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1 

Introduction 

According to the title the main subject of this paper is the determination 
of the proper number of clusters. The specialist literature provides plenty 

of various methods in this area but this variety creates also problems. The 
most serious problem follows from the fact that the determination of the 
number of clusters can not be separated from the definition of clusters and 
that there are plenty of such definitions, given directly or hidden inside 
the procedures of cluster analysis. These problerns were raised by many 

researchers - let us quote a few opinions. 

"Anyone who has carried out cluster analysis will be aware of the fact 
that markedly different results can be obtained when the same data set is 
analysed using different clustering strategies; it is thus important to give 
thought to the problem of selecting clustering criteria that are appropriate 
for analyzing the data being investigated. The problem is analogous to the 

one of specifying relevant models for data in parametric statistical infer­
ence. It is mistake to believe that, because of its more informal approach, 

classification does not involve a model for the data; the clustering criteria 
employed implicitly make various assumptions about the data. Use of an 

inappropriate method of analysis can thus misrepresent the structure in 

the data." - ([15]). 
"Already in 1964, Bonner argued that there could not be a universal 

definition of cluster and that it was too late to impose one ([5]). Much more 
recently, we find that clusters and outliers are in the eye of the beholder: 
one person's noise could be another person's signal ([19])" - ([18]). 

"A fundamental, and largely unsolved, problem in cluster analysis is the 
determination of the "true" number of groups in a data set. N umerous 

approaches to this problem have been suggested over the years. Unfortu­
nately, many of the approaches that have been suggested for choosing the 
number of clusters were developed for a specific problem and are somewhat 
ad hoc. Those methods that are more generally applicable tend either to 
be model-based, and hence require strong parametric assumptions, or to 

be computation-intensive, or both" - ([31]). 

The immediate conclusion is that the direct comparison of various clus­
tering methods and consequently the comparison of the methods which 
determine the number of clusters are generally not possible (or limited to 
narrow areas at the most). It seems that the only way of methods evalu­
ation is to show that they yield satisfactory results when they are applied 

to many various data sets. 



2 1. Introduction 

It is obvious now that the presentation of the grade methods of cluster 
analysis must start from a cluster definition. Since in our case this defini­
tion is imposed by the grade framework, the paper starts from the short 
presentation of this framework. The grade methods and procedures were 
already presented in several papers, e.g. [12], [11], [13], [25]. Referring in­
terested readers to them for more detals, we recall now only a few ideas 
which are necessary to understand this paper. 

Chapter 2 includes the basie ideas of the grade correspondence analysis 
(GCA) and the clustering method which is based on it (GCCA). Also the 
method of visualization of the grade methods results, so called overrepre­
sentation map, is presented. 

The core of all grade mehods is the concept of concentration of one ran­
dom variable with respect to the other. This concentration is expressed 
by two concentration indices (the concentration curves and the numerical 
concentration index w hi eh is based on concentration curve). Both indices 
measure diversity of one random variable with respect to the other. The 
concentration curves are exploited in the procedure of simultaneous dis­
cretization of two random variables. This procedure requires a number of 
new categories as an input parameter. It is described in Sec. 2.2. 

Thanks to the equivalence between the concentration curves and the 
grade correlation curves this discretization can be applied in the case of 
two-dimensional data tables. The results are the clusters of rows or columns 
of the data table; their numbers must be provided at the start. In the grade 
framework the input data tables must have the form ofbivariate probability 
tables, yet this does not mean that the GCCA is restricted to such tables 
only. On the contrary, it is discussed and illustrated by various examples of 
real and randomly generated data that the grade methods can be applied 
to many kinds of data tables, for example to tables which include values of 
variables (Chapters 2 and 3). Of course in any case the proper interpretation 
of results needs appropriate adjustments according to the data type. 

The further generalization can be made when the input probability table 
with infinite number of rows and columns is taken into account. In such 
a case the bivariate probability table becomes the density table. It should 
be emphsized that the used formalism is applicable for finite as well as for 
infinite data tables. 

Irrespective of the data meaning all results are expressed in the lan­
guage of statistical dependence measured by the grade correlation coeffi­
cient p* for the row and column variables which characterize the data table. 
The grade correspondence analysis (GCA) maximizes this dependence (the 
value of p*) in the set of all permutations of rows and columns of the data 
table. The optimal arrangement of the data table results in the elear de­
scription of the GCCA clusters (of course if the cluster structure exists), 
what is very helpful in their interpretation. 
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The same clustering procedure is applicable for the rows as well as for 
the columns of data tables. Therefore, this procedure can provide the sep­
arate clusterings of rows or columns but also it can be exploited in the 
procedure of simultaneous clustering of rows and columns. In this paper 
only separate clusterings are taken into account, a detailed description of 
the grade simultaneous clustering can be found in (11]. 

The concept of natura! cluster is discussed in Chapter 3; it follows di­
rectly from the grade discretization framework. The natura! clusters are 
determined by linear segments of the respective correlation curves; these 
segments correspond to the constant values of the respective grade regres­
sion functions (the standardized integral of the grade regression function is 
equal to the correlation curve). 

The very important property of the GCA is that it permutes the rows 
and columns of data table in such a way that they are ordered according 
to the values of respective regression functions. This is the reason why 
the GCCA forms clusters only from adjacent rows ( columns) - adjacent 
in the GCA optimal permutations. Consequently, the differences between 
regression values for particular rows (columns) can serve as dissimilarity 
measures. The matrix which includes these measures has a particularly 
desirable property - it is anti-Robinson. In other words the rows (columns) 
are arranged according to their similarities. 

In Sections 3.2 and 3.3 the results of the GCCA applied to several data 
tables (real or artificially created) are shown and compared. All of them 
include the values of variables instead of real probabilities. Those randomly 
generated tables are specially selected to show that the quality of the GCCA 
results depends chiefly on the separability of the data values among partic­
ular clusters irrespectively of the data meaning. As these tables consists 
of two columns (variables) it is possible to calculate the probability table 
corresponding to the pairs of variables ( after the preliminary discretization 
of the variables). The results of the GCCA applied to these tables are very 
similar to the results obtained for the initial tables; once more it turns out 
that their similarity depends on the data separability. The comparison of 
results of these analyses shows also the difference between the well-known 
approaches to clustering: the random-partition and the mixture models. 

Chapter 4 is wholy devoted to the determination of the proper number 
of clusters in the grade framework. The problems with this determination 
were signaled already in Sec. 3.3, when the real questionaire data which 
characterize the living conditions of Polish households are analysed. In this 
chapter the concept of ideał regularity is introduced and exploited to de­
termine the number of GCCA clusters. First, a regularity is defined for the 
concentration curves, next it is generalized for two-dirnensional data tables. 
Roughly speaking the regularity can be interpreted as infinite divisibility, 
that is there is not "true" number of clusters (in other words, any number 
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of clusters may be accepted). The clusters obtained for the chosen num­
ber describe well the monotone trends generated by the GCA. On average 
these clusters differ among themselves, but they are not well separated. 
The example from Sec. 3.3 is a good illustration of such a data structure. 

The first step in determining the number of clusters is checking whether 
the data table is regular and consequently whether there are no well sepa­
rated clusters in the data. The problem is that the direct checking via the 
definition can be troublesome. The proposed solution consists of two parts. 
Both exploit the paraboloidal family of data tables (it is the generalization 
of the univariate distributions with the cdfs in the form of parabola for 
two-dimensional data tables) which is ideally regular and hence without 
any cluster structure present. This family is treated as an ideal model of 
regular data. The choice of this family as a reference point is not accidental. 
The segments of correlation curves in the form of parabola correspond to 
the natural clusters discussed in Chapter 3. 

If the data table is very similar to a member of the paraboloidal fam­
ily, the data should be considered as almost ideally regular. If such a 
paraboloida! data are not found, then we may use the method which is 
based on the colinearity of so called regression points. This method is de­
scibed in Sec. 4.2.3. It is designed for finite data tables and helps to de­
termine whether the table derives from the discretized paraboloidal family. 
The colinearity of the regression points confirms this hypothesis. Let us 
note that finite tables can not have the property of infinite divisibility, 
hence they can be only approximately regular. Almost regular finite tables 
also do not possess separated clusters. 

The regression point method is used for evaluation whether the gener­
ated clusters are the natural clusters and consequently whether the chosen 
number of clusters is appropriately chosen. This evaluation is based on a 
few specially designed measures of clusters' homogeneity. The idea met in 
varius statistical domains and adopted here is to use the various measures of 
clusters' homogeneity simultaneously to assess the quality of clusters. Such 
a procedure helps to express different aspects of possible cluster structures 
and makes the inference more reliable. 

Finally, the method of cluster evaluation which is based on the regres­
sion points is used in determination of the number of clusters. The choice of 
this number is based on the comparisons of the clusters' homogeneity mea­
sures calculated for various possible numbers of clusters with the analogous 
measures calculated for randornly generated data. 

In Chapter 5 the relatons between the GCCA and the other cluster­
ing procedures are discussed. As the reasons presented above prevent us 
from the direct comparison of the GCCA with other respective methods, 
the location of the grade methods in the selected typologies of clustering 
procedures is discussed. 
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Grade correspondence-cluster 
analysis (GCCA) 

2.1 Gracie correspondence analysis (GCA) and 
overrepresentation map 

Grade methods of data analysis require input data in the form of bivariate 

probability tables. Such tables are very well known and commonly used in 

the analysis of pairs of discrete random variables whose categories corre­

spond to particular rows and columns of the data table. When the numbers 

of rows and columns goes to infinity then the probabilities become the den­

sities. Hence bivariate densities can be expressed as infinite probability ta­

bles for pairs of continuous variables, whose rows and columns correspond 

to particular values of these variables. 
Let us note that this restriction does not imply that the grade methods 

are applicable only to this kind of data. On the contrary, as any two­

dimensional data table can be easily transformed into this probability form, 

the grade methods are applicable to a broad spectrum of data types in the 

form of two-dimensional tables, for example to the tables including values 

of attributes. Data values are just treated as probabilities irrespectively 

of their meaning. Consequently the grade methods can be also applied to 
multivariate data. 

Irrespective of the contents, the tables must meet the following additional 
conditions: 

• the marginal sums of table rows and columns ( eventually after ap­

propriate normalization) must be greater than zero, 

• the values included in these tables should reflect some order, for ex­

ample they can express intensity of levels of features. If the data table 

includes the values of a nominat variable, this variable should be re­

placed by dummy variables corresponding to particular categories. 

Let us note that the pairs of nominał variables are acceptable with­

out restrictions when the data tables include their respective bivariate 

pro ba bili ties. 

Due to this bivariate probability form, data structures can be expres sed 

in terms of stochastic dependence between marginal (row and column} vari­

ables (say X and Y ) irrespectively of the data meaning. Let us note that 

this universal language does not imply that the interpretation of results 
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does not depend on data. Obviously the interpretation must be appropri­
ately adjusted for the data tables which include values of variables. 

The data in the form of bivariate probability table will be denoted by P = 
(pi,i) . It corresponds to a pair of row and column variables (X, Y). If these 
variables are discrete then the table is finite. When they are continuous, the 
probabilities become densities, which can be treated as a generalized two­
dimensional table. This table is infinite and the row index i (the column 
index j) takes real values. The grade formalism is applicable in both cases. 

