1426/253
(— 2577 I~ PRACE CO PAN = CC PAS REPORTS

OO0ODO
O00™*
000«
00*0

OO,

o O

896@* v

0 # # ,or describing

noo-sequential
O&‘ C 08 processes

WARSZAWA

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

http://rbc.ipipan.waw.pl

Jo6sef Y/ZinkowsidL

A LAITSUAGS FOR DESCRIBING

lHIOTT-SEQUEIITIAL PROCESSES

253

Komitet Redakcyjny

A. Blikle (przewodniczacy), S. Bylka, J. Lipski (sekretarz),
L. tukaszewicz, R. Marczynski, A. Mazurkiewicz, Z. Pawlak ,
D. Sikorski, Z. Szoda (zastepca przewodniczacego), M Warmus,

Mailing address: dr Jdzef Winkowski
Computation Centre PAS
P.O. Box 22
00 -901 Warsaw
POLAJJt

Is | 1

| TimshANOMMVM
Printed as a manuscript
N a prawach rekopisu

Naktad 700 egz. Ark. wyd. 0,85; ark. druk. 1,375.
Papier offset, kl. IlIl, 70 g, 70 x 100. Oddano do
druku w maju 1976 r. W. D. K. Zam. nr 400/0/76

J-113

AVS CATEGORIES: 68A05
CS CATEGORIES: 5.24

Abstract . CoflepsaHHe . Streszczenie

In the paper a language is suggested for describing non-
sequential processes. Mathematical semantics of two types are
formulated for this language and relationships between such

semantics are explained.

H3HK oraicaHHH napajuiejrbHHX npogeocoB
#

E cTHTBe rrpejyiaraeTCH hshk orracaHHH napajuiejiLHHX nponec-
cob. Hah 3Toro H3HKE onpejiejiffioTGH M~reMaTEraecKHe ceMaHTHKH

Jtsyx THnOB H BUHBJIHBTGH GOOTHOIllieHHH MeSWy T3KHMH CeMaHTHKaMZ.

Jezyk opisu procesow niesekwencyjnych

W pracy zaproponowano jezyk opisu proces6w niesekwencyjnych.
eDla tego jezyka zdefiniowano semantyki dwéch typow i zbedano

zwigzki, jakie zachcdza miedzy takimi semantykami.

http://rbc.ipipan.waw.pl

1. INTRODUCTION

The approach we present here is inspired by some ideas of
Petri[9,i0), Genrich[3], Mazurkiewicz [7), and others. It comes
from looking at any process as at changing relations correspon-
ding to some predicate symbols.

We concentrate on the processes which run according to some
rules from some finite sets called algorithms. Each rule r con-

sists of two finite sets rj,r2 of atomic formulas of the form

(Xj, ... ~)

where u is a predicate symbol of the arity a(<J), and x*,...,

xa(w) are 80me variables. It applies (may be concurrently with

other rules) in such cases in which there is a one-to-one cor-

respondence between the variables of the formulas of r and some

objects which actually exist or may appear such that:

(1) all the formulas of rt are satisfied by the corresponding
objects which exist,

(2) no formula of r2\ is satisfied,

(3) only appearing objects correspond to the variables which
occur in the formulas of hut do not occur in the for-

mulas of r~

The applic.- "ion leads to a change after which the conditions
corresponding to the formulas of r1I\ r2 cease, and the conditions
corresponding to the formulas of r2\ Tj start to be satisfied.
Other satisfied conditions remain the sane. The process continues

while some rules apply. Otherwise it terminates.

Example 1 The production s—%sa of a context-free graaanar

is a rule. It may be illustrated as

M iP * -J-€H O JL-

and written as r*r”~rg) with

ri={y jg at the right endof x, vy Is at the left end of z,

y is anoccurrence ofs]

r,=[y is at the right endof x, vy is at the left end ofa,
v Is at the richt endof u, v is at the left end of z,

y Is anoccurrence ofswv is anoccurrence of aj
This rule applies in the cases of derivation processes where we

have derived a word with an occurrence of s. For Instance, in the

case

the rule applies and the application leads to the word

with a new link 10 and a new occurrence 11 of a.

