 1 obtain a firing 
sequence cf Q* starting from n such that f1 ,..fifi+ 1 can he obtain­
ed by re=ovin£ from y , +1 all skip transitions.

Proceeding in this way we obtain a real execution y which 
enjoys the required property. ' Q.E.D.

Now we are ready to prove the properties (6 ) - (8 ) of D*, tj, 
and W, as defined in the previous section.

Lema 7. D(n)W (y)-O(ny) whenever n € E* and ny is defined (property
(6 ) )•

Proof. If y is empty then W(y) is empty as well and ny-nfeD*. 
Assuming that the property holds true for strings of the length <  i 
we consider y of the length i and prove that the property remains 
true if y is extended by one transition.

3y the definition of W, the only non-trivial case is that of 
vreac _ fllne^..) with phase(vc (ny))-accessing and fired, (v. (ny)) and 
phase (v. (nvreadc (line,.c )))-releasing. Then V (yreadg (1 ine^ ) )-W (y )«s 
and, by (i9) and the definition of U, ny is such that e is er.abled 
under U(ny)«"(n)W(y) and U (r.yreac . [line^. ) )»U (ny )e-'_' (n)W (v )e»
Ota )ti (yread c (line ̂ .)). ,.E.2.



Lemma 8 . Given a string x of transitions of P that is a finite 
execution of P starting from a marking m, or a finite initial 
segment of an infinite execution starting from m f there exi^t 
n e D *  and a string y of transitions of Q* such that D(n)-m, y is 
a real execution of Q* starting from n, or respectively an initiali
segment of such execution, and x-W(y) (property (8 ) ).

Proof. We choose n€D* such that the following conditions are ful­
filled for all b € B  and eCFbubF:

- phase (vc (n ) )-walt.lng.

- queue(laage^ (vc (n) ) )-oueue (t^ (n) ) are empty,

- winners(image^(v0 (n)))-winners(tb

- narking (laageb (vc (n )) )-marking (t^ (n ) )-m (b ),

- not updated^ (v0 (n)).

- sent̂ . (vc(n) ) - 0  and ret,(n ) is defined.

Then C(n)«m.

If x is an empty execution of P then m must be a dead marking 
and, by the definition of W, W(y) is empty for every real execution 
y of 3* starting from n. Since such real executions exist by lemma 
6, we obtain x-W(y) for any of them.

If x is a finite initial segment of a non-empty execution of P 
then we proceed as follows.

If x is empty then we choose the empty string for y and we

obtain x-W(y).

i - 4 3 -
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Let x be non-empty.

Consider the initial segment e1 ...ei_,ei of x and suppose that 
some y as required has been found for the initial segment e1 ...ei _1 

such that ny fulfils the conditions imposed on n. Then
enabled. (v. (ny)) and, by lemma 6 , a string w of transitions of Q*
car. be found such that:

- yw is an initial segment of a real execution of Q* starting
from n,

- the transitions of w carry control, (and only this module)
ei

over the phases waiting, distributing, winning, cleaning.
accessing, and releasing.

- nvw fulfils the conditions imposed on n,

- W(yw)-W(y)er

Thus some v as required can be found for all initial segments
of x and for x itself. Moreover, if x is a finite execution of P
then mx is a dead marking and the obtained string y ean be extended 
to a real execution of Q* without any change of W(y). Q.E.D.

lemma 9. If n £ D *  and 7 6 realexecutlons(Q*.n) then 
w(y)e executions(P,U(n)) (property (7) ).

Proof. By lemma 3, y is an infinite string f^f^... . We have to 
prove that if a transition of P is enabled under 17(nf 1 ...fi) then 
0(nf1.. .f1 )e-U(nf1.. ,fi.. .fi+ic) for some k > 0  and e€E.