Instead of initial variables X and Y ( discrete for finite tables), the pair of 
continuous variables (X•, Y•) defined on the unit square [O, 1) x [O, l ] is con­
sidered. If the marginal variables X and Y are continuous then x• and y• 
can be expressed by the transformation: x• = Fx(X) and y• = Fy (Y ), 
where Fx and Fy are respective cumulative distribution functions (cdfs) 
of X and Y. This transformation is called the grade transformation, hence 
the name of the methods. For discrete variables the grade transformation 
is followed by randomization, that is the initial categories are replaced by 
the interuals of values. These values are distributed uniformly inside the 
respective intervals. Therefore the bivariate distribution of the new contin­
uous variables (X•, Y•) is characterized by the density h which is constant 
and equal to 

(2.1) 

on any rectangle 

{(u, v): Sf_ 1 <u:::; Sf and SJ'_1 < v:::; SJ'} (2.2) 

where Sf = L:t=l Pl• , S{ = l:f =1 P•l and Pi• = L:7=1 Pil , P•i = L:;:1 Pli 
for i = 1, ... , m; j = 1, .. . , k. This density is called the randomized grade 
density of (X, Y) (cf. [25]) . 

Each of the variables x• and y• are uniform on [O, l ]. The bivariate 
distributions on [O, 1) x [O, l ] with uniform marginals are known in literature 
as copulas (literature on copulas is enormous - see e.g. [29]). Therefore the 
joint distribution of X* and y• is the capu.la of (X , Y). Let us note that 
any change in the permutations of rows and columns of the data table 
(generally, in the arrangements of values of X and Y) affects the values of 
Sf and S[ and consequently changes the copula. 

The grade density can be visualised by so called overrepresentation map 
(cf. [25]). This map consists of the unit square partitioned into rectangles. 
These rectangles are defined by formula (2.2); they represent particular 
values from the input data table. The widths of rows (columns) of the 
map refiect respective marginal sums of rows (columns} of the data table. 
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The value range of the grade density h is partitioned into severa! subin­

tervals ( categ'ories) represented by various colours. The rectangles of the 

unit square marked by these colours form the overrepresentation map of 

the data table. Let us note that according to the defi.nition the values of 

the grade density h,; measure deviation from statistical dependency be­

tween the row and column variables. Hence, if a value hii is high we say 

that there is a high overrepresentation corresponding to the cell (i, j) of 

the data table. 
In this paper 5 categories for discretization of h are used; the respective 

partition points are the following: ~ , 0.99, o.19 , ~. The adopted convention 

is that dark colours mark high magnitudes, light colours correspond to the 

low. As an illustration let us compare the data shown in Tab. 2.1 and the 

corresponding overrepresentation map shown in Fig. 2.1. 

TABLE 2.1. Example of data 
y 

X 
1 
2 
3 
4 

1 
0.1 
0.3 
0.05 
o 

2 
0.2 
0.1 
o 

0.1 

3 
o 

0.1 
o 

0.05 

FIGURE 2.1. Overrepresentation map for data from Tab. 2.1 

Now let us return to the generał formalism. The standard correlation 

coefficient between X* and Y* 

(2.3) 

measures dependence between variables X and Y. It is called the ran­

domized grade correlation coefficient. For discrete variables, it is equal to 
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Schriever's extension of Spearman's p (cf. [30]) . The coefficient p* may be 
expressed by various equivalent formulas. In the correspondence and cluster 
analysis the following formula is the most convenient one. 

p*(X, Y) = 6 fo1 
(u - C*(Y: X)(u))du = 6 fo1 

(u - C*(X: Y)(u))du , 

(2.4) 

where 

C*(Y : X)(t) = 2 fot r*(Y : X)(u)du; t E [O, 1] (2.5) 

is called the randomized grade correlation curve and 

r*(Y : X)(t) = E(Y* I x· = t); t E [O, 1] (2.6) 

is the randomized grade regression Junction. 

Grade correlation curves are always continuous and lie in the unit square. 
If X (Y) is discrete then r*(Y : X) (r*(X : Y) respectively) is constant 
in the intervals defined by formula (2.2), hence C*(Y : X) (C*(X : Y)) 
consists of linear segments linking point (O, O), the points determined by the 
categories of X (Y respectively) and point (1, 1). Let us note that each row 
or column of the initial data table ( each value of X or Y) is characterized by 
the value of respective grade regression function r• and the corresponding 
linear segment of correlation curve c•. In any case the grade correlation 
coefficient is proportional to the area between the diagonal of the unit 
square (y = x) and the grade correlation curve. 

Correlation curves can be expressed as concentration curves and the 
correlation coefficient p* is equal to the value of concentration index ar. 
This property turns out to be very useful, and it is exploited in the grade 
clusterting procedure described in the next section. 

To proceed further let us recall the definitions of both concentration in­
dices. Both mea.sure the diversity between two random variables. Let V and 
Z be random variables with the common value range S, the respective cdfs 
Fv, and Fz, and the densities fv, and f z. If variables V and Z are contin­
uous, the concentration curve of Z on V, denoted by C(Z: V), consists of 
points (Fv(t), Fz(t)), where t E S. If these variables are discrete, the curve 
C(Z: V) consists of linear segments linking points: (0,0), (Fv(t),Fz(t)), 
t ES and point (1, 1). The concentration index ar( Z: V) is ba.sed on the 
concentration curve C(Z: V) and is defined as: 

ar(Z: V) = 2 fol (u - C(Z: V )(u))du (2.7) 
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According to this formula the concentration index ar is equal to twice 
the area between the diagonal of the unit square and the concentration 
curve. As concentration curves are also cdfs of variables defined on [O, l ], 
it is justified to write shortly ar(K), where K = C(Z : V), instead of 
ar(Z: V). 

Let us consider the pair of variables: x · and Rv:X I where Rv:X has val­
ues from (O, l ] and the density equal to 2r*(Y: X). The correlation curve 
C*(Y : X) (cf. (2.5) and (2.6)) is the cdf of the variable Ry,x. As X* is 
uniform, the correlation curve C*(Y : X ) is also the concentration curve 
C(Rv,x : X *) and p* is proport ional to the respective concentration index 
ar. The pair of variables: Y* and Rx,y determines the analogous concen­
tration curve which is equal to the second correlation curve C*(X: Y ). 

Figure 2.2 shows an example of the regression function r*(Y: X ), where 
this function is calculated for the data table from Tab. 2.1. Its segments 
correspond the categories of the initial row varia ble X. 

0.8 -

0 +-~~"'T"-~~....-~~....-~~--.-~~-i 

o 0.2 0.4 0.6 0.8 

FIGURE 2.2. Grade regression function r " (Y : X) calculated for the data from 
Tab. 2.1 

The grade correspondence ana.lysis {GCA} maximizes the positive depen­

dence between X and Y (measured by p*(X, Y)) in the set of all permu­
tations of rows and columns of the data table (categories of X and Y ) . 

This maxima! value of p* will be denoted here by P':nax . Thanks to the 
aforementioned equivalence of correlat ion and concentration curves, max­
imization of p* is equivalent to maximization of the concentration index 
ar, and consequently is equivalent to minimization of the area below the 
correlation curve. 

The GCA has many useful properties which are exploited in the proce­
dure of cluster analysis described further: 
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• identical rows (columns) always occupy adjacent places in the respec­
tive GCA optima! permutations and their aggregation (sum) does not 
change the value of p*, 

• both regressions r*(Y : X) and r*(X : Y) are nondecreasing for 
the GCA optimal permutations (cf. [13], [25]) and consequently both 
correlation curves are convex. Thanks to this property the difference 
between the va.lues of regression function r* corresponding to the 
rows (columns) of the initial data table (categories of the initial row 
and column variables) can serve as a dissirnilarity measure between 
these rows (columns). In this sense the GCA always arranges rows 
(as well as columns) according to their similarity and consequently 
the matrix of these dissirnilarities is anti-Robinson. 

Links between coeffi.cient p* and these dissirnilarities can be expressed 
by the following formula (cf. (25]) : 

p*(X, Y) = 61::1 1::u (ry1x(u) - ry1x(s))dsdu = 

= 61::1 1::u (r~IY(u) - r~IY(s))dsdu 
This formula implies that the GCA maxirnizes the divergence between par­
ticular rows and columns ( expressed by the difference of regression values) 

Figure 2.3 provides a good illustration of these properties, where the val­
ues of regression function, calculated for the rows of the data from Tab. 2.1 
but after its optima! rearrangement, are shown. The optima! permutation 
for rows is : 4, 1, 2, 3; and for columns: 2, 3, 1. The comparison of Figs 2.2 
and 2.3 shows very clearly how much the GCA can change the values of 
regression functions. 

2.2 Grade correspondence-cluster analysis (GCCA) 

2.2.1 Procedure scheme 

The grade cluster analysis (GCCA) is based on optima! permutations pro­
vided by the GCA and it does not consider overlapping clusters. Assurning 
that the numbers of clusters are given, the rows and/or columns of the data 
table (categories of X and/or Y) are optimally aggregated. The respective 
probabilities (data values in the input table) are the sums of component 
probabilities, and they form a new data table. The optimal aggregation 
means that p*(X, Y) is maximal in the set of these aggregations of rows 
and/ or columns, which are adjacent in the GCA optimal permutations. 



2. Grade correspondence-cluster analysis (GCCA) 11 

o 0.2 0 .4 0.6 0.8 

FIGURE 2.3. Grade regression function r•(y : X) calculated for the data from 

Tab. 2.1 rearranged according to the GCA 

The monotonicity of regressions (the values of r*(Y: X) and r*(X: Y) 

corresponding to the initial rows or columns of the data table are nonde­

creasing if the respective permutations are optima!) provides the reason 

why clusters include only rows (columns), which are adjacent in the GCA 
optima! permutations. This property is also exploited in the procedure of 

p• maximization (cf [12], [7], [8]). 
The rows and columns of the initial data table may be aggregated either 

separately (i.e. we maximize p• for aggregated X and nonaggregated Y or 

for nonaggregated X and aggregated Y), or simultaneously. The first type 

of clustering is called the single clustering, the simultaneous clustering for 

X and Y is called the double clustering. The comparison of both methods 

can be found in [11] . As the double clustering is based on the sequence of 

single clusterings the problem of cluster determination is common to both 
methods. 

2.2.2 Maximization framework 

The clustering maximization procedure is based on the idea of simultane­

ous discretization of two random variables via their concentration curve (cf. 

[12], [7]) . In this clustering framework the equivalence between the grade 
correlation curves (C*(Y: X) or C*(X: Y)) and the concentration curves 

for the respective pairs of variables ( C(Rv:x : X*) or C(Rx:Y : Y*) re­

spectively) are exploited. The clusters of rows or columns of the initial data 

table are determined by the simultaneous discretization of pair (X*, Rv:x) 

or (Y* , Rx,y) discussed in the previous section . In the clustering of rows 

the first pair of variables is taken into account, if columns are clustered 

then the second pair should be considered. 

The discretization procedure which maximizes p*(X, Y) requires convex-
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ity of the concentration curves (the correlation curves). This condition is 
always fulfilled because when the data table is optimally rearranged ac­
cording to the GCA, both correlation curves {hence also the concentration 
curves) are always convex. 

Now let us consider two random variables Z and V with a common 
value range S and the respective cdfs Fz and Fv . Let n be the num­
ber of new categories of these variables and let the concentration curve 
C = C(Z: V) be convex. If vector w= (wo= 0,w1 , ... ,wn-i.Wn = 1), 
where Wi-1 ~ Wi, defines the partition of interval [O, l] into n consecutive 
intervals ( Fv 1 ( wi-l), Fv 1 ( wi)], and Fv 1 is a function, then the intervals 
(FV-1(wi-1), FV-1(wi)] define the partition of the common range Sinto non­
overlapping subsets. If FV-1 is not a function then the following intervals are 
considered (minp;1(t)=w,_

1 
t, maxp;i(t )=w, t]. These intervals deterrnine n 

categories of the new, discrete variables. 
According to the definition, the concentration curve corresponding to 

these new variables, consists of linear segments linking points (wi, Fz(wi)) 
(i= O, .. „ n). These points are common with the initial concentration curve 
C. The immediate conclusions is that for convex curves the discretization 
can only decrease values of the concentration index. 

