

PRACE CO PAN - CC PAS REPORTS

Józef Winkowski

A language for describing non-sequential processes

A LAITGUAGE FOR DESCRIEITG NON-SEQUEITIAL PROUESSES

253

Komitet Redakcyjny

A. Blikle (przewodniczący), S. Bylka, J. Lipski (sekretarz),

亡. Łukaazewicz, R. Marczyński, A. hazurkiewicz, Z. Pawlak ,
D. Sikoraki, Z. Szoda (zastępca przewodniczacego), hi. Warmus,

```
Hailin€ address: dr Józef Winkowsk:
    Computation Centre PAS
    P.O. Box 22
    00-901 Warsaw
    POLANI
```


$61426 / 253$

Printedas a manuacript Na prawach rekopisu

Nakład 700 egz. Ark. wyd. 0,85; ark. druk. 1,375. Papier offaet. kl. III, $70 \mathrm{~g}, 70 \times 100$. Oddano do druku w maju 1976 r. Wi. D. N. Zam. nr 400/0/76 J-113

Abstract

Streazczenie In the paper a language is suggested for deacribing nonsequential processes. Mathematical semantics of two types are formulated for this language and relationships between such semantics are explained.

Язык описания параллельнвх процессов

В статъє предлагается язык описания параллельных процессов. Для этого языкє определнются математические семантикп двух тиов й выявлнотся соотношения межд такии семантижами.

Jegzy opisu procesów niesekwencyjnych
W pracy zaproponowano jezzyk opisu procesów niesekwencyjnych. -Dla tego jezyka zdefiniowano semantyki dwóch typów i zbạdano związki, jakie zachcdzą między takimi semantykami.

 ,

http://rbc.ipipan.waw.pl

The approach we present here is inspired by some ideas of Petri [9,10]. Genrioh[3], Mazurkiewicz[7]. and others. It comes from looking at any process as at changing relations corresponding to some predicate symbols.

We concentrate on the processes which run according to some rules from some finite sets called algorithms. Each rule r consists of two finite sets r_{1}, r_{2} of atomic formulas of the form

$$
\omega\left(x_{1}, \ldots, x_{a(\omega)}\right)
$$

Where ω is a predicate symbol of the arity $a(\omega)$, and x_{1}, \ldots, $x_{a}(\omega)$ are some variables. It applies (may be concurrentiy with other rales) in such cases in which there is a one-to-one correspondence between the variables of the formulas of r and some objects which actually exist or may appear suoh that:
(1) all the formulas of r_{1} are satisfied by the corresponding objects which exist,
(2) no formula of $r_{2} \backslash r_{1}$ is satisfied,
(3) only appearing objects correspond to the variables which occur in the formulas of r_{2} but do not occur in the formulas of r_{1}.

The applicziton leads to a change after which the conditions corresponding to the formulas of $r_{1} \backslash r_{2}$ cease, and the conditions corresponding to the formulas of $r_{2} \backslash r_{1}$ start to be satisfied. Other satisfied conditions remain the same. The process continues while some rules apply. Otherwise it terminates.

Example 1 The production $s \rightarrow 88$ of context-iree grammar Is a rule. It may be illustrated as

and written as $r=\left(r_{1}, r_{2}\right)$ with

$$
\begin{aligned}
r_{1}= & \{y \text { is at the right end of } x, y \text { is at the left end of } z, \\
& y \text { is an occurrence of } s\} \\
r_{2}= & \{y \text { is at the right end of } x, y \text { is at the left end of } n, \\
& v \text { is at the right end of } u, v \text { is at the left end of } z, \\
& y \text { is an occurrence of } s, v i s \text { an occurrence of } a\}
\end{aligned}
$$

This rule applies in the cases of derivation processes where we have derived a word with an occurrence of s. For instance, in the case

the rule applies and the application leads to the word

with a new link 10 and a new ocourrenoe 11 of a.

Example 2 The labelled instruction

$$
e: Y:=F(X)
$$

Is the rule $r=\left(r_{1}, r_{2}\right)$ with

$$
\begin{aligned}
& r_{1}=\left\{\text { the value of } e \text { is } x, y \text { follows } x \text {, the control is at } x_{\text {, }}\right. \\
& \text { the value of } X 1 s u \text {, the value of } Y \text { is } v, F(u)=w\} \\
& r_{2} x\{\text { the value of } e 18 \mathrm{I}, \mathrm{y} \text { follows } I \text {, the control } 18 \text { at } \bar{y} \text {, } \\
& \text { the value of } X \text { is } u \text {, the value of } Y \text { is } W, F(u)=\mathbb{F}\}
\end{aligned}
$$

A program can be considered as a finite set of such rules, i.e., as an algorithm.