Example 2 The labelled Instruction
e: Y:= F(X)
is the rule rsCr”rg) with
rl=[the value ofe is x,y follows x,the control is at x,
the value ofl is u,the value ofY is v, F(u)=w]
r*=ithe value ofe Is x,y follows x, the control is at vy,

the value ofX Is u, the value ofY is w, F(u)=w}

A program can be considered as a finite set of such rules, Il.e.,

as an algorithm.

Example 3 (after Dijkstra(l)) There are five philosophers
sitting at a round table. They are alternately thinking or eating
something with two forks which they share with their neighbours

as it is shown in the picture.

I f R(x,y,z) stands for: x is the left fork of y and
z is the right fork of vy,
H(y,x) stands for: y is using X,
F(x) stands for: x is free,
then n¢(io,l,2), B(2,3,4), r(4,5,6), r(6,7,8), R(8,9,i0), and

the philosophers behave according to the following rules:

({R(x,y,z),F(x)}, (R(x,y,z),H(y.x)})
({R(x,y,z),F(2)}, (R(x,y,z),H(y,*)})
({R(x,y,z),H(y,x),H(y,2)}, {R(x,y,z),F(x),F(2)})

The idea to describe processes by finite sets of rules of
the above type seems to be quite universal. It Is the key idea

of our approach.

2. THE LANGUAGE

Now we define our language for describing non-seauentlal
processes. This language (of algorithms) is determined (up to
inessential syntactic details) by defining algorithms in a formal
way. The basic definitions are the following.

An elementary formula is an ordered (a(«) +l)-tuple

f= (@ Xj,. .. #xa(d0))

where ui is a predicate symbol of the arity a(co), and x”™,...,

xa(tO) are some variables. Such a formula is written as

w(Xj,...,xa(w))

The set of variables of f is denoted by Variables(f). More gene-
rally, the set of variables of the formulas belonging to aset F
of elementary formulas is denoted by Variables(F).

A rule is an ordered pair

r= (rt,r2)

of two different finite sets r~,r2 of elementary formulas. Such

a rule is usually written as

rl-+* r2
The set rtis said to be the left part of rand is denoted byL (r).
The set r2is said to be the right part of rand is denoted byB (r).

An algorithm is a finite set of rules.

3. SEMANTICS

A semantics of the language of algorithms can be given by
assigning a class of processes to every algorithm. The prooessea
of this class correspond to possible executions of the algorithm.
To characterize them we introduce some preliminary notions.

An elementary situation is an ordered (a(<*>)+l)-tuple

s= (w u))

where a) is a predicate symbol of the arlty a(u), and b”™...

ba(<*>) are some objects. Such a situation Is written as

u>(b1l....»ba(td))

- 10 -

and It means that the objects bj,... »ba(g ™ are In the relation
corresponding to the predicate symbol to . The se of these objects
Is denoted by Objectais).

A situation is a set S of elementary situations. The set of
objects which occur in the elementary situations belonging to S
is denoted by Objects(S).

An elementary change is an ordered pair
m= (MYjBk,)

of two finite sets of elementary situations. Such a change

is written as

The set nmA is said to be the left part of mand is denoted by L(m).
The set m, is said to be the right part of a and is denoted by B(m).
The elementary change mis said to be possible in a situation S
if there is In S no elementary situation from R(m)N.L(m) and if
no object of Objects(R(m))\Objects(L(m)) belongs to Objects(S).
A situation S' Is said to be the result of the change min the
situation S iff mis possible in S and S'= (S\ L(m)) UB (*).
Elementary changes m,n are said to be in a conflict if
L(m)\B(m)/ L(n)\R(n) or B(mM)\L(m)® R(n)\L(n).

An instance of an elementary formula

is an elementary situation

- 11 -

such that there Is a one-to-one mapping if of Variables(f) onto
Objects(s) with <f(XI)= for 1= 1,...,a(uJ). The mapping f is
said to be a realisation of f in s.