It is obvious that a discretization should provide a minimal loss of infor­
mation about the joint distribution of considered variables. Discretizations 
which distort the characteristics of this distribution rnay lead to a wrong 
inference if it is based on the discretized variables. In our framework, this 
requirement is expressd in the form of maxirnization of the correlation 
coeffi.cient p• for discretized row or column variables ( equivalently maxi­
rnization of the concentration index for the special pair of variables). 

For a given number of categories the simultaneous discretization of two 
random variables is called optima! if the respective value of the concentra­
tion index is maximal. The procedure which generates an optima! partition 
is based on the necessary conditions for optirnality provided by the follow­
ing theorem (cf. [12], [7]). 

Theorem 1 Let C be a convex concentration curve C(Y : X). If partition 
vector w determines the optimal simultaneous discretization of variables 
(X, Y) into n categories, then the following condition must be satisfied: 

dC( O) C(wi+1) - C(wi_i) dC( O) - Wi- ~ ~ - Wi+ 
dx Wi+l - Wi-1 dx 

(2.8) 

If C has a continuous derivative {denoted by c) then condition (2.8) is 
transformed into the equality: 

c(wi) = C(wi+1) - C(wi_i) 
Wi+l - Wi-1 

(2.9) 
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Very often the necessary condition is also suffi.cient. For example, if the 
derivative c of C is continuous and increasing then the solution of condition 
(2.8) is unique. Moreover, even if more solutions exist, they are equivalent 
in the sense that they have identical values of the concentration index (cf. 
[7]). 

Figure 2.4 shows three concentration curves: one corresponds to the pair 
of continuous variables (Z, U), where U is uniformly distributed. The in­
terval [O, l ] is the common support of both variables, the cdf of Z is the 
parabola: Fz ( x) = x2 . The remaining two concentration curves corresponds 
to the optimally discretized counterparts of Z and U; one of the curve 
corresponds to discretization into 2 categories, the second corresponds to 
4 categories. In both cases the discretization points are Wi = !; , where 
i= O, ... , n and n= 2 or 4 respectively. As the support S is equal to the in­
terval [O, 1], the intervals ( ·~ 1 , !; ] determine the new categories of variables 
Z and U. 

o 0.2 0.4 0.6 
X 

0.8 

FIGURE 2.4. Concentration curve in the form of parabola and its two discretized 

counetrparts 

Generally, the discretization points w, for curve C(Z: V) are the quan­
tiles of order Fv(w,) for variable V. In the case of correlation curve C*(Y: 
X) points Wi are equal to Sf. which correspond to the initial categories of 
X and are defined by formula (2.2). 

The discretization determined by w, = !; will be called the uniform 
quantile discretization. The uniform discretization is optima! for the con­
centration curves in the form of parabola. As this property is valid for every 
n, it is elear that the optima! discretization into kn categories only adds 
new partition points to those defining the discretization into n categories. 
This property has great implications for determination of clusters - this 
problem will be discussed in the next chapter. 
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Usually in cluster analysis the requirement of homogeneity of generated 
clusters is formulated. Many various indices are used. in the literature to 
measure this homogeneity. It is natural that in the concentration framework 
the cluster homogeneity should be measured by the concentration index ar. 

Let us consider variables X and Y with the common support S and re­
spective differentiable cdfs: Fx and Fy. XA and yA are the same variables, 
but restricted to the subinterval A = [a, b] C S. Their cdfs are denoted re­
spectively by F~ and F~. Assuming that Fx1 is a function, it is easy to 
calculate a so called restricted concentration curve. 

The restricted concentration curve C(YA: XA) is equal to 

= 

XA)(u ) = Fy [Fx 1[u(Fx(b) - Fx(a)) + Fx(a)]J - Fy(a) = 
Fy(b) - Fy(a) 

C(Y: X)[u(Fx(b) - Fx(a)) + Fx(a) ] - Fy(a) (
2 

lO) 
Fy(b) - Fy(a) . 

where u E [O, l ]. Consequently 

XA)) = 

= Fy(b) + Fy(a) 2 J:;(~j C(Y: X)(u)du _ 
Fy (b) - Fy(a) (Fx(b) - Fx(a)) (Fy(b) - Fy(a)) -

2J::(~j(DA(u)- C(Y: X)(u))du 
= (Fx(b) - Fx(a))(Fy(b) - Fy(a) ) 

where D (u) = (u-Fx(a))(Fy(b) - Fy(a)) + F (a) u E A is a linear segment 
A Fx(b)-Fx(a) Y ' ' 

linking points (Fx(a), Fy(a)) and (Fx(b), Fy(b)) (cf Fig. 2.5). If the initial 
values of variables from interval A are merged into one category then DA 
is a segment of the concentration curves for the discretized variables which 
corresponds to this new category (value). Hence the area between DA and 
the initial concentration curve C(Y : X) measures a loss of information 
caused by this discretization. This loss can be expressed by the restricted 
concentration curve and the corresponding concentration index. 

Consequently, if the intervals A, = (a„ a,+1J. i = 1, „„ n, form the parti­
tion of the common range (and consequently determine the discretization) 
then 

n-1 

ar(C(Y: X)) - ar(C(Y: X))= L ar(C(YA' : XA')) 6.x(A,) 6.y (Ai) 
i=l 

where X and Y denote the discretized counterparts of the initial variables; 
the discretization is defined by A„ i= 1, „„ n, and 6.x (Ai) = Fx(ai+i) -
Fx(ai) , 6.y(A,) = Fy(ai+1) - Fy(a,). 
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Fy(b) 

Fy(a) 

Fx(a) Fx(b) 

FIGURE 2.5. Example of discretization 

Hence the difference between the concentration indices for the initial vari­
ables and their discretized counterparts mesures the diversities "within" 
new categories (that is within the intervals which form these categories). 
Of course, thanks to the equivalence between the concentration index and 
the correlation coefficient, the same statement can be formulated in the 

case of grade cluster analysis for data tables and the corresponding corre­
lation coefficients p•. Therefore the GCCA minimizes the overall, within 

cluster diversity. It resambles in this point many other clustering meth­
ods (for example the well known k-means method), which also minim.izes 
within diversity, however this diversity can be expressed in many different 

ways. The definitions of homogeneity measures usually depends on the ac­
cepted notion of cluster and consequently they must have a great impact 

on determination of the proper number of clusters. 



3 

Natural clusters 

3.1 General remarks 

An enormous volume of literature is devoted to the problem of "real" clus­
ter detection which is a good measure of the problem difficulty. The well 
known, classic (although not formal) definition of cluster analysis says that 
it should divide the data into blocks of similar elements, with blocks dif­
fering as greatly as possible. The problem is that there are many ways of 
expression of similarity as well as of diversity concepts, what leads to many 
clustering procedures and generates problems with comparison of results. 

A part of the solution is provided by the following citation from ([14]) . 
"Any classification ( clustering) is a division of the objects into groups based 
on a set of rules - it is neither true nor false and should be judged on 
the usefulness of results" . As it is hard to imagine useful results without 
practical interpretation, hence interpretability becomes a main criterion for 
the evaluation and comparison of clustering procedures. 

In this section it will be shown what kinds of clusters are considered in the 
grade framework. The grade discretization framework provides a natural 
definition of clusters (categories of row or column variables). According to 
the definition of concentration curves, they include linear segments if the 
variables are discrete. On the other hand, continuous variables can also 
produce concentration curves which include linear segments. This occurs 
when the common range of the variables is partitioned into consecutive 
intervals where both variables have constant or proportional densities. The 
idea of inner uniformity as a cluster distinguishing feature is not new (for 
example, it was discussed in [3]). In the grade discretization framework 
this idea is a straightforward generalization of natural categories of discrete 
variables. 

The equivalence between grade correlation curves and concentration cur­
ves provides immediate generalization of natural clusters in the case of 
two-dimensional data tables. The intervals of values for row ( column) vari­
ables ( determining the subsets of rows or columns) define natur al clusters if 
they are characterized by the same values of the grade regression function. 
Identical vectors of conditional densities or probabilities (or their formal 
counterparts for the data other than bivariate probabilities) imply that the 
corresponding values of the row ( column) variable belong to the same clus­
ter. Of course, the equality of regressions can coexist with the diversity of 
the corresponding data vectors. In any case, w hen the probabilities (data 
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values) inside clusters of rows (or columns) with constant regressions are 
aggregated (sum.med), the regressions and the value of p• calculated for 
the aggregated data table remain unchanged. In other words, in such a 
case the optima! aggregation does not cause any loss of information except 
granulation. If all regressions are constant, then there are no clusters and 
P~ax for the initial table is equal to zero, but the opposite inference is not 
true. 

These properties have a great implications for cluster characterization. 
The value of p• for the data aggregated according to the GCCA measures 
the diversity of clusters. The difference between the value of P~ax for the 
initial table and the analogous value for the aggregated table (according 
to the GCCA) measures the clusters' homogeneity. The difference equal to 
zero means that the clustering restores the real cluster structure present in 
the data. An interesting question arises: does small difference always imply 
a good approximation of real clusters? 

On the other hand, as it was discussed above, the differences between 
values of the grade regression functions play the role of the dissimilarity 
measures among the values of row ( column) variable. Since the GCA al­
ways arranges these values in nondecreasing order of the grade regression 
functions, we are able to say that they are ordered according to their sim­
ilarities and the diversity of regressions inside particular clusters measures 
also the lack of clusters' homogeneity. Let us note that if the data table 
contains values of variables (say Z1, .. , Zk) which characterize the set of ob­
jects, then the values of regression function calculated for rows ( objects) are 
just the weighted sums of values of Zi· Hence the differences in the values 
of regression function work similarly to any disimilarity measure commonly 
used in cluster analysis. That is, for two objects characterized by similar 
values of variables Z;, the difference in regression function (dissimilarity) 
is near zero. When the data table of this kind is characterized by a strong 
dependence between the row and the column variables, then consecutive 
groups of objects in the optima! ordering (and consequently in the GCCA 
clusters) are characterized by particularly (albeit relatively) large values 
corresponding to the consecutive groups of variables. If the values of vari­
ables are treated as "measurements of similarity to some standard" (i.e., 
not in the sense of mathematical theory of measurement), this interpreta­
tion becomes almost identical with the interpretation for probability data. 
This provides additional support for the argument that the GCCA are ap­
plicable to tables various kinds of data. The analysis of severa! examples of 
data tables presented in the next section con.fi.rms that this point of view 
is right. 
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3.2 Grade approach versus random-partition and 
rnixture models 

In this section relations between the grade approach to clustering and the 
two classic approach: the random-partition model and the mixtures models 
(cf. [2]) will be discussed. To this purpose several radomly generated data 
examples will be analysed and compared. Let us remind that in the first 

(random-partition) model clusters are considered as the samples drawn 
from different distributions specific for particular clusters. In the second 
model clusters are also samples but they correspond to particular compo­

nents of the mixure distribution. 

All examples are generated in the same way. The tables contain values of 
variables, where rows correspond to objects and columns correspond to the 
variables. As data tables are always transformed to the form of bivariate 

probability table, then we may also assume that the value range for all 
variables is [O, l]. Let mi = (m!, ... , mź) , m~ E [O, l] , i = 1, ... , s be fixed 
vectors and let U= (U1 , ... , Uk) , where Uj, j = 1, ... , k , be random variables 
uniform on [-1, l ]. The generated data are realizations of the k-dimensional 
random variables Gi =mi+ o.U, where a is a constant and i= 1, ... , s; for 
each i the błock of k-dimensional data were generated. The part of data 
table obtained by one generator will be called a data błock. 