Example 3 (after Dijkstra [1]) There are five philosophers sitting at a round table. They are alternately thinking or eating something with two forks which they share with their neighbours as it is shown in the picture.

If $R(x, y, z)$ stands for: x is the left fork of y and z is the right fork of y,
$H(y, x)$ gtands for: y is using x, $F(x)$ stands for: x is free,
then $R(10,1,2), R(2,3,4), R(4,5,6), R(6,7,8), R(8,9,10)$, and the philosophers behave scoording to the following rules:

$$
\begin{aligned}
& (\{R(x, y, z), F(x)\},\{R(x, y, z), H(y, x)\}) \\
& (\{R(x, y, z), F(z)\},\{B(x, y, z), H(y, z)\}) \\
& (\{R(x, y, z), H(y, x), H(y, z)\},\{R(x, y, z), F(x), F(z)\})
\end{aligned}
$$

The idea to desoribe prooesses by ilnite sets of rules of the above type seems to be quite universal. It is the key idea of our approach.
2. THE LANGUAGE

Now we define our language for describing non-seguential processes. This language (of algorithms) is determined (up to inessential syntaotio details) by defining algorithms in a formal way. The basio definitions are the following.

An elementary formula is an ordered $(a(\omega)+1)$-tuple

$$
I=\left(\omega, x_{1}, \ldots, x_{a}(\omega)\right)
$$

where ω is a predicate symbol of the arity $a(\omega)$, and $x_{1} \ldots \ldots$ $x_{a}(\omega)$ are some variables. Such a formula 18 written as

$$
\omega\left(x_{1}, \ldots, x_{a}(\omega)\right)
$$

The set of variables of 118 denoted by Variables(f). Yore generally, the set of variables of the formulas belonging to a set F of elementary formulas is denoted by Variables(f).

A rule 18 an ordered pair

$$
r=\left(r_{1}, r_{2}\right)
$$

of two different finite sets r_{1}, r_{2} of elementary formulas. Such a rule is usually written as

$$
r_{1} \rightarrow r_{2}
$$

The set r_{1} is said to be the left part of r and is denoted by $L(r)$. The set r_{2} is said to be the reht fart of r and is denoted by $g(r)$.

An algorithm is a inite set of rules.

3. SEMANTICS

A senantics of the language of algorithms can be given by assignigg a class of processes to every algorithm. The prooesseat of this class correspond to possible executions of the algorithm. To characterize them we introduce some preliminary notions.

An elementary situation is an ordered $(a(\omega)+1)$-tuple

$$
s=\left(\omega, b_{1}, \ldots, b_{s}(\omega)\right)
$$

Where ω is a predicate symbol of the arity $a(\omega)$, and b_{1}, \ldots, $b_{a(\omega)}$ are some objeots. Such a situation 18 written as

$$
\omega\left(b_{1}, \ldots, b_{a(\omega)}\right)
$$

and it means that the objects $b_{1}, \ldots, b_{a(\omega)}$) are in the relation corresponding to the predicate symbol ω. The set of these objects is denoted by objects(s).

A situation 18 a set S of elementary situations. The set of objects which occur in the elementary situations belonging to S Is denoted by objects(S).

An elementary change is an ordered pair

$$
m=\left(m_{1} ; m_{2}\right)
$$

of tro finite sets $\mathrm{m}_{1}, \mathrm{~m}_{2}$ of elementary situations. Such a change is written as

$$
m_{1} \rightarrow m_{2}
$$

The set m_{1} is said to be the left part of n and is denoted by $L(m)$. The set m_{2} is said to be the righ part of and is denoted by $\mathrm{i}(\mathrm{m})$. The elementary change $\mathbb{I T}$ is said to be possible in a situation S If there is in S no elementary situation from $R(m) \backslash L(m)$ and if no object of objects $(R(m))$ objects $(L(m))$ belongs to objects (S). A situation $S^{\prime} 1 s$ said to be the result of the change in the situation S iff m is possible in S and $S^{\prime \prime}=(S \backslash L(E)) \cup R(t)$.