An instance of a set F of elementary formulas is a situation
S such that there is a one-to-one mapping < of Variables(F) onto
Objects(S), and coCbj ba(a>)"eS bi“ (Xi) »eeey
ba(u))*<(xa(to)) for SOne u)(xi»**'.xa(cd))eP * The “»PPing <
is said to be a realisationof F in S. Of oourse, every situation
W((xn), . . f*a(@))) es 18 then an instance of the formula
«¢ (] X~Mu”~NrgF. We call It the instance of u)(xt xa(o))™
in the instance S of F.

An instance of a rule r is an elementary change m such that:
(1) there is a one-to-one mapping of Variables(L(r)O H(r))

onto Objeots(L(m)u B(n)),

(2) uKbj......... ba(w.))e L(m) itf bl* <(xl)*--*'ba(u))="f(*a(tO))
for some u(ij,...,xa(u”™ €L(r),
(3) tO(bj,... ,baEr N €Hm) iff bAr=if(x”),... »b™", f(xa(8)))

for some fc>(xIf...t"a(u)))€ B(r).
The mapping <f is said to be a realisation ofr in a. The rule r
is said to be applicablein a situation S iff there is an Instance
a of r which is possible in S.

Now we are ready to define executionsof algorithms.

By an execution of an algorithm A we mean any ordered quin-

tuple
E= (T,tJ,pre,post,F)

such that:
(Ei) T is a non-empty set (of occurrences of elementary situ-

ations) ,

(E6)

(E9)

(EiO)

U is a set (of occurrences of elementary changes),

preeTxU Is a binary relation (if (t,u)epre then the
occurrence t of an elementary situation is said to be a

precondition of the occurrence u of an elementary change),

postcUxT is a binary relation (if (u,t)epost then the
occurrence t of an elementary situation is said to be a

postcondition of the occurrence u of an elementary change),

F is a function that assigns the elementary situation F(t)
to every occurrence t of this situation, and the elementary

change F(u) to every occurrence u of this change,

seL(F(u)) iff s= F(t) for some t with (t,u)epre,

sc R(F(u)) iff s= F(t) for some t with (u,t)epost,

and F is locally one-to-one, i.e., F(t)/ F(t') for every u
and t,t' with t~ t', (t,u)epre or (u,t)epost, and

(t',u)epre or (u,t"Y€post,

the reflexive and transitive closure of the following re-

lation B in T:

tRt" iff t= t' or (t,u) gpre, (u,t)"post, (t',u)™pre,
(u,t#epost for some u

is an ordering ~ of T,
th ', ot t, t~ t' Implies F(t)» F(t') for t€T, t'eT,
every non-empty subset of T has a minimal element,

every non-empty subset of T with an upper bound has a

maximal element,

(EI1)

(E12)

(E13)

for every ucU the elementary change F(u) Is a possible
Instanoe of a rule of A; this can be precisely formulated
as follows:

we say that two elementary situation occurrences teT, teT
are independent (or potentially concurrent) iff neither
t~Mt' nor t'Mt; every maximal set of Independent occur-
rences of elementary sitaations is said to be a case; to
every case c the set F(c) of the elementary situations F(t)
with tec corresponds and this set Is a situation; the
condition Is:

for every elementary change occurrence u with the precon-
ditions in a case c there is a rule r of Asuch that F(u)
is an Instance of r and this Instance Is achange which is

possible in the situation F(c),

if two different elementary change occurrences u,v have a
common precondition (postcondition) t then t must be a
postcondition (precondition) of u and v (this means that
It is decided in any case which of possible conflict chan-

ges occur),

the execution terminates iff no rule of A can be applied;
this can be formulated as follows:

let Crreax be the set of maximal elements of T (It is a case);
if an Instance mof a rule of A Is possible in the situ-

ation F(c then m has an occurrence with all the pre-

max)
conditions in cnax and no postcondition, or is in a con-
flict with an elementary change having an occurrence whose

preconditions are In c,,

- 14 -

The conditions (EIl)-(E13) characterize the class of all pos-
sible executions of A. When added (together with a characteriza-
tion of A) to the usual set theory they constitute an extension
of the set theory. This extension is said to be a general objective
semantics of A and is denoted by SEM(A). The assignment SEM
At— »SEM(A) is said to be a general objective semantics of the
language of algorithms. The semantics are said to be objective
because they characterize the considered processes in terms of ob-
jects which really exist in these processes.