Let T1 , ... , T5 denote the generated data tables. In all examples two vari­

ables (k = 2) and three generators (s = 3) are considered, the sample sizes 
are identical and equal to 100 for each data block. Therefore each table Ti 
has 2 columns and 300 rows and includes 3 data blocks. All generated data 
are shown in Fig. 3.la-d and in Fig. 3.2. 

The GCCA procedure was applied to each table T; , i= 1, ... , 5, a priori 
knowledge about number of clusters (n = 3) was used. In the case of tables 

Ti, T2 and T3 (Fig. 3.la, b, c) all initial data blocks are restored completely, 
that is the blocks of data corresponding to different generators are identical 

with the GCCA row clusters. 
In the case of table T4 (Fig. 3. ld) there are 11 misclassifications (3.66(7)% 

of the sample), that is for 11 data vectors the assignments to the blocks 
do not agree with the assignments to the clusters. However such an effect 
in this case must be expected. The data blocks corresponding to particu­

lar generators Gi (i = 1, 2, 3) overlap, whereas the GCCA does consider 
overlapping clusters. Let us note that these misclassifications change only 

slightly the cluster centroids; the respective means inside clusters are equal 

to m1 = (0.2813, 0.1012), m2 = (0.4933, 0.5067), m3 = (0.7014, o.3105). 

It seems that the data from table T5 , shown in Fig. 3.2, are very similar to 
those shown in Figs 3. la and c. All of them are generated in the same way 

but the important difference is that the mean vectors mi are proportional in 
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(c) - T3 
m1 = (0.3, O. 7) 
m2 = (0.5, 0.5) 
m3 = (O. 7, 0.3) 

o:= 1/ 10 
p;;,ax = 0.290 
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(b) - T2 
m1 = (0.2, 0.8) 
m2 = (0.8, 0.8) 
m3 = (0.5, 0.2) 

o:= 0.1 
p;;,ax = 0.317 
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(d) - T4 
m1 = (0.3, O. 7) 
m2 = (0.5, 0.5) 
m3 = (0.7, 0.3) 

o:= 1/ 7 
P':nax = 0.306 

0.2 0.4 0.6 0.8 

FIGURE 3.1. Data tables T1, T2 , T3 and T4 

this case. The consequence is that they become identical when transformed 
into the conditional probability form and consequently the corresponding 
rows are assigned to the same clusters. For data tables which contain real 
probabilities this is how it should be. When the tables include the values 
of variables this phenomenon has two different implications. 

Proportionality for columns means that the corresponding variables differ 
only in their scales. In this case they should be reckoned as similar and 
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FIGURE 3.2. Data table Ts 

placed in the same cluster. In the case of rows (objects) it depends on 

data whether such an effect is admissible or not. Sometimes (for example 

for questionaire data) only values which are higher (or !ower) than the 

average level, characteristic for a particular respondent, are significant (not 

the real values). In this case proportional rows should belong to the same 

cluster. When real magnitudes are important, the problem can be solved for 

example by inserting an additional variable (column) into the data table. 

This variable is equal to the sum of the initial variables but with the scale 

reversed. For table T5 the function 2 - x was used as the reversion function. 

After this modification of the data the GCCA restores completely all three 

data blocks. 
When the data table includes many columns-variables then the proba­

bility of appearance of proportional vectors significantly decreases. It prac­

tically reduces to zero when the table includes strongly but negatively cor­

related variables. The practical implication of this observation is that to 

avoid the undesirable proportionality effect, the scales of some variables 

from the set of highly correlated variables should be reversed. 

Obviously the data tables which include values of variables can be easily 

transformed into probability tables. As the GCCA can be applied to the 

both tables, the question arises: are the results similar? Let us compare 

the pairs of results for tables T1 and T4. To estimate the probabilities the 

interval [O, 1] was partitioned into 40 subintervals of equal lengths. Each 

subinterval is represented by its center (mean); these centers are values of 

the new, discretized variables (all variables are discretized in the same way). 

Figures 3.3 and 3.4 show the overrepresentation maps for the optimally 

permuted probability tables corresponding to the discretized variables from 
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FIGURE 3.3. Overrepresentation map for data table T1 
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FIGURE 3.4. Overrepresentation map for data table T4 

The horizontal and vertical lines mark boundaries of clusters for rows 
and columns respectively (3 was assumed as the number of clusters for 

I 
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rows as well for columns). These clusters were determined by the GCCA 

applied separately for rows and for columns. 
Now the problem arises how to compare the results of clusterings for the 

initial data tables and for the corresponding probability tables constructed 

as descibed above. Let the row clusters obtained for the initial data tables 
be called value clusters. The pairs of clusters (i,j) generated for rows and 

columns of the respective probability table are called probability clusters. 

In these pairs the first element corresponds to the clusters of rows, the 

second corresponds to the clusters of columns. 
If (vi, v2) denotes a value vector which correspond to the pair of initial 

variables (it forms a row of the initial data table); and (vi. v2 ) denotes the 

analogous vector which correspond to the discretized variables (it forms 

also a row but in the transformed data table), then by agreement between 

value and probability clusters we mean that ( v1 , v2) belongs to the i-th value 

cluster if and only if (v1,1)2) belongs to the (i, i)-th probability cluster. Let 

us note that the complete restoration of initial data blocks by the GCCA 

does nor imply that the natura! order of values is retained by the GCA for 
the probability table. 

The clusters generated for the probability data corresponding to table 

T1 agree ideally with the respective clusters generated for the initial data. 

The analogous compatibility between the value and probability clusters 

for table T4 is characterized by the frequencies shown in Tab. 3.1. This 

table includes the numbers of discretized data vectors (v1 , v2) (these vectors 
correspond to particular rows of the initial data table) which are assigned to 

the i-th value cluster and simultaneously to the (j, l)-th probability cluster. 

The fact that the highest frequency values correspond to the pairs (i-th 

value cluster, (i, i)-th probability cluster) , i = 1, 2, 3, confirms that the 

results of both clusterings agree to a high degree. In this evaluation we 
must take into account the granularity caused by discretization, the small 

sample sizes which distort the probability estimators, and the fact that 

the data blocks corresponding to different generators overlap. In the case 

of overlapping blocks the values of variables can not determine clusters 

exactly (like it was for table T1). 

The presented observations are a good illustration of the discrepancy 

between two basie probabilistic models of clusters known in the literature. 

The first is the random-partition model, the second is the mixture model 

(cf for example [2]). The random model assurnes that a global population of 

objects is divided into m subpopulations. m clusters of objects are obtained 

by random, independent sampling from these subpopulations. The classic 

defi.nition adds here that the subpopulations should be "homogeneous" 

and differ among themselves. The mixture model assumes that the sample 

data are drawn according the distribution which is a mixture of severa! 

distributions corresponding to particular clusters. Looking at Fig. 3.ld one 

easily agrees that in the case of non-overlapping clusters "the mixture model 
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TABLE 3.1. Frequency table for probability and value clusterings 
Probability Value clusters Total 

clusters 1 2 3 
( 1, 1) 82 o o 82 
(1, 2) 16 22 o 38 
(1, 3) o 4 o 4 
(2, 1) 2 4 o 6 
(2, 2) o 51 1 52 
(2, 3) o 10 21 31 
(3, 2) o 5 4 9 
(3, 3) o 1 77 78 
Total 100 97 103 300 

provides no clustering approach in the strong sense" (cf [2]) . 

Table T4 generates also other difficulties. The three blocks obtained by 
different generators overlap and there are no natura! boundaries between 
particular clusters like for tables T1, T2 or T3. Consequently, if they are 
separated by any clustering method, it is arguable whether the generated 
groups are different clusters according to the classic cluster definition be­
cause there are no gaps between them. Therefore it is reasonable to accept 
that there is only one cluster. On the other hand this one cluster is not 
very homogeneous. The many clusters solution provides clusters which on 
average differ among themselves and are more homogeneous. The GCCA 
produces often such cluster structures when a strong monotone trend is 
present in the data. This trend is described well by these ordered clusters, 
so the cluster structure can serve as a tool of description of monotone trends 
and therefore the separability of particular clusters are not necessary. 

3.3 Living condition of Polish households - analysis 
of data example 

Let the analysis of a real data serve as an illustration of the problems 
with cluster determination. The table includes the questionaire data which 
describe the living conditions of 658 Polish households, where the rows cor­
respond to the households, the columns correspond to the questions. The 
data come from the research of Ms K. Kuśmierczyk (1999) of the Institute 
of Home Market and Consumption. Table 3.2 includes the desciption of all 
questions used in this analysis. Most of the questions characterize housh­
olds' satisfaction with respect to various aspects of their living conditions. 
Several questions concern the assessments of actual or future financial con­
d.itions of households or the pred.iction of changes in Polish economy. All 
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correspond.ing va.riables have integer values whose ranges vary from [1, 2] 

to [1 ,6]. 
Accord.ing to the forma! requirements, the input data for the GCA must 

be transformed into the form of biva.riate probability table. In this case 

the normalization consists of two steps. First, all columns are transformed 

into the form of conditional probability vectors, that is the values in each 

column are divided by the total sum in this column. This way a possible 

influence of different variables' scales is avoided. Next, all values are divided 

by the total sum in the table after the first normalization. 
The GCA was applied to the normalized table, its results are shown in 

Tab. 3.2 and also in Fig. 3.5, which presents the overrepresentation map 

of our normalized data. The table as well as the figure show the question 

(columns) and the households (rows) in the optimal permutation accord.ing 

to the GCA. 

TABLE 3.2. Analyzed va.riables characterising the living conclition data 

No Name Description 
1 Q6_ E Are household needs for holiday rest met? 
2 Q6_F Are household needs for culture goods and services met? 

3 Q4 Assessment of the actual financial situation of household 

4 Q6_B Are household needs for clothing and footwear met? 

5 Q6 _ C Are household needs for forniture, radio and television, 

6 Q6_ A 
7 Q6_D 
8 QlO 

9 Q22 

10 Q9 
11 Q21 

12 Ql 

13 Q7 
14 Q2 

15 Q20 
16 Q5 

household appliances met? 
Are household needs for food met? 
Are household needs for housing condition met? 
Does financial situation force the reduction of household 

expenditures? 
How will generał econornic situation change in the next 

2-3 years, will it improve or worsen? 
Is it possible to save something with the actual income? 
How will the standard of household living change in the 

next 2-3 years? 
Did the financial situation of household improve or 

worsen comparing with the last year? 
Does household own saving? 
Assessment of actual financial situation of household 

compared with that from before 10 years 
Did the standard of household living change recently? 
Does household have enough money for its needs? 

The overrepresentation map reveals that there is a natural partition of 

the variable set. Remembering that dark rectangles in the map correspond 

to large values of variables and light rectangles correspond to low values, one 

can see that there are two natura! cluster of va.riables. The scale direction 
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of variables from one cluster is opposite to the scale direction for the other 
cluster. The GCCA applied to the columns, where the number of clusters is 
equal to 2 provides the clusters which ideally coincides with these natural 
partition. The vertical line in Fig. 3.5 and the horizontal line in Tab. 3.2 
mark the boundaries of these clusters. 
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FIGURE 3.5. Overrepresentation map for the living condition data 

There is not a cluster pattern with natural boundaries visible for rows 
(households). This does not mean that the rows are not differentiated. On 
the contrary, the monotone trend generated by the GCCA can be inter­
preted as a quality of living conditions. According to it, the households are 
arranged is such a way that these whose various needs are met concentrate 
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at the one end of the trend scale (left upper corner of the overrepresenta­

tion map). The households which declare that they are not satisfied with 

respect to their various needs are grouped at the opposite end of the scale. 