Elementary changes m, n are said to be in a conflict if $L(m) \backslash R(m) \neq L(n) \backslash R(n) \quad$ or $\quad R(m) \backslash L(m) \neq R(n) \backslash L(n)$.

An instance of an elementary formula

$$
I=\omega\left(x_{1}, \ldots, x_{a}(\omega)\right)
$$

18 an elementary situation

$$
\varepsilon=\omega\left(\mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{a}}(\omega)\right)
$$

such that there is a one-to-one mapping φ of Variables(f) onto Objecta(s) With $\varphi\left(x_{1}\right)=b_{1}$ for $1=1, \ldots, a(\omega)$. The mapping φ is said to be a realisation of 1 in 8 .

An ingtance of a set F of elementary formulas is a situation S such that there is a one-to-one mapping φ of Variables (F) onto Objects (S), and $\omega\left(b_{1}, \ldots, b_{a}(\omega)\right) \in S$ 11t $b_{1}=\varphi\left(x_{1}\right), \ldots$, $b_{a}(\omega)=\varphi\left(x_{a(\omega)}\right)$ for some $\omega\left(x_{1} \ldots . x_{a}(\omega)\right) \in F$. The mapping φ is said to be a realisation of F in S. Of oourae, every situation $\omega\left(\varphi\left(x_{1}\right) \ldots, \varphi\left(x_{a}(\omega)\right)\right) \in S$ is then an instance of the formula $\omega\left(x_{1}, \ldots, x_{a}(\omega)\right) \in F$. We call it the instance of $\omega\left(x_{1}, \ldots, x_{a}(\omega)\right)$ In the instance S of F.

An instance of a rule r an elementary change mach that:
(1) there 18 a one-to-one mapping φ of Variables(L(r) $\mathcal{A}(r))$ onto Objects (L(m) $\cup \mathbb{R}(m))$,
(2) $\omega\left(b_{1}, \ldots, b_{a}(\omega)\right) \in L(m)$ 1f1 $b_{1}=\varphi\left(x_{1}\right), \ldots, b_{a}(\omega)=\varphi\left(x_{a}(\omega)\right)$ for some $\omega\left(x_{1}, \ldots, x_{a(\omega)}\right) \in L(r)$.
(3) $\omega\left(b_{1}, \ldots, b_{a}(\omega)\right) \in R(m) \quad$ iff $b_{1}=\varphi\left(x_{1}\right) \ldots, b_{a(\omega)}=\varphi\left(x_{a(\omega)}\right)$ for some $\omega\left(x_{1}, \ldots, I_{a}(\omega)\right) \in \mathrm{Z}(r)$. The mapping φ is said to be a realisation of I in m. The rule r 18 said to be applicable in a situation S iff there is an instance - of r mion is possible in S.

Now Te are ready to define executions of algorithms.
By an execution of an algorithn A we mean any ordered quintuple