By lemma 4, each read and write transition occurs in y in­
finitely many times. Together with the invariance of D* and the
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propertiee (il) - (1 1 0) of markings belonging to Û* it implies that 
all signals sent by nodules controlling transitions of P to modules 
controlling adjacent places lead to the expected effects in the 
corresponding places, and that these effects are discovered by the 
senders. In particular, each module assigned to a transition acts 
according to the scheme shown in fig. 7 .

Fig. 7

In order to prove that U(nf1.. ,fi)e-U(nf 1.. .f̂ .̂ . .fi+j£) for 
some k > 0  and e € E  suppose the contrary. Then, for all k>0, we 

• have 0 (nf1.. .f <.. .f1+lc)-U(nf-.,.. .f^) and there are two possibilities:

- all the modules controlling transitions are blocked in the 
sense that they cannot move (change situations in adjacent 
places or move from one phase to another),

- there are modules controlling transitions that are not blocked 
but all of them act only in phases waiting, distributing, and 
removing.
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In the first case a Barking n'feD is reached such that all ihe 
nodules controlling transitions are blocked. Tr.es, by (ii ) - (itC), 
it must be linage^(v in'))-t,_(n/) for all e € E  and b 6 Feue?.

How, by (i1) - (HO), there is not any e £ E  whose control is 
is one of the phases winning, cleaning, accessing, releasing (other­
wise the corresponding module could move)» In particular, we have 
phase (v. (r.' ) ) waiting.distributing. removing] and
winners (iaage  ̂(v. ( n O ) )-winners (t^ (n' ) )-fl for all e e E  and beFeVei.

Again by (i1 ) - (ilOi), there is not any e € E  whose control is 
in the phase removing. So phase(v£(n* ))-distributlng for a non- 
-empty subset E' of enabled transitions of F and 
chase (v^ (n') )-waitir,g for all eeE-E'. This implies that all 
e € E'o (Fb UbF), and only suoh transitions, occur in each 
queue(t^(s')) and that the transitions of higher priorities follow 
those of lower priorities (otherwise there would be a module which 
could move).

From the assumption that the modules controlling transitions 
are blocked it follows that, for each e€E' there exist b e F e U e F  
and e'€E' such that e' precedes e in queue (t^ (s' )). Thus we ob­
tain an infinite sequence e1,e2>... of transitions froE E' such 
that for each e. there exist b ;€.Fe,uei? and e.+1, where e.+, 
precedes ei in queue (t,. (n')). On the other hand, we have sees 
that is such a case the priority of e i+1 must be lower than that 
of C;. So each transition occurs in the infinite sequence e,,c-,... 
at r.cst once, which is irapotfible for finite E.

Is the second case the modules controlling enabled trassitless 
of I would only distribute and remove their visiting-cards in ad-
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jacent places (by sending signals card and cardback. respectively). 
However, this cannot continue infinitely long since in such a case 
the control of highest priority wçuld never be obliged to remove 
its visiting-cards, and so it would become a winner and access ad­
jacent places in spite of our assumption. Q.E.D.

All the results we have obtained can be summarized as follows.

Theorem. The implementation of a Petri net P by a system of modules 
as described in sections 2 - 6 is correct in the sense that there 
are E*. U, and V , which enjoy the properties (1) - (8 ) of section 7.

9. Pinal remarks

In order to implement a Petri net P we have constructed a 
system of modules controlling places and transitions of P. The be­
haviour of the system of modules has been described with the aid 
of the corresponding interpreted net Q* and its executions.
In order to reflect the necessary physical properties of the sys­
tem of modules we have restricted ourselves to the real executions 
which satisfy suitable axioms. Such real executions are all in­
finite and each of them contains infinitely many occurrences of 
each read and write transition so that no module is dead. To each 
real execution of Q* there corresponds a movement of tokens in Q* 
and a process of transforming the information contained in such 
tokens. A part of this information represents a marking of the im­
plemented net P and is being changed as if P would be executed.
This process continues while enabled transitions of P can be found. 
It continues aleo if a dead marking of P is reached but then it 
goes in vain (the part of information which represents a marking 
of T does not change anymore).
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The reletionships between the executions of P and the real 
executions of Q* have been expressed with the aid of an invariant 
subset 3* of markings of Q* and two functions' U and W describing 
how markings and firing sequences of P are represented by those 
of Q*. We have expressed tfcese relationships by the properties 
(1 ) - (8 ) in section 7, taking into account the fact that inde­
pendent transitions can be executed in parallel even though they 
occur one after another in the string representing the considered 
execution.