This trend strengthens if the financial situation improved in last ten years 
for the households from the first cluster, or if this situation worsen for 

households from the second cluster. 
As the cluster determination is based on the values of grade regression 

function, let us compare these values calculated for our data. These values 

(for rows as well as for columns) are shown in the overrepresentation map 

but they are better visible in Figs 3.6 and 3. 7. Let us note that instead 

of linear segments Wce those shown in Fig. 2.2, the regressions function 

are represented here by the points: the regression values corresponding to 

particular rows or columns on vertical axis and the center of the respec­

tive intervals on the horizontal axis (the regressions are constant in these 

intervals). This kind of respresentation turn out to be useful in cluster de­

termination and will be discussed in detail in the next chapter. Here it just 

shows how much the regression values are differentiated. 

08 

• • • • . • . 
• 

06 

• • • • • • . -04 

Q2 

o 
o 02 04 06 08 

FIGURE 3.6. Values of the grade regression function calculated for the columns 

of living condition data table 

There is a natura! partition of the regression values for columns (Fig. 3.6), 

it is determined by the gap between 8-th and 9-th column. This gap coin­

cides with the boundaries of the optimal clusters provided by the GCCA 

when the assumed number of clusters is equal to 2. 

In the case of row regression the situation is different. The regression 

values (Fig. 3.7) go smoothly without significant gaps. They form almost 

linear curve; only small groups of the lowest and the highest values deviate 

from it. Consequently there is no natura! partition point Wce that for the 

row clustering. On the other hand the regression values are differentiated. 
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FIGURE 3.7. Values of the grade regression function calculated for the rows of 
living condition data table 

Usually in the optimaly permuted data tables different regression val­
ues for particular clusters coincide with different values of data (values of 
variables corresponding to the columns). This tendency is strongest for the 
columns which occupy the extreme positions in the optimal GCCA per­
mutation and generally depends on strength of monotone trend which is 
present in data (measured by a magnitude of the grade correlation coefi­
cient). 

This observation is confirmed by the GCCA result for the living condi­
tion data. Figure 3.8 shows the values of the four variables which occupy 
the extreme positions in the optima! permutation of columns (from both 
ends). The optima! permutation of the rows are shown on the horizonal 
axes, the corresponding values of variables - on the vertical axes. The ver­
tical line in Fig. 3.8 marks the boundaries of the two row clusters generated 
by the GCCA. I t is easy to observe that the distributions of the variables 
in these clusters differ signi.ficantly. This observation is confirmed by the 
respective frequencies calculated for both clusters and shown in Tab. 3.3. 
These frequencies show also that the difference between clusters is of sta­
tistical nature, that is there are no gaps in data values between particular 
clusters. 

The discussion of the data examples presented above (the living data 
table as well as the randomly generated data tables) leads to the following 
conclusions. 

• The quality of the GCCA results depends on the separability of data 
among distinct blocks of values, irrespective of the data meaning. 
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IO o 

FIGURE 3.8. Values of the selected variables for the living condition data when 

the rows are optimaly permuted according to the GCA 

TABLE 3.3. Frequencies of categories for the selected variables ID two optima! 

clusters 

Cluster Q6_E 
1 2 3 4 5 

1 19 63 115 72 17 
2 251 100 18 3 o 

Q6 F 
1 2 3 4 5 

1 11 82 114 61 18 
2 226 126 19 1 o 

Q20 
1 2 3 4 5 

1 15 106 106 52 7 
2 1 2 42 179 148 

Q5 
1 2 3 4 5 

1 24 99 118 42 3 
2 o 3 56 197 116 
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• There is the necessity of discrim.ination between two approaches to 
cluster determination 

- determination of natura! clusters present in data, 

- discretization of monotone trends by clustering tools. 

Whatever is the case the problem how to determine the proper number 
of clusters needs a solution. It seems that the concept of ideal regularity 
introduced in [7] can provide an appropriate tool for this task. 



4 

Regularity concept in grade 
cluster analysis 

4.1 Regularity concept in cluster modeling 

4 .1.1 I deally reguł ar concentration curves 

There are random variables which have convex concentration curves with 
extraordinary properties. Let us consider the optima! discretization of vari­

ables X and U defined on [O, 1) into n categories. Variable U is uniform and 
the cdf of X is the parabola x2 . As it was mentioned above, the optima! dis­
cretization in this case is equal to the uniform quantile discretization, that 

is, the discretization points are equal to *, i = O, ... , n . As this property 
is valid for every n, it is elear that the optima! discretization into kn cat­

egories only adds new partition points to those defining the discretization 
into n categories. This property gives rise to the following definition. 

Definition 2 Let vector w = (wo = O, Wi, .. . , Wn-1, Wn = 1) define the 
optimal discretization of the convex concentration curue C into n categories. 

Vectors w1 = (wb = w;-1, wł, ... , wL1, w~ =w;) determine the partitions 
of the subintervals [w1_ 1 , w1] (i= 1, ... ,n) according to the condition (2.8). 
Moreover, w} "::/; w;+l for all i = O, ... , n and j =O, ... , k - 1. lf for every 

n and k the discretization into nk categories defined by w1 (i = 1, ... , n) is 

optimal, then the curve C is called ideally regular. 

!deal regularity can be interpreted as infinite divisibility. The following 
properties provide additional arguments for this interpretation. 

• The optima! simultaneous discretization of the variables restricted 
to a chosen interval is determined by the optima! partition of the 
respective interval of the initial concentration curve. 

• The immediate conclusion is that if a concentration curve is ideally 
regular, then its restricted counterparts are also ideally regular. More­
over, this property repeats on any partition level. 

The following example is a good illustration of these properties. Fig. 

4. la presents the ideally regular curve in the form of parabola and two 
optimally discretized counterparts generated for 3 and 6 categories. The 

six subcategories are derived from separate partitions (according to the 
condition (2.8)) of the previously obtained three categories. This is a good 
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illustration of the ideal regularity concept. Each category can be partitioned 
separately into further subcategories according to the condition (2.8) and 
the discretization stili remains optimal. 

(a) (b) 

o 0.2 0.4 X 0.6 0.8 

FIGURE 4.1. Parabola curve and its two discretized counterparts (a), the corre­
sponding restricted concentration curve and its discretized counterpart (b) 

Figure 4.lb shows the restricted concentration curve C(XA: UA), where 
the restriction interval A for both variables X and U is equal to [O, ł] . Figure 
4.lb shows the restricted concentration curve which is discretized into two 
categories. This restricted curve is generated by the linear transformation 
given by formula (2.10); the same function transforms the partition point 
i for C(X: U) into the partition point ł for C(XA: uA). 

Currently, two families of ideally regular curves are known: parabolas 
and ellipses. The regularity of ellipses follows from the fact that they are 
restricted concentration curves calculated for curves in the form of circles. 
The infinite divisibility of circles follows from the fact that the optima! 
partitions generate the circle segments of identical lengths. It can be proven 
that curves which are symmetric w.r.t. the diagonal y = x or y = 1- x are 
also ideally regular (cf. [7]). Consequently, we have the additional families 
of ideally regular curves symmetric to parabolas and ellipses. 

The parabolas are the ideał examples of concentration curves where the 
only one natural category is present - its derivative is constant on the whole 
interval [O, l]. 

4.1.2 Ideally regular two-dimensional data tables 

The concept of ideally regular concentration curves can be generalized on 
two-dimensional data tables (cf. [9]). Like the family of parabolas is con­
sidered as the models of ideally regular curves, analogous family of models 
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for generalized regularity of two-dimensional data tables is needed. Such a 

family should be characterized by the lack of any cluster structure like in 

the one-dimesional case. 
Let us consider a parametrized family of pairs of continuous variables. 

These variables are defined on [O, l ] and their joint densities f 13 are given 

by the following formula: 

fp(x, y) = (3 + 2(1 - f3)(x + y - 2xy) x, y E [O, l ]. (4.1) 

The respective cdfs Fp are equal to: 

F13(x, y) = xy(f3 + (1 - (3)(x + y - xy)) x, y E [O, l ]. 

These pairs of variables will be called the paraboloida! and denoted by 

(X13, Yp), where (3 E (O, 2]. If (3 = 1 then the density /13 is constant and 
consequently the distribution is uniform on the unit square (Fi(x, y) = xy). 

If the scale order of variable X (or Y) is changed into its reverse, the density 

preserves its form, but the parameter (3 changes into 2 - (3: 

fp(l - x, y) = f p(x, 1 - y) = h-p(x, y) 

The important property of the paroboloidal family is that the corre­

sponding conditional densities are given by the linear formulas, conse­

quently the conditional cdfs are parabolas, which are ideally regular curves. 

Since the grade regression functions, in the case of continuous variables 

defined on the unit square are equal to the common regression: E(Y13IX13 = 
x) then 

rY.alX.a(x) = ~(4 - (3 + 2x({3- l )), x E [O, l ] 

These regressions are increasing ( decreasing) functions of x iff (3 > 1 (iff 

(3 < 1). If (3 = 1 then rY.alX.a = 0.5. The relationship between parameter (3 

and 2 - (3 can be expressed in the form: 

Due to the symmetry, the analogous formula can be calculated for r.X.alY.a· 

The grade correlation curve is given by the formula: 

2c:or(Y.a:X.a) (x) = ~ (4 - (3 + ((3 - l)x) 'X E (O, l]. (4.2) 

This correlation curve is a parabola; if (3 > 1 it is convex (if (3 < 1 it is 

concave). Of course the identical calculation can be made for c;or(X.a:Y.a)· 

Due to symmetry, the repective formula is identical to formula (4.2). 
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The known correlation curves enable us to calculate the grade correlation 
coefficient p*(Xp, Yp), which in this case reduces to the simple formula: 

{3- 1 
p*(Xp, Yp) = -

3
-

Note that in this case p*(Xp, Yp) = P':nax(Xp, Yp). Since {3 E (O, 2], the 
va.lues of p*(Xp, Yp) must belong to the interval [-ł, łl· The value of 
p*(Xp, Yp) > O iff {3 > 1. Moreover p*(X2-p, Y2-p) = -p*(Xp, Yp).This 
equality is in agreement with the fact described above that changing from 
{3 to 2 - {3 is equivalent to the reversal of value order for X p or Yp. 

Let us consider the GCCA procedure. According to its rules the new 
categories of row (column) variables are determined by the optimal dis­
cretization of the respective grade correlation curves. The first step in this 
procedure is to arrange the va.lues of both variables in nondecreasing or­
der of the respective grade regressions r* . Paraboloida! variables have their 
regression functions properly arranged if {3 > 1. In the following we will 
consider only the paraboloidal variables with such parameters. Generally, 
in the family of paraboloidal variables, both normalized correlation curves 
are parabolas which are convex for {3 > 1. 

The definition of a paraboloidal family can be generalized to bivariate 
distributions whose value ranges are not restricted to the interval (O, l ]. 
The set of bivariate distributions whose grade distributions are defined 
by formula (4.1) will be called the paraboloidal family. These generalized 
family retains all properties discussed above. 

The comparison of the clusters for paraboloidal variables provided by 
the GCCA procedure, with m and mk as the numbers of clusters for rows 
(columns), reveals behaviour identical to the behaviour of ideally regular 
concentration curves. The clustering for mk does not change the cluster 
boundaries, but only divides further the clusters obtained previously for 
m clusters. When this property does not depend on the va.lues of m and 
k, such a property can be interpreted as infinite divisibility. Consequently, 
the concept of ideał regularity can be analogously introduced for two-way 
data tables. 