When we employ in our algorithms some arithmetical or other
notions the general objective semantics can be extended to appro-
priate special ones. This can be done by adding to every of the
theories SEM(a) some specific axioms which specify the meaning we
have in mind to some predicate symbols. For instance, we can

specify R(a,b,c) as c= a+b by adding the axiom
(Vt)(F(t)= R(a,b,c)—» c= ath)

Of course, this nmay lead to some inconsistent semantics.

4. SUBJECTIVE SEMANTICS

It is sometimes convenient to consider executions of an
algorithm A from the point of view of an observer. This leads to
a new semantics which is said to be subjective.

If elementary changes are instantaneous the observer observes
a sequence {G(p)}p€p of global states with P being the set Nat
of natural numbers (if the execution does not terminate) or an

Initial segment of Nat (if the execution terminates). The global

states are some more or les6 complex situations. The transition
from G(p) to G(p+i) Is considered as consisting of concurrent
applications of some rules of A in the situation G(p). From the
point of view of the observer the indices peP are phases of the
observed execution. Which global states correspond to the con-
secutive phases depends on some unobservable factors. In this
way parallelism is replaced by indeterminism.

If elementary changes are time-consuming it may be that
global states are not directly observable objects. However, the
observer can note the elementary situations which arise when
elementary changes terminate, and erease the elementary situations
which cease. Then all the elementary situations which may be con-
sidered as actual ones constitute something that corresponds to
a global state. Thus, the observer observes again a sequence
{G(p)}pEp of global states in his registration. Transitions
between consecutive global states are now results of terminations
of elementary changes but still they may be considered as con-
sisting of concurrent applications of some rules of the algorithm.
In consequence, we have the same description as before with a
slightly modified Interpretation.

What we have said enables us to define executions of
algorithms from the point of view of an observer. Namely, by

an execution of an algorithm A we mean now any ordered quadruple

E'= (P,G,Possible,Occurs)

such that:

(E'D

(e'2)

(E'3)

(E'4)

(e’5)

(e'8)

P Is the set Nat of natural numbers or an Initial segment

of Nat; elements of P are said to be phases of E’,

G is a mapping that assigns a global state G(p) of E' to

every phase p,

Possible is the following binary relation: Possible(m,p)

iff mis an instance of a rule of A, peP, and inis

possible in G(p),

Occurs is a binary relation contained in Possible
(Occurs(m,p) means that the elementary change m occurs

exactly at the phase p),

there is no instance m of a rule of A; and q£ P, such that
Possible(m,p) for all p~q (the execution does not termi-

nate if some rules of A are applicable),
if Occurs[m,p) for some mthen p+ieP,

if peP and p+tle P then there is a non-empty set M of in-
stances of rules of A such that Occurs(m,p) for every

m£EM, and G(p+l)= (G(p)\ L(m))u Hm) (this is
a characterization of the transition from the phase p to

*

the next phase p+1),

if Occurs(m,p) and Occurs(in',p) with m m' then
Lim)OL(m") ¢c RMOR(iO and HtaJdnHIliii'JcLiinInLtB")

(i.e., conflicts are decided).

- 17 -

Adding the axioms (E'l)-(E'8) and a characterization of A
to the set theory gives a theory which is said to be a general
sub.lectlve semantics of A and is denoted by sem(A). The correspon-
dence sem: A —*sem(A) is said to be a general sub.lectlve
semantics of the language of algorithms. The general subjective
semantics can be extended to special ones by adding appropriate
axioms, just as in the case of objective semantics.