Each execution of a transition of P is represented by a sub­
sequence of the corresponding real execution of Q*. Such sub­
sequence consists of the transitions the executing module performs 
between winning the access to adjacent places and leaving the 
phase of accessing (cf. the definition of W in section 7, where 
the executed transition of P is represented by the last transition 
of the corresponding subsequence). The subsequences representing 
executions of independent transitions may overlap as shown in 
fig. S, which reflects the parallelism cf executions. Due to such 
overlappinf the respective parts cf the successive narking of F 
-¡ay v.old valid ir. different or ever, disjoint tine intervals (cf. the 
remark about markings in section 1). Each successive marking of Q*, 
-hose parts may also hold valid in different time intervals, de­
scribes which transitions of P are in progress and how far is the 
progress (cf. the definition of TJ, where the information contained 
ir. s marking n 6 D* of Q* has been used to reconstruct the last mar­
king of each place of P participating in a transition).
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an execution of
f . .f 1. , .f 3.. .fk-reade (¿ASS*, e. >* * (ii2£^ e , >*

L  1________• *   ^ i
an execution of eg 

Pig. 8

Observe that in the subsequences representing parallel 
executions of independent transitions e1 and e0 of P there may be 
occurrences of transitions fp and fq of Q*, respectively, which 
are causally dependent. This is an unintended Indirect effect of 
the useful communication among the modules. Unfortunately, such 
indirect effect has also some undesirable consequences. We shall 
illustrate them on the example of marked net in fig. 9.

Pig. 9

Suppose that the control of f is of higher priority than 
that of e and that the controls of g and n are much faster than 
those of e and f. Then it is likely that the controls of g and h 
win the access to adjacent places always whenever enabled so that
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the control of f never wins. On the other hand, it may happen that 
after some executions of g and h the control of f deposits its 
visiting-card in place t and that the visiting-card of the control 
of e is not present there yet. Then the control of e must remove 
the cards ¿t has possibly distributed and return to waiting. Next 
the control of f loses and removes its visiting-card from b, which 
allows the control of e to start distributing cards again, and a 
similar scqusnce of events may follow infinitely many times. Thus 
we have the permanently enabled transition e which never is execut­
ed.

Such phenomenon is not excluded by the definition cf execution 
in section 1 . Kevertheless, we feel that a stronger concept of 
execution of a net is necessary for certain purposes. For instance, 
the correctness of our implementation has been proved with the aid 
of axiom 1 in section 7 whose role was Just to exclude permanently 
enabled but never executed transitions. So, in order to be consist­
ent, we shoulc rather use the concept of a complete execution, 
where the completeness means satisfying the mentioned axiom. With 
such concept it would also be possible to strengthen lemma S and 
prove that all complete executions of P can be realized by the sys­
tem of modules.

"he example in fig. 9 shows that our implementation does not 
guarantee the completeness of executions. It is also ¿s. open 
question how to modify the implementation in order to remove 
this insufficiency. j

In the paper we have restricted the problem cf implementation 
te uninterpreted Petri nets. However, after slight modifications
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all owing to reconstruct not only the last markings of places of P 
participating in transitions but also the information contained 
is such markings, our solution applies to interpreted nets as well. 
Thus we obtain a general method of implementing systems of 
activities of a broad class. Regarding such Bystems as programs 
we could develop a programming language and tell how to implement 
it in order to get programs executed efficiently.

S ■■ I ' t • .
The result we have obtained illustrates an interesting pos­

sibility. It shows that complex problems of synchronization can be 
solved with the aid of very simple modules and very simple com­
munication.
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