Definition 3 Two-way data tables will be called ideally regu.lar if both cor­
responding normalized gra.de correlation curves are ideally regu.lar. If only 
one correlation curue is ideally regu.lar then the data table will be called 
ideally semi-regu.lar. 

Since parabolas are ideally regular, the pairs of paraboloida! variables are 
also ideally regular. 

Let us compare the results of two clusterings for rows (as well as for 
columns) of the paraboloidal pair of variables (Xp, Yp) for 20 and 10 clus­
ters, where {3 = 1.5. The value of p* for the initial continuous distribution 
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is equal to 0.166(6); for the discretized variables the value of p* decreases 
only to 0.1658 and to 0.1633 respectively for 20 and 10 categories. Gener­
ally, the values of p* decrease smoothly and monotonically while numbers 
of clusters increase. In other words, there are not such numbers of clusters 
which cause a sudden jump in the values of p* and which consequently can 
help to determine the proper numbers of clusters. 

Like parabolas in the case of curves, paraboloida! bivariate distributions 
have no natural clusters. Generally, all ideally regular data tables have 
this property. As the ideal regularity concept and deviations from it were 
exploited for determination of the proper number of variables' categories, 
a similar procedure will be repeated now for two-way data tables. 

4.2 Regularity and cluster detection 

4.!ł. 1 Discrete almost regular data tables 

The single clustering procedure can always provide a discretization of one 
variable (row or column); the double clustering discretizes both variables 
simultaneously. If the data table is (sem.i) regular, then both homogene­
ity measures discussed above increase monotonically when the number of 
clusters increases, and they never reach zero. This implies that any number 
of clusters is fine on the condition that the values of these measures are 
acceptable. 

When the table is not ideally regular and the grade regressions (the grade 
correlations as well) and the value of p* do not change after aggregation 
according to the clustering, then the real structure (the proper number of 
clusters and the proper clusters) is revealed. 

Like the parametrized family of ideally regular curves in the univariate 
case, the parametrized family of paraboloida! distributions can be used to 
check that there is no natura! granularity (clusters) in the data. Instead of 

checking the definition Jor the formula of ideał regularity, it is much easier 

to find the paraboloidal table which is most similar to the given table. lf 

the similarity is great, the data can be regarded as approximately ideally 

regular. 
Unfortunately the data tables one usually works with are finite and non­

symmetric. These tables are transformed into copulas which are continuous 
distributions; obviously these copulas have the natura! cluster structure cor­
responding to the initial data. Therefore, they can not be ideally regular, 
they can only approximate ideally regular (or sem.i regular) tables. 

Let f be the joint density of a bivariate distribution corresponding to 
the pair of continuous variables (X, Y) defined on (O, 1] x (O, l ]. Let us 
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assume that each of these variables is uniform ( after transformation in to 
the copula they are always uniform) and that the density has a more generał 
form than the densities of the paraboloida! tables (in particular it can be 
nonsymmetric) . 

f (x, y) = aixy + a2x + a3y + a4, x, y E [O, 1]. 

For a fixed x (y) this density as well as the regression function rYIX (rXIY) is 
a linear function of y ( x); the corresponding correlation curve is a parabola 
and consequently this curve is ideally regular. 

Let (X, Y) be the same varia ble pair, but after independent discretiza­
tions of both variables, these discretizations being determined by respective 
vectors (x1, .. „xn) and (y1, .. . ,yk)· Let us note that both variables remain 
uniform after discretization. T he regression function r~IX is given by the 

following formula: 

k 

2 ! _ ( . ) = '°"' (Y;+1 + Yj )Pi+l,J+l 
r Y IX x,+1 L..J . ' 

j=l P•+l,• 

where Pij (i= 1, ... ,n; j = 1, ... , k) are the probabilities of this new discrete 

distribut ion and Pi+l,• = L:J=l Pi+l,j = Xi+1 - Xi. According to definition , 
the correlation curve consists of linear segments determined by the points 
(xj, 2 L:~=l r;,

1
x(xi)Pi• )· Then the slopes of particular segments are equal 

to 2ry1x(xi+1). For our distribut ion 

1 
Pi+l,j+l = 2 <xi+1 - Xi)(Y;+1 -yj)[a1(Xi+1 + Xi)(Y;+1 + Yj) + 

+a2(Xi+1 +Xi)+ a3(Y;+1 + Yj) + 2a4] 

and 

1 ~ 2 2 [ 2r~1x(xH1 ) = 2 L...J(Y;+1 - yj) ai (xi+1 + xi)(Yj+i + Yj) + 
j =l 

+a2(Xi+1 +Xi)+ a3(Y;+1 + Yj) + 2a4] . 

Then 2r~1x(xH1) is a linear function of ~ (xi+1 +xi) for fixed Yj,j = 1, ... , k. 

This provides a simple rule for determining whether the correlation curve 
is derived from a parabola via discretization (in otber words, whether it 
can be regarded as an approximation of a parabola) . If points 

(4.3) 

lie on a line then we can say that the corresponding correlation curue is 
approximately ideally regular and the rows do not form clusters. Of course 
the same determination rule can be created for columns of data tables. 
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4.2.2 Analysis of simulation examples 

The .figures presented below {Figs 4.2-4.5) show the regression points de­

.fined by formula ( 4.3) for the data tables T1 , T2, T3 and T4 considered 
in Sec. 3.2. The points shown in Figs 4.2 and 4.3 form three almost lin­
ear segments, each clearly distinguished from the other. In Fig. 4.4 also 

three almost linear segments are visible, but they are not strongly differ­
entiated. In Fig. 4.5 all points lie approximately on one line; there are not 

distinguished linear segments. 

o 0.2 0.4 0.6 0.8 

FIGURE 4.2. Regression points for table T1 

o 0.2 0.4 0.6 0.8 

FIGURE 4.3. Regression points for table T2 

Many indices can be used to measure deviations from linearity. In this 
paper the well known measure is applied: the variance of regression resid­

uals. Let n be the number of clusters for the row variable X and let Y be 
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0.8 

0.6 ---
0.4 -
0.2 

o 
o 0.2 0.4 0.6 0.8 

FIGURE 4.4. Regression points for table T3 

o 0.2 0.4 0.6 0.8 

FIGURE 4.5. Regression points for table T4 

the column variable corresponding to the same data table. The regression 
points calculated for rows of this table (formula ( 4.3)) can be treated as the 
realizations of two-dimensional random variable (Xó , Yó). The analogous 
variable (X[, Yt) corresponds to the same regresion points but restricted 
to the i-th cluster (i = 1, ... ,n). For each cluster as well as for the whole 
sample (all row regression points) the regression lines of Y{ on X[ can be 
calculated. The deviations of these regression points (determined by (4.3)) 
from the respective regresion lines are measured by the standard resid­
ua! variance varres(Y{ : X [) . This variance can be expressed by various 
formulas, one of them is the following: 

varres(Y{: X[) = (1 - corr2 (X[, Y{))var(}'T ), i= O, 1, .. . ,n , (4.4) 

where corr denotes the Pearson correlation coefficient, and var(Z) is the 
variance of variable Z . 
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Table 4.1 includes the residua! variances calculated for tables Ti, .. „ T4 . 

In each case the variances are generated for all points and for particular 
clusters (like in Sec. 3.2, the considered number of clusters n is equal to 
3). It is interesting that the variances in particular clusters remain on the 
similar level for all data tables, whereas the analogous variances for the 
merged clusters are strongly differentiated. Moreover, the values of the 
total residua! variance are ordered according to the number of data table, 
that is this variance is highest for Ti and it is smallest for T4. This means 
that the residua! variances refiect the separability of particular data blocks. 

Table 4.2 shows relative residua! variances for particular clU$ters, which 
are the ratios: 

varres(Y[ : X[) . _ l 
(y;r . xr)' i - ' .... ,n 

varres o . o 

Once more tables Ti, ... , T4 are ordered, this time the order is determined 
by the maxima! ratios magnitudes. The smallest maxima! ratio corresponds 
to table Ti, the highest correspond to table T4. This observation provides 
a simple rule which helps to determine whether the obtained by the GCCA 
clusters are the natura! or they are just the effects of discretization If the 
relative variances (at least severa! of them) approach one then the clusters 
do not correspond to natura! clusters. There are two possible reasons: there 
are not natural clusters in the data or the number of clusters is not properly 
chosen. 

Cluster 
1 
2 
3 

All clusters 

TABLE 4.1. Residua! variances for tables T1, .. „ T4 

0.470E-05 
0.931E- 05 
0.605E-05 

116.841E - 05 

1.483E - 05 
0.143E - 05 
l.765E - 05 

52.332E- 05 

0.524E- 05 
0.947E - 05 
0.757E-05 
6.735E - 05 

0.232E- 05 
2.063E- 05 
1.912E - 05 
2.175E - 05 

TABLE 4.2. Relative residua! variances for tables T1, „„ T4 
Cluster Ti T2 Ta T4 

1 0.004 0.028 0.078 0.107 
2 0.008 0.003 0.141 0.948 
3 0.005 0.034 0.112 0.879 

Undoubtedly idea! examples of data without a cluster structure are sam­
ples drawn from uniform distributions. Such data are often used in the 
context of determination of cluster numbers (cf. for example [22]). Let us 
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assume once more that the variables' range is the interval [O, 1]. In the sim­
ulation experiment m x k data tables are randomly generated, each value 
is drawn according to the distribution uniform on (O, 1]. Figures 4.6, 4.7 
and 4.8 show the regression points calculated for rows of three such ta­
bles. These tables have the same number of rows m = 300, the number of 
columns are 100, 30 and 2 respectively. 

0.8 ~-----------------. 

0.6 +------------------< 

0.4 -t-----------------; 

0.2 +------------------! 

0-+---------~--------1 
o 0.2 0.4 0.6 0.8 

FIGURE 4.6. Regression points calculated for rows of 300 x 100 data table 

0.8 

0.6 --
0.4 

,,,,...--

0.2 

o 
o 0.2 0.4 0.6 0.8 

FIGURE 4.7. Regression points calculated for rows of 300 x 30 data table 

The linearity of the regression points for the two first tables are clearly 
visible, what is confirmed by the residua! variances equal to l.53095E - 05 
and 3.58333E - 05, respectively. For the third table the regression points 
are far from linearity; this agrees with the much higher value of residua! 
variance 64.6304E - 05. The corresponding values of P~ax are equal to 
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o 0.2 0.4 0.6 0.8 

FIGURE 4.8. The regression points calculated for rows of 300 x 2 data table 

0.086, 0.130, 0.350 respectively. The trend is elear: the linearity of regression 

points and independence between rows and columns (measured by p:;,ax) 
increase while the number of columns increases. 

This effect of columns' numbers is confirmed by further simulation ex­

periments. This time 200 data tables are generated analogously but they 

have different sizes: 30 rows and 300 columns. Figure 4.9 shows the regres­

sion points calculated for the rows of three tables; the first two tables are 

randomly chosen from the generated sample, the third corresponds to the 

maximal value of the residua! variance. 

0.6 ~---------------------. „. 
„ to• 

0.55 -----------------~----~---t 
Il i!t 

il q CJ. 
ca i• 

0.5 +--------~-,~~--=----------! 