Subjective semantics were employed more or less explicitly
in a number of papers concerning non-sequentlal processes (Karp,
Miller[4], Milner(8), Mazurkiewicz (e¢}). They are very handy tools
to Investigate processes because they allow one to apply the
powerful methods which have been developed for sequential pro-
cesses. In particular, the well known method of Invariants
(Mazurkiewicz[5)) can be exploited. The problem only arises
whether subjective semantics are powerful enough for describing
and proving properties of non-sequentlal processes. This problem
has been answered positively for a class of processes In Tinkow-
ski [12] . In what follows we give a solution of it for the con-
sidered executions of algorithms. This solution bases on the

method of modelling that was desorlbed in Winkowski [I1,12].

5. MODELLING OBJECTIVE SEMANTICS IN SUBJECTIVE ONES

By modelling of a theory T in another theory T* we mean an
assignment of formulas (and terms) of T” to the formulas
(terms) of T that preserves free variables (term variables),
logical operations (substitutions), and theorems. If such a

modelling exists then all the theorems of T can be Interpreted

- 18 -

and proved In t'. Thus, every model of T' has all the properties

of models of T which can be formulated in T. In particular, having

such a model we can construct a model of T. Hence, T is consistent

if only T' is consistent.
To construct a modelling of the objective semantics SEMIA)

of an algorithm A In the subjective semantics sem(A) we take the
identity modelling of the set theory with a characterization of A
in itself and extend it to a correspondence p.. between for-

mulas (and constants) of SEU(A) and those of sem(A) . Namely, we

define:

FRA(LET) as
(3x)(3p)(3q)(t= (x,p,q)"x is an elementary situation <€

pePrqeP”~Pig”i Vk:ip gk”™q) (x €G(k)) 4
(p-1 ¢P VP-i € P<EX/{G(p-l))£
(g+1 f P((i/G(g+1))) V
(3*)(3p)(t= (X,p)<E x is an elementary situation™ peP
(VK fP: p4k)(x 6G(k)) %
(P-1/7PVp-16P~ X (G (p-1)))

LfAiuiH) as (3 m)(3p)(u= (m,p) ™ Occurs(m,p))

fik((t,u) e pre) as

AA(teT)~ f<A(UEV)4-

(3p)(Bag)(3x)(3m)(t= (x,p,q)<”u= (a,q)|xe L(jb))

YA((u,t) € post) as
FA(t 6T) N~ ~(a eD)N
(3p) (3m) (u= (m,p)»
((3x)(t= (x,p+i)<~ x £R(mM)) V
(3x)(3a.)(t= (x,p+l,q)" x f H(b))))

- 19 -

/<A(y= F(x)) as _
/AA(x €T) 4 ((3p)(x= (y,p))V(3p)(3d)(x= (y,p.q))) V
~A(x €0) (3?) (x= (Y,p))

and extend this definition on other formulas so that:

/y~°o= a (N «
yMY °C Vyg) =) V. FRA(NS), /<A((3x)c<)= (3x) NAMI),

AA((CV x)«)- (VX) "NA(<)

In other words, we define occurrences of elementary situations
as the corresponding situations aocompanied by Intervals in
which they maintain, and occurrences of elementary changes as
the corresponding elementary changes accompanied by phases at
which they take place.

It remains to prove that carries over all theorems of
SEM(A) onto theorems of sem(A). Since p”~ preserves logical
operations we may limit ourselves to axioms only.

It is a matter of routine to verify that the axioms (Ei)-
-(E12) are carried over onto theorems of sem(A), and that the
corresponding ordering of occurrences of elementary situations

is identical with the following:

t~t/iff there sure elementary situation occurrences
t= tj= (x*,Pj,<lj),..., t =1tr= (x™,p”,) or (xk,pk),

and elementary change occurrences

ulr uk -1= (yk -1'gk-I~* suoh that

i6L(yi), xi+i eH(yi)» Pi+i=~i +1 for i= 1......... k 1*

- 20 -

To prove that (E13) converts into a theorem, suppose that
an instance mof a rule of A is possible in the situation F(cBax)
corresponding to the case cmax of the maximal occurrences of
elementary situations. Suppose that u has no occurrence with all
the preconditions in cmai and no postcondition. If mis not in
a conflict with the changes which have occurrences with the pre-
conditions in CCQJ-C then no elementary situation from L(m) ceases
and no elementary situation from R(m) arises. Hence, there is
a phase qGP such that Possible(m,p) for all p>q. However, due
to (E'5), this is Impossible. Thus, mmust be In a conflict with
changes which occur in the case cmax, or m has an occurrence
with all the preconditions in Cf’l'tié and no postcondition. In other
words, (E13) converts into a theorem.