$$
E=(T, D, \text { pre,post, } F)
$$

such that:
(E1) T 18 a non-empty set (of occurrences of elementary situ(ations).
(E2) U is a set (of occurrences of elementary changes).
(E3) prect x is a binary relation (if (t,u) \in pre then the occurrence t of an elementary situation is said to be a precondition of the occurrence u of an elementary change).
(E4) post $\subseteq U \times T$ is a binary relation (if (u, t) \in post then the occurrence t of an elementary situation is said to be a postcondition of the occurrence u of an elementary change),
(E5) Fis a function that assigns the elementary situation $F(t)$ to every occurrence t of this situation, and the elementary change $F(u)$ to every occurrence u of this change,
(E6) $s \in L(F(u))$ iff $s=F(t)$ for some t with ($t, u) \in$ pre, $s \in R(F(u))$ iff $s=F(t)$ for some $t w i t h(u, t) \in p o s t$. and F is locally one-to-one, i.e., $F(t) \neq F\left(t^{\prime}\right)$ for every u and t, t^{\prime} with $t \neq t^{\prime},(t, u) \in$ pre or $(u, t) \in$ post, and $\left(t^{\prime}, u\right) \in$ pre or $\left(u, t^{\prime}\right) \in$ post.
(E7) the reflexive and transitive closure of the following relation B in T :
tRt 1 if $t=t^{\prime}$ or $(t, u) \in \operatorname{pre},(u, t) \notin$ post, $\left(t^{\prime}, u\right) \notin \operatorname{pre}$, $\left(u, t^{\prime}\right) \in p o s t$ for some u
is an ordering \leqslant of T.
(E8) $t \leqslant t^{\circ}, t^{\prime} \neq t, t \neq t^{\prime} 1 \operatorname{mpl1es} F(t) \notin F\left(t^{\prime}\right)$ for $t \in T, t^{\circ} \in T$,
(E9) every non-empty subset of T has a minimal element,
(E10) every non-empty subset of T With an upper bound has a maximal element.
(E11) for every $u \in \mathbb{U}$ the elementary change $F(u)$ is a possible Instanoe of a rule of A this can be precisely formulated as follows:
we say that two elementary situation oocurrences $t \in T, t \in T$ are independent (or potentially concurrent) iff neither $t \leqslant t^{\prime}$ nor $t^{\prime} \leqslant t$; every maximal set of independent occurrences of elementary sitrations 18 said to be a ase; to every oase 0 the set $F(0)$ of the elementary situations $F(t)$ With $t \in 0$ corresponds and this set is a situation; the condition 1s:
for every elementary change occurrénce u with the preconditions in a case c there 18 a rule r of A such that $F(u)$ is an instance of r and this instance 18 a change which 18 possible in the situation $F(c)$,
(E12) if two different elementary ohange occurrences u, v have a common precondition (postoondition) then must be a postoondition (precondition) of u and ∇ (this means that it is decided in any case which of possible confliot changes ocour),
(E13) the exeoution terminater iff no rule of A can be applied; this can be formulated as follows: let $0_{\text {max }}$ be the set of maximal elements of T (it is a oase); If an instance m of a rule of A is possible in the situation $F\left(c_{\text {max }}\right)$ then mas an occurrence with all the preconditions in $0_{\text {max }}$ and no postcondition, or is in a conflict with an elementary change having an ocourrence whose preconditions are in $c_{\text {max }}$.

Abstract

The conditions (E1)-(E13) characterize the class of all possible executions of A. When added (together Fith a characterization of A) to the usual set theory they constitute an extension of the set theory. This extension 18 said to be a general objective semantics of A and is denoted by $\operatorname{SEM}(A)$. The assignment SEM: $A \longmapsto \operatorname{SEM}(A) \quad 18$ said to be a general objective semantics of the language of algorithms. The semantics are said to be objective because they characterize the considered processes in terms of objects which really exist in these processes.

When we employ in our algorithms some arithmetical or other notions the general objective semantics can be extended to appropriate special ones. This can be done by adding to every of the theories $\operatorname{SEL}(A)$ some specific axioms which specify the meaning we dave in mind to some predicate symbols. For instance, we can specify $R(a, b, c)$ as $c=a+b$ by adding the $a x i o m$ $$
(\forall t)(F(t)=R(a, b, c) \Longrightarrow c=a+b)
$$

Of course, this may lead to some inconsistent semantics.

4. SUBJECTIVE SEMLANTICS

It 18 sometimes corvenient to consider executions of an algorithm A from the point of view of an observer. This leads to a new semantics which is said to be subjective.

If elementary changes are instantaneous the observer observes a sequence $\{G(p)\}_{p \in P}$ of global states $\begin{aligned} & \text { wh } \\ & P \text { being the set Nat }\end{aligned}$ of natural numbere (1f the execution does not terminate) or an initial segment of Nat (11 the execution terminates). The global
states are some more or lesf complex situations. The transition from $G(p)$ to $G(p+1)$ is considered as consisting of concurrent applications of some rules of A in the situation $G(p)$. From the point of view of the observer the indices $p \in P$ are phases of the observed execution. Which global states correspond to the consecutive phases depends on some unobservable factors. In this way parallelism is replaced by indeterminism.

If elementary changes are time-consuming it way be that global states are not directly observable objects. However, the observer can note the elementary situations which arise when elementary changes terminate, and erease the elementary situations which cease. Then all the elementary situations which may be considered as actual ones constitute something that corresponds to a global state. Thus, the observer observes again a sequence $\{G(p)\}_{p \in P}$ of global states in his registration. Transitions between consecutive global states are now results of terminations of elementary changes but still they may be considered as consisting of concurrent applioations of some rules of the algorithm. In consequence, we have the same description as before with a slightly modified interpretation.