~e 
'i •• 

0.45 -+----a---------------------ł •• e 
0.4 -+-----.------.------.----...------ł 

o 0.2 0.4 0.6 0.8 

• Sample I a Sample 2 .a. Sample 3 

FIGURE 4.9. Regression points calculated for rows of 30 x 300 data table 
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The row regression points of these tables are almost linear. The devia­
tion from linearity (the residua! variance) are smaller than the analogous 
deviation for the table from Fig. 4.6, which has 100 columns, the residua! 
variances are equal to l.221E - 05, l.379E - 05 and l.461E - 05 respec­
tively. The immediate conclusion is that the number of rows does not affect 
the linearity of the row regression points. 

Figure 4.9 shows that the row regression points corresponding to particu­
lar tables are very similar (and nearly linear). This observation is confirmed 
by the distribution of the residua! variance. These distributions are charac­
terized by the quantiles of order 0.05, 0.5 and 0.95 shown in Tab. 4.3. Let 
us note how small is the difference between the quantiles of order 0.05 and 
0.95. The samples used to the estimation of the quantiles are not indepen­
dent, the sample of size s1 + s2 includes the sample of size s2. This provide 
an additional evaluation of the stability of this distribution. The minimal 
value of the residua! variance in the largest sample is equal to l.175E - 05, 
the maxima! is equal to l.461E - 05. All these calculations confirm that 
the deviation from linearity depends on the size of data tables. 

TABLE 4.3. Quantile of residua! variances 
Sample Quantiles of order 

sizes 0.05 0.5 
100 l.223E - 05 l.281E - 05 
150 l.211E - 05 l.278E - 05 
200 1.200E - 05 1.278E - 05 

0.95 
1.374E- 05 
1.374E- 05 
1.376E-05 

Now let us return to the analysis of m x k tables where k = 2. As it was 
shown the residua! variance can be relatively high when comparing with 
the residua! variance of tables with larger numbers of columns. But what 
is more important this variance is higher than that calculated for tables Ta 
and T4. How this fact should be interpreted? 

To answer this question, let us compare tables Ta with the data table 
of the same size, generated according to the uniform distribution like the 
examples considered above. The only difference is that this time the con­
sidered value range is not the interval [O, 1] but the interval (0.2, 0.8] (this 
is the data range for Ta). The value of p;,,ax for this data table is equal 
to 0.215, so it is lower than the respective value for all tables Ti, .. ,T4. The 
value of the residua! variance is equal to 13.0852E - 05, the row regression 
points are shown in Fig. 4.10. Comparing the values of residua! variance, 
this random table should be placed between the two pairs of tables: Ti, T2 
on the one hand and Ta, T4 on the other. Let us note that in the ordering 
according to the decreasing values of P~ax this table occupies the last place; 
hence the ordering according to the linearity and the ordering according to 
dependence can be different. 
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0+-~~-.--~~-.--~~......-~~......-~~~ 

o 0.2 0.4 0.6 0.8 

FIGURE 4.10. Regression points calculated for rows of 300 x 2 data table re­

stricted to the range [0.2, 0.8] 

The analysis of the various examples of data tables presented above im­

plies a classification rule which helps to determine whether data tables have 

natural clusters. Let us choose a statistics which characterize the distribu­

tion of the residua! variance. If the value of residua! variance calculated 

for the data is smaller than the value of this statistics then we assume 

that there is no cluster structure in the data table. The estimation of this 

distribution must be based on randomly generated data tables which have 

the identical sizes as the initial table and which are generated according 

to the uniform distribution with the same value range as the original data. 

If the value of the residua! variance for the random table discussed above 

(see Fig. 4.10) will be used as a rough characteristic of the distribution of 

the residua! variance (as it was shown above such distributons have small 

diversity) then this rule indicates that table Ta and T4 have no cluster 

structures. 

4.2.B Determination of the proper number of clusters 

In the previous sections we tried to evaluate whether the chosen numer of 

clusters is good and which measures are usefull in this task. Now the results 

will be exploited for determination of the proper number of clusters. Let 

us consider once more the data tables T1 and T4 . Tables 4.4 and 4.5 show 

several indices which help to compare the results of the GCCA clusterings 

for different number of clusters obtained for tables T1 and T4 (as previously 

clusters of rows are considered). Let us introduce the following notation: 

• p:,ithin(n) denotes the di.ffference between p;;,11.X for the initial data 

and p;grr (n) w hi eh is equal to p* calculated for the table aggregated 

(summed) in each of n clusters according to the GCCA clustering. If 
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nwnber of clusters is equal to O then P:Vithin is equal to p';,.a:x, 

• P;el within (n) ( relative P:Vithin) is the ratio 

P• . . (n) = P:Uithin (n ) 
rel _ within p• 

max 

• dlav(n) (deviation from linearity) denotes the average residua! vari­
ance inside particular clusters: 

dlav(n) = ~ni - l varres(Y{: X [), 
~ m- 1 i=l 

where n denotes the number of clusters, ni is the size of i-th cluster, 
m = I:~=l ni is a nwnber of rows in the data table, the residua! 
variance in i-th cluster varres(Yt : X [) is given by formula (4.4). 
If nwnber of clusters is equal to O then dlav is equal to the residua! 
variance for the all data. 

• dlre1(n) (relative deviation from linearity) is the ratio of deviation 
from linearity to the total residua! variance 

( ) 
dlav(n) 

dlrel n = dlav(O) 

Comparison of the values of these four measures calculated for both 
tables T1 and T4 reveals two facts. The measures of clusters' heterogeneity -
P:Uithin• relative or simple - diminish while the nwnber of clusters increases. 
This effect is typical for various clustering methods (cf. (22]) which exploite 
intracluster homogeneity (heterogeneity) measures. Let us note that the 
diminishing trends for both data tables are very similar, however these 
values decrease faster for T1 than for T4 . Moreover the gap between the 
values corresponding to two and three clusters are much greater for T1 
than that for T4. 

TABLE 4.4. Indices characterizing data table T1 
Nwnber of P:Uithin • Prel_ within dlav dlrel 
of clusters 

0.568 1 116.841E - 05 1 
2 0.145 0.2553 116.424E - 05 0.9964 
3 0.026 0.0458 0.664E - 05 0.0057 
4 0.019 0.0335 0.610E - 05 0.0052 
5 0.012 0.0211 0.535E - 05 0.0046 
6 0.007 0.0123 0.478E- 05 0.0041 
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TABLE 4.5. Indices characterizing data table T4 
Number of P:,ithin p;el _ within dlav dlrel 

of clusters 
0.306 1 2.175E - 05 1 

2 0.080 0.2614 l.314E - 05 0.6043 

3 0.033 0.1078 l.392E - 05 0.6399 
4 0.021 0.0686 l.144E - 05 0.5259 

5 0.012 0.0392 0.870E - 05 0.4001 

6 0.009 0.0294 0.474E - 05 0.2178 

The measures of deviation from linearity retain the similar diminishing 

trend while number of clusters increases, however there is one exception 

from it for table T4 . For table T1 there is a huge gap between the results 

for two and three clusters. For greater numbers of clusters the values of 

these measures are low and decrease very slowly. For table T4 the analogous 

values are much greater and there is no a large gap betwen two and three 

clustera. On the contrary the deviation from linearity is slightly greater for 

three clusters than that calculated for two clusters. 

Tables 4.6 and 4. 7 show the sizes of particular clusters obtained by the 

GCCA when various numbers of clusters were assumed. As all clusters are 

formed by adjacent intervals of the optimal GCCA orderings, these sizes 

characterize the memberships for particular clusters 

When the number of clusters is 2 or 3 the clusters of both tables have 

very similar sizes. For the greater number of clusters the clustering proce­

dure generates totaly different results. For table T1 each of the three cluster 

(as it was shown before, the natural clusters corresponding to the different 

generators are restored) is partitioned into further subclusters. The analo­

gous clusters for table T4 are totally different; they have similar sizes and 

there are not stable boundaries which remain unchanged when the GCCA 

is applied with different numbers of clusters. This comparison provides ad­

ditional arguments that the proper number of clusters is 3 for T1 , but for 

T4 there is not such a natural choice. 

TABLE 4.6. Sizes of clusters for T1 
Clusters Numbers of clusters 

2 3 4 5 6 
1 147 100 100 53 53 
2 153 100 100 47 47 
3 100 47 100 52 
4 53 47 48 
5 53 47 
6 53 



46 4. Regularity concept in grade cluster analysis 

TABLE 4.7. Sizes of clusters for T4 

Clusters Numbers of clusters 
2 3 4 5 6 

1 153 100 86 60 58 
2 147 97 78 40 63 
3 103 65 84 54 
4 71 61 43 
5 55 49 
6 44 

It should be emphasized that very similar results as presented above were 
obtained for other random data tables generated by the same generators 
as the previously used. In other words the generał trends are stable {not 
rondom) and depend on the used generators. 

The analyses presented above lead to the formulation of severa! rules, 
which help to determine the proper number of clusters. The most important 
conclusion of these results as well as of the many others obtained for random 
or real data tables is that the choice should be based on severa! measures, 
which describe various characteristics of cluster structures present in data 
tables. This agrees with recent trends in classification, where severa! cri­
terions are applied simultaneously instead of seeking the best one (cf [23], 
[6]). In the GCCA framework the following measures should be taken into 
consideration: 

• P~ax which measures the strenght of monotone structure present in 
the data {formally it is the strenght of dependence between row and 
column variables of the data table). 
According to the definition, the stronger diversity between rows 
{columns), the higher value of p;,,ax. On the other hand the values 
of P~ax are influenced by various factors , unrelated to cluster struc­
tures. For example low values of P~ax may be caused by the lack 
of monotone trend as well as by the presence of two different mono­
tone trends {this problem is discussed in [10], [8]). Undoubtedly, P~ax 
alone can not express complexity of data structures 

• p:,ithin(n) and p;el within(n); they measure how much the data differ 
from the set of natilral clusters - hence they also measure intracluster 
homogeneity. 
Similarly to the value of P~ax also the values of p:,ithin are biased by 
factors unrelated to cluster structures. Therefore it is better to use 
the relative measure which is more robust. 

• dlav(n) and dlre1(n) - the measures of deviation from linearity of the 
regression points. In the GCCA context they are also intracluster 
homogeneity measures. 
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Many well known clustering procedures use some kind of intraclaster 

homogeneity measures, but usually only one is used. Usually the values of 

this measure decrease while the nwnber of clusters increases. Hence the 

choice of the proper number of clusters is based on a big gap between 

respective values of the homogeneity measure calculated for two nearest 

cluster numbers. The problem is how to determine whether the gap is 

big or not. The recent propositions suggest to compare the value of the 

homogeneity measure with its counterpart calculated for random data (cf 
(22], (31]) . This leads to another problems: which distribution should be 

used as a reference, which statistics (mean, median, other quantile etc) 

should be chosen to characterize this distribution. Uniform and normal 

distributions are the most popular in the context of cluster determination. 

Whatever is the choice, the next step consists in testing consequtive pairs 

of numbers (n, n+ 1). If the gap between the measures calculated for n-th 

and (n+ 1)-th cluster is bigger than those calculated for the random data 

then n + 1 are recognized as the "true" number of clusters. 
In the GCCA framework the first homogeneity measure (p;el within) 

is monotone with respect to the increasing numbers of clusters. The sec­

ond ( dlrel) does not posses this property, nevertheless the gap rule is also 

applicable here. In agreement with the concept of natura! clusters intro­

duced above, the natura! choice of the reference point is a uniform distri­

bution. Undoubtedly uniform distributions are the best models for data 

without cluster structures, whereas multinormal distributions correspond 

to the structures which is characterized by one big cluster and many sin­
gle points. Moreover the one of the few assumption in the GCCA is that 

data values should be nonnegative, hence samples from norma! distribu­

tions need to be transformed into the form admissible to the GCCA. An 

additional argument that multinormal distributions seem not appropriate 

as universal references is that they are rare in questionaire data which are 
common in sociology, psychology or market research. 