In consequence, we obtain the following:

Modelling Theorem For every algorithm A the correspondence
is a modelling of the general objective semantics SEM(A) in

the general subjective semantics sem(A).

This theorem extends to special semantics if the specifio
axioms wh h are added to SEM(A) are appropriately reformulated

and added to sem(A). For instanoe, the axiom
(Vt)(F(t)= R(a,b,c) =* c= atb)

may be reformulated as
(Vp)(R(a,b,c)E G(p)=" c= atb)

In this way we obtain a positive solution of the stated

problem.

- 21 -

6. COMVENTS AND CONCLUSIONS

What we have presented is a formalism for characterizing
processes which are studied in computer science.

This formalism Is not a language in the strict sense though
it could easily be developed to a language. We must also empha_
size that it is a tool for describing rather than for program-
ming processes. We do not know, as yet, how to implement it in
an efficient way, and convert into a programning language. Be-
sides, it seems to be not very convenient for programming.

Our intention was rather to offer a tool to analyse various
processes (especially non-seqnential ones) in a mathematical way.
Having this In mind we give a formalism universal enough to co-
ver typical processes, together with precisely defined mathema-
tical semantics.

An Important result is that objective semantics can be
modelled in subjective ones. It Justifies In a precise way the
approaches which base on replacing parallelism by Indeterminism.

The formalism oovers notions like Markov algorithms, gram-
mars (including those multidimensional and graph grammars of
Ehrig, Pfender, Schneider[2]), various schenes of computations
(in this number polyadlc ones), and offers semantics of these
notions. It Is also a tool to define Petri nets (elementary situ-
ations and elementary changes are detailed descriptions of what

is called oondltlons and events in Petri[9]).

Received May 20, 1976

REFERENCES

1.

10.

11.

12.

13.

Dijkstra.E.W., Hierarchical Ordering of Sequential Processes,
Acta Informatica i, Springer-Verlag 1971

Ehrlg,H., Pfender,M., Schneider,H.J., Kategorielle Konstruk-
tionen in der Theorie der Graph-Grammatiken, in Fachgespréach
uber mehrdimensionale formale Sprachen, Erlangen, 1973
Genrich,H.J., Einfache nicht-sequentielle Prozesse, BMBff-
-GMD-37, Bonn, 1971

Karp,R.li., Miller,H.E., Parallel Program Schemata, JCSS 3(2)
Mazurkiewicz.A., Proving Properties of Processes, OC PAS
Reports 134, 1973

Mazurkiewicz.A., Parallel Recursive Program Schemes, Proc. of
MFCS'75 Symp., Marianske Lazne, Lecture Notes In Comp. Sc. 32
Springer-Verlag, 1975

Mazurkiewicz.A., Invariants of Concurrent Programs, to appear
Milner,R., An Approach to the Semantics of Parallel Programs,
Unpublished Memo, Comp. Sc. Dept., Univ. of Edinburgh, 1973
Petri,C.A., Concepts of Net Theory, Proc. of MFCS73 Symp.,
High Tatras, 1973

Petri,C.A., Interpretations of Net Theory, GVD, Bonn, 1975,
presented at MFCS'75 Symp., Uarianske Lazne, 1975
ffinkowski,J ., Towards an Understanding of Computer Simulation
CC PAS Reports 243, 1976

Winkowskl,J., On Sequential Modelling of Parallel Processes,
CC PAS Reports 250, 1976

Rajlich.V., Relational definition of computer languages, Proc
of MFCS'75 Symp., Marianske Lazne, Lecture Notes in Comp. Sc.

Springer-Verlag, 1975

O=HOsO* o FOULOCHCOCH()

9950005, 35HO000C:
* 1

00000000 « X wo:

OO00CO000 000007V e