What we have said enables us to define executions of algorithms from the point of view of an observer. Namely, by an execution of an algorithm a me mean nom any ordered quadruple

$$
E^{\prime}=(P, G, \text { Possible, Occurs })
$$

such that:
($E^{\prime} 1$) P is the set Nat of natural numbers or an initial segment of Nat; elements of P are said to be phases of E°,
($E^{\prime} 2$) G is a mapping that assigns a global state $G(p)$ of E^{\prime} to every phase p,
($E^{\prime} 3$) Possible is the following binary relation: Possible (m,p) iff m is an instance of a rule of $A, p \in P$, and m is possible in $G(p)$,
($E^{\prime} 4$) Occurs is a binary relation contained in Possible (Occurs (m,p) means that the elementary change moccurs exactly at the phase p),
($E^{\prime} 5$) there is no instance m of a rule of A, and $q \in P$, such that Possible(m,p) for all $p \geqslant q$ (the execution does not terminate if some rules of A are applicable),
(E'6) if Occursím,p) for some m then $p+1 \in P$,
($E^{\prime} 7$) if $p \in P$ and $p+1 \in P$ then there is a non-empty set M of instances of rules of A such that Occurs (m, p) for every $m \in M$, and $G(p+1)=(G(p) \backslash \underset{m \in M}{\cup} L(m)) \cup \underset{m \in M}{\cup} B(m) \quad$ (this is a characterization of the transition from the phase p to the next phase $p+1$),
($E^{\prime} 8$) if 0 ccurs (m, p) and $0 c c u r s\left(m^{\prime}, p\right)$ with $m \neq m^{\prime}$ then $L(m) \cap L\left(m^{\prime}\right) \subseteq R(m) \cap R\left(m^{\prime}\right)$ and $R(m) \cap R\left(m^{\prime}\right) \subseteq L(m) \cap L\left(m^{\prime}\right)$ (1.e., conflicts are decided).

Adding the arioms ($\left.E^{\prime} 1\right)-\left(E^{\prime} 8\right)$ and a characterization of A to the set theory gives a theory which is said to be a general subjective semantics of A and is denoted by sem(A). The correspondence sem: $A \longmapsto s e m(A)$ is said to be a general subjective gemantics of the language of algorithme. The general subjective semantics can be extended to snecial ones by adding appropriate axioms, just as in the case of objective semantics.

Subjective semantics were employed more or less explicitly in a number of papers concerning non-sequential processes (Karp, Mller[4], Mlner[8], Mazurkiewicz[6]). They are very handy tools to investigate processes beoause they allow one to apply the powerful methods which have been developed for sequential processes. In particular, the well known method of invariants (Mazurkiewicz[5]) can be exploited. The problem only arises whether subjective semantics are powerfal enough for desoribing and proving properties of non-sequential processes. This problem has been answered positively for a class of processes in Tinkowski [12]. In what follows we give a solution of it for the considered executions of algorithos. This solution bases on the method of modelifig that was described in Winkowski $[11,12]$.
5. MODELLING OBJECTIVE SEXANTICS IN SUBJECTIVE ONES

By modelling of a theory T in another theory T^{\prime} we mean an assignment μ of formulas (and terms) of T° to the formulas (terms) of T that preserves free variables (term variables), logical operations (substitutions), and theorems. If such a modelling exists then all the theorems of T can be interpreted
and proved in T^{\prime}. Thus, every model of T^{\prime} has all the properties of models of T which can be formulated in T. In particular, having such a model we can construct a model of T. Hence, T is consistent if only $T^{\prime \prime}$ is consistent.

To construct a modelling of the objective semantics SEM (A) of an algorithm A in the subjective semantics sem (A) we take the identity modelling of the set theory with a characterization of A in itself and extend it to correspondence μ_{A} between formules (and constants) of $\operatorname{SEM}(\Lambda)$ and those of sem (A). Namely, De define:

$$
\begin{aligned}
& \mu_{A}(t \in T) \text { as } \\
& (\exists x)(\exists p)(\exists q)(t=(x, p, q) \& x \text { is an elementary situation \& } \\
& p \in P \& q \in P \& p \leqslant q \&(\forall k: p \leqslant k \leqslant q)(x \in G(k)) \& \\
& (p-1 \notin P \vee p-1 \in P \& x \notin G(p-1)) \& \\
& (q+1 \in P \& I \mathcal{E} G(q+1))) V \\
& (\exists x)(\exists p)(t=(x, p) \& x \text { is an elementary situation \& } p \in P \text { \& } \\
& (\forall k \in P: p \leqslant k)(x \in G(k)) \& \\
& (p-1 \notin P \vee p-1 \in P \& x \notin G(p-1))) \\
& \mu_{\mathrm{A}}(u \in \mathbb{U}) \text { as }(\exists \mathrm{m})(\exists \mathrm{p})(\mathrm{u}=(\mathrm{m}, \mathrm{p}) \& \operatorname{occurs}(\mathrm{~m}, \mathrm{p})) \\
& \mu_{A}((t, u) \in p r e) \text { as } \\
& \mu_{A}(t \in T) \& \mu_{A}(u \in \mathbb{U}) \& \\
& (\exists \mathrm{p})(\exists \mathrm{q})(\exists \mathrm{x})(\exists \mathrm{m})(\mathrm{t}=(\mathrm{x}, \mathrm{p}, \mathrm{q}) \& \mathrm{q}=(\mathrm{m}, \mathrm{q}) \& \mathrm{x} \in \mathrm{~L}(\mathrm{~m})) \\
& \mu_{A}((u, t) \in \text { post }) \text { as } \\
& \mu_{A}(t \in T) \& \mu_{A}(u \in U) \& \\
& (\exists \mathrm{p})(\exists \mathrm{m})(u=(m, p) \& \\
& \text { - }((\exists x)(t=(x, p+1) \& x \in R(m)) \vee \\
& (\exists x)(\exists q)(t=(x, p+1, q) \& x \in R(m)))\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \mu_{A}(y=F(x)) \text { as } \\
& \quad \mu_{A}(x \in T) \&((\exists p)(x=(y, p)) V(\exists p)(\exists q)(x=(y, p, q))) V \\
& \mu_{A}(x \in \mathbb{V}) \&(\exists p)(x=(y, p))
\end{aligned}
$$

and extend this definition on other formulas so that:

$$
\begin{aligned}
& \mu_{A}(\sim \alpha)=\sim \mu_{\mathbf{A}}(\alpha), \quad \mu_{\mathbf{A}}(\alpha \& \beta)=\mu_{A}(\alpha) \& \mu_{A}(\beta) \\
& \mu_{\mathbf{A}}(\alpha \vee \beta)=\mu_{\mathbf{A}}(\alpha) \vee \mu_{\mathbf{A}}(\beta), \quad \mu_{\mathbf{A}}((\exists x) \alpha)=(\exists x) \mu_{\mathbf{A}}(\alpha), \\
& \mu_{A^{\prime}}((\forall x) \alpha)=(\forall x) \mu_{\mathbf{A}}(\alpha)
\end{aligned}
$$

In other words, we define occurrences of elementary situations as the corresponding situations accompanied by intervals in Which they maintain, and occurrences of elementary changes as the corresponding elementary changes accompanied by phases at which they take place.

It remains to prove that μ_{A} carries over all theorems of $\operatorname{sem}(A)$ onto theorems of $\operatorname{sem}(A)$. Since μ_{A} preserves logical operations me may limit ourselves to axioms only.

It is a matter of routine to verify that the axioms (E1)--(E12) are carried over onto theorems of sem (A), and that the corresponding ordering of occurrences of elementary situations is identical with the following:

$$
\begin{aligned}
& t \leqslant t^{\prime} \text { iff there are elementary situation occurrences } \\
& t=t_{1}=\left(x_{1}, p_{1}, q_{1}\right), \ldots, t^{\prime}=t_{k}=\left(x_{k}, p_{k}, q_{k}\right) \text { or }\left(x_{k}, p_{k}\right), \\
& \\
& \text { and elementary change occurrences } \\
& \\
& n_{1}=\left(y_{1}, q_{1}\right), \ldots, u_{k-1}=\left(y_{k-1}, q_{k-1}\right) \text {, such that } \\
& \\
& x_{i} \in L\left(y_{1}\right), x_{i+1} \in R\left(y_{1}\right), p_{i+1}=q_{1}+1 \text { for } i=1, \ldots, k-1 .
\end{aligned}
$$

To prove that (E13) converts into a theorem, suppose that an instance m of a rule of A is possible in the situation $F\left(o_{m a x}\right)$ corresponding to the case $c_{\text {max }}$ of the marimal occurrences of elementary situations. Suppose that mas no oocurrence with all the preconditions in $c_{\text {max }}$ and no postcondition. If \mathbf{m} is not in a conflict with the ohanges which have ooourrences with the preconditions in $c_{\text {max }}$ then no elementary situation from $L(m)$ cases and no elementary situation from $\underset{\sim}{\mathrm{R}}(\mathrm{m})$ arises. Hence, there is a phase $q \in P$ such that Possible(m,p) for all $p \geqslant q$. However, due to ($\mathrm{E}^{\prime} 5$), this is imposible. Thus, m must be in a conflict with changes which occur in the case $c_{\text {max }}$ or mas an occurrence with all the preconditions in $c_{\text {max }}$ and no postcondition. In other Fords, (E13) converts into a theorem.

In consequence, we obtain the following:

Modelling Theorem For every algorithm A the correspondence $\mu_{A} 18$ a modelling of the general objective semantios SEM(A) in the general subjective semantics sem(A).

This theorem extends to special semantics if the specifio axioms which are added to $\operatorname{SEM}(A)$ are appropriately reformalated and added to sem(A). For instanoe, the axiom

$$
(\forall t)(F(t)=R(a, b, c) \Rightarrow c=a+b)
$$

may be reformulated as

$$
(\forall p)(\mathrm{H}(\mathrm{a}, \mathrm{~b}, \mathrm{c}) \in \mathrm{G}(\mathrm{p}) \Longrightarrow c=a+b)
$$

In this way we obtain a positive solution of the stated problem.
6. COMAENTS AND CONCLUSIONS

What we have presented is a formalism for characterizing processes which are studied in computer science.

This formalism is not a language in the striot sense though it could easily be developed to a language. He must also empha_ size that it is a tool for describing rather than for programming processes. We do not know, as yet, how to 1 mplement it in an efficient way, and convert into a programaing language. Besides, it seems to be not very convenient for programming.

Our intention was rather to offer a tool to analyse various processes (especially non-sequential ones) in a mathematical way. Having this in mind we give a formalism universal enough to cover typical processes, together with precisely defined mathemam tical semantics.

An important result is that objective semantios can be modelled in subjective ones. It justifies in a precise way the approaches which base on replacing parallelism by indeterminism.

The formalism oovers notions like Markov algorithms, grammars (including those multidimensional and graph grammars of Ehrig, Pfender, Schneider [2]), various schewes of computations (in this number polyadic ones), and offers semantics of these notions. It is also a tool to define Petri nets (elementary situations and elementary changes are detalled desoriptions of what is oalled conditions and events in Petri [9]).

REFERENCES

1. Dijkstra, E.W., Eierarchical Ordering of Sequential Processes, Acta Informatica 1, Springer-Verlag 1971
2. Ehrig,H., Pfender,M., Schneider, H.J., Kategorielle Konstruktionen in der Theorie der Graph-Grammatiken, in Fachgesprãch über mehrdimensionale formsle Sprachen, Erlangen, 1973
3. Genrich,H.J., Einfache nicht-sequentielle Prozesse, BLBक--GMD-37, Bonn, 1971
4. Karp,R.M., Miller,R.E., Parallel Program Schemata, JCSS 3(2)
5. Mazurkiewioz,A., Proving Properties of Processes, CC PAS Reports 134, 1973
6. Mazurkievicz,A., Parallel Recursive Pragram Schemes, Proc, of MFCS'75 Symp., Mar1anske Laqne, Lecture Notes in Comp. Sc. 32, Springer-Verlag, 1975
7. Mazurkienicz,A., Invariants of Concurrent Programs, to appear
8. Miner,R., An Approach to the Semantics of Parallel Programs, Unpublished Memo, Comp. Sc. Dept., Univ. of Edinburgh, 1973
9. Petri,C.A., Concepts of Net Theory, Proc. of MrCs'73 Symp., High Tatras, 1973
10. Petri,C.A., Interpretations of Net Theory, GM, Bonn, 1975, presented at MFCS'75 Symp., Marianske Lazne, 1975
11. Winkowski,J., Towards an Understanding of Computer Simulation, CC PAS Reports 243, 1976
12. Finkowski,J., On Sequential Modelling of Parallel Processes, CC PAS Reports 250, 1976
13. Rajlich. F.. Relational definition of oomputer languages, Proc. of MFCS":5 Symp. Marianske Lezne, Lecture Notes in Comp. Sc. 32, Springer-Verleg, 1975
[^0]
[^0]: http://rbc.ipipan.waw.pl