The proposed multicriterial procedure which helps to determine the proper 

number of clusters is the following . 

• Let 

and 

gdl(n _ l , n)= { dlre1(n - 1) - dlre1(n) 
dlrei(n) 

for n> 2 
for n= 2 

for n> 2 
for n= 2 

denote gaps calculated for the homogeneity measures. Let g~l!°d (n -

1, n) and gd_f"d(n - 1, n) denote chosen statistics which characterize 
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the distributions of respective gaps. These statistics are estimated on 
the sample drawn from the uniform distribution with the same value 
range as the initial data table. 

• The best candidate is the smallest n such that the both gaps are big, 
that is the gaps are greater than their random counterparts g~l!°d (n -
1, n) and gdt"d(n - 1, n) (greater than the values of a chosen statistic 
which characterize the respective distributions). If the clustering for 
n + 1 clusters divides only one cluster from those obtained for n 
clusters' solution and the others remain almost unchanged, then this 
is an additional confirmation that n is a good choice. 

• If there is no such n in the considered sequence of numbers and 
9dl (n - 1, n) are all small then the data table is close to ideally 
regular (paraboloida!) and any number of clusters can be chosen. If 
9dl(n - 1, n) are relatively big than the data may be regular but not 
paraboloidal type. Hence the next step is to cbeck whether the data 
table is regular by comparing the correlation curve with the ideally 
regular family of curves introduced above. If the answer is negative -
the curve is not similar to any member of this family, than the defini­
tion of ideal regularity should be used and various number of clusters 
n= n1n2 should be tested. Let us note that if each of ni clusters is 
optimally partitioned into n2 clusters and the result remains optimal 
for the number of cluster n = ni n2, but this occurs only for particular 
numbers ni and n2 than a hierarchy is present in the data, not ideal 
regularity. 

Now let us use this set of rules to the data from table T3 (Sec. 4). Table 
4.8 shows the value of both gaps 9p· and 9dl calculated for a few numbers of 
clusters. As the value range for both variables from table T3 is the same and 
equal to the interval (0.2, 0.8], the distribution uniform on this interval is 
used as the reference. A sample of the same size as in T3 is drawn and used 
for estimation of distributions of both gaps. Table 4.9 includes quantiles of 
order 0.1 , 0.5 and 0.9 of these distributions. 

TABLE 4.8. Two k.inds of gaps calculated for table T3 
n 9p· (n - 1, n) 
2 0.255 
3 0.171 
4 0.025 
5 0.021 

9dl(n - 1, n) 
0.890 
0.818 
-0.241 
0.081 

The value of 9p· (2, 3) attains the level of quantile of order 0.9, but the 
value of gap 9dl(2, 3) is undoubtedly big. As the respective values of gaps 
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TABLE 4.9. Quantiles for both gaps 

9p· (n - 1, n) 9d1(n - 1, n) 
n quantiles of order quantiles of order 

0.1 0.5 0.9 0.1 0.5 0.9 

2 0.285 0.292 0.302 0.541 0.650 0.719 
3 0.154 0.162 0.172 0.438 0.511 0.583 

4 0.052 0.056 0.060 -0.044 0.018 0.116 
5 0.023 0.027 0.030 0.010 0.024 0.069 

calculated for other number of clusters are much worse comparing with 

the respective quantiles then the natural conclusion is that three clusters 

is acceptable for table T3, however the values of 9p· indicates that this 

clustering structure is not very strong. Taking into account the inference 

which is based on the total residual variance (presented in the previous 

section) and summing up all results one may say that two numbers of 

clusters can be chosen for table T3: n= O (no clusters) or n= 3. 
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GCCA versus other clustering 
met ho ds 
There are two reasons of serious difficulties with comparison of any cluster­
ing method with the other ones. The first is technical and lies in an enor­
mous number of clustering methods. The second is methodological and it 
consists in the lack of one generally accepted definition of clusters. In con­
sequence there is a variety of existing definitions and even greater variety 
of clustering methods. The algorithms which are based on different defini­
tions are hardly comparable; the area of comparisons should be practicaly 
limited to the methods with similar underlying assumptions. The deter­
mination of groups of similar clustering methods leads to a typology of 
clustering methods where the method - subject of comparison should be 
properly located. 

Unfortunately the same methodological reason caused that there are sev­
era! taxonomies or more generał typologies which are discussed and criti­
cised by specialists (cf [18], [27]). Let us rem.ind that the term "taxonomy" 
is usually understood as a hierarchical classification of a given set of objects 
(in our case this is the set of clustering procedures). So taxonomies can be 
considered as the results of hierarchical clusterings. 

The typologies of clustering procedures exploites various features of the 
clustering methods as classification criterions. As this paper is not inten­
dended to provide a review of typologies, only a few of them, the best 
known, will be considered here. Let us start from the classic taxomomy 
showu in Fig. 4.10 (cf. (27]) 

Clustering 

Hierarchie Nonhierarchic 

Agglomerative Divisive Overlapping Nonoverlapping 

FIGURE 5.1. Classical taxonomy of clustering methods 

In this taxonomy the GCCA belongs to the group of nonhierarchic meth­
ods which generate nonoverlapping clusters. Thanks to the rapid develop-
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ment of clustering methods many of the recent ones do not fit into this 
classification. The newer and mare general typology, proposed in [27], takes 
into account three features which form the base of the classification: 

• kind of input data, 

• kind of criterion, 

• kind of output cluster structure. 

This typology takes into account only two-dimensional input data tables 
- identically as the GCCA. Its author distinguishes the three kinds of input 
data: 

• column conditional data (i.e. object - variable tables), 

• comparable data (i.e. proximity/dissimilarity tables including dis­
tance and correlation matrices, also object - variable tables but all 
values across the table should be comparable), 

• aggregable data (i.e. contingency data or category to category data) 

Most clustering methods are designed for one kind of input data, what's 
worse many of them are meant only for very specific data (for instance 
Boolean variables). In this aspect the GCCA is absolutely different; its ba­
sie underlying assumption is universality; as it was shown in this paper and 
also in (8], this method is applicable for any kind of input data from those 
considered in this typology. The only exception are the data which con­
sist of the values of nomina! variables, then each variable category should 
be expressed by the respective separate variables. It should be emphasized 
that the same procedure can be applied to various kinds of data, instead 
of developing many narrow-specialized procedures. This universality is at­
tained thanks to the lack of assumptions - no special forms of distributions 
(for example normality) or dependency is required. 

The next classification criterion in this typology is a clustering criterion. 
They can be external or interna!; and there are four kinds of the interna! 
criteria: 

• within algorithm criteria (direct clustering) - algorithms of this kind 
"refiects the clustering goals without any explicit criterion, while the 
forma! criteria are used within its particular iterative steps", 

• optimization (there is a variety of optimization criteria, strongly re­
lated to the underlying definitions of clusters), 

• definition (explicit definitions of clusters; this approach involves con­
cepts defined to fit perfectly into any feasible data) , 
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• consensus ("in this approach a classification method is considered as 
a mapping F: D-+ C, where Dis the set of all feasible data and C 
is the set of all classification structures of a given kind"; "mapping 
F is reffered to as a consensus function if it satisfies some natura! 
properties" ). 

Since the grade correlation coefficient is maximized in the GCCA, the 
method belongs to the second category. This coefficient expresses within­
cluster diversity as well as differences among clusters (cf. Sec. 2.2.2 and Sec. 
3.1). In this aspect the GCCA resembles the well known k-means method. 
The main difference between these two methods consists in diversity mea­
sures (measures of clusters' homogeneity) and consequently in optimization 
criteria. 

Let us note that however combinatorial problems are unseparable from 
cluster analysis (cf. [24], [26]) , the optimization methods are especially 
prone to generate problems unfeasible for large data tables. In the case 
of GCCA this combinatorial problem is solved by decomposition into two 
optimization procedures (the GCA and the grade clustering based on the 
GCA), which have not this drawback .. 

The methods which exploited the formalism of the classic correspondence 
analysis are known in the clustering literature (cf. [16], [17]). They belong 
to the class of hierarchical clustering methods and use the formulas specific 
to this correspondence analysis as the local criteria of procedures' steps. 
Therefore these methods belong to the other class of this typology than 
the GCCA - to the class "within algorithm criteria". Other difference be­
tween these methods and the GCCA follows from the difference between 
the classic and the grade correspondence analysis. The classic approach 
exploites decomposition of x2 statistic, the grade approach is based on the 
concentration indices and the grade correlation coefficient (cf. Chapter 2). 

The following major categories of cluster structures are considered in the 
discussed typology: 

• subset, 

• partition, 

• hierarchy, 

• association structure (this group includes also ordered partitions) , 

• biclustering structure (they correspond to two-mode clusterings, that 
is when the rows and columns of data table a.re of different nature) , 

• nonstandard clusters (i.e. fuzzy subsets and partitions, overlapping 
clusters, extended hierarchies like pyramids, standard point typology 
- for instance Kohonen maps) , 
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• concept (or conceptual cluster or classification tree or decision tree), 

• separating surface ( discrirninant function), 

• neural network, 

• probabilistic distribution. 

For most clustering methods these groups of output structures are dis­
joint, in the case of the GCCA they overlap. As it was shown above the 
clusters generated by the GCCA are determined by the partitions of the set 
of rows (or columns) of the input data table. As these partitions possess an 
order structure the GCCA results should be classified also as an association 
structure. 

The ordered data structures arouses much interest from many years.(cf. 
[l]). Some specialists even believe that "there are the signs of a mature 
discipline including its own specialized journal" (cf. [1]) . A particularly 
great attention is focused on one-dimensional orderings (usually the term 
seriation is used in this context). "In the last severa! decades the methods 
of seriation have been developed most aggresively by archeologists" (cf. 
[l]). 

The determination of GCCA clusters is based on the grade regression 
functions, these functions can be treated as the discriminat functions, hence 
the GCCA output structure can be also considered as a separating surface. 

The variant of the GCCA (so called double clustering - cf. (11], [8]) is 
specially designed for two-way clustering that is for the simultaneous clus­
tering of rows and columns of two-dimensional data tables. "Starting with 
the pioneering work of Hartigan (cf. (20], [21]) who significally contributed 
to the development of the simulaneous clustering domain both conceptu­
ally and algorithmically, and with some decision - theoretical investigation 
by Bock (cf. [4]), a broad range of simultaneous clustering methods has 
been developed by various authors. In the past, a few attempts have been 
made to structure the whole of the resulting methods but a comprehensive 
overview of the domain is still lacking, and the taxonomic efforts in the area 
has been criticized (cf. [28])". It is hard to disagree with this quotation from 
(32], which characterizes well the problems with clustering typologies. Its 
authors propose their own typology of the two-way clustering methods (cf. 
(32]). Also in this case severa! criteria are chosen which help to structure a 
variety of methods: 

• kind of input data 
- case by variable type, categorical predictor type, proximity type 
- column conditional, row conditional, matrix conditional 

• kind of clusters 
- elements of clusters ( Cartesian products of row and column clusters 
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or not) 
- set-theoretical relations between clusters (partitions, nested cluster­

ings, overlapping clusterings) 

• level of modeling and optimization 
- procedura! level 
- deterministic level 
- stochastic level {fixed-partition, random-partition) 

The two-way GCCA procedure does not fit ideally into this classifi.cation, 

thanks mostly to its applicability to the various types of input data {the 

two-way GCCA retains all properties of the one-way procedure which are 

d.iscussed above). There are no problems with the classifi.cation of GCCA 

according to the second criterion, only partitions and only Cartesian prod­

ucts of row and column clusters are taken into account. 
